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Abstract

The stability characteristics of an infinite horizontal fluid layer excited by a time-
periodic, sinusoidally varying free-boundary temperature, have been investigated
numerically using the Floquet theory. It has been found that the modulation of the
temperature gradient across the fluid layer affects the onset of the Rayleigh–Bénard
convection. Modulation can give rise to instability in the subcritical conditions and it
can also suppress the instability in the supercritical cases. The instability in the fluid
layer manifests itself in the form of either a harmonic or subharmonic flow, controlled
by thermal modulation.

2000 Mathematics subject classification: primary 76D17; secondary 76E07.
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1. Introduction

Hydrodynamic systems show a change in flow behavior in response to parametric
modulation of driving force. In this regard, Rayleigh–Bénard convection [2, 3, 5, 9]
is an interesting and well-studied problem of instability phenomena. External
modulation can be produced in the system either by oscillating the container vertically,
thereby producing sinusoidal variation of vertical acceleration [7], or by time-periodic
heating of the fluid layer. The instability may appear in synchronous or subharmonic
mode.

Chen and Chen [4] examined the problem of convection in a vertical infinite
slot under gravity modulation. They found that the critical state alternates between
synchronous and subharmonic modes. The higher driving frequency tends to suppress
the subharmonic oscillations. The instability is shear-dominated for a fluid with
Prandtl number 1 and, buoyancy-dominated for a fluid with Prandtl number 25.
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The structural characteristics of convective flows also change with the temperature
modulation.

Venezian [14] studied the Rayleigh–Bénard convection with a time-dependent
sinusoidal perturbation applied to the wall temperatures. He considered small
amplitude of modulation and obtained the shift in the critical Rayleigh number as a
function of the driving frequency. He found that it is possible to advance or delay
the onset of convection by time modulation of the wall temperatures. Yih and Li [15]
investigated the formation of convective cells in a fluid between two horizontal rigid
boundaries with time-periodic temperature distribution, using the Floquet theory, for
the Prandtl numbers of air (0.73) and water (7.0). They found that with the temperature
modulation, convection cells oscillate either synchronously or with half frequency.
Rosenblat and Tanaka [13] used the Galerkin method to solve the linear stability
problem and obtained the critical temperature gradient at the onset of the modulated
convection. They found that the critical Rayleigh number increases with modulation.
Roppo et al. [12] discussed the Bénard convection with sinusoidal time modulation of
the lower wall temperature. Using weakly nonlinear analysis of the flow, they found
that the modulation produces a range of stable hexagonal patterns near the critical
Rayleigh number. These hexagons bifurcate subcritically and correspond to the fluid
flow downwards at the cell centers.

The previous work on convection in a horizontal fluid layer, driven by time-
periodically varying temperatures of the boundaries, has emphasized the critical onset
of instability by computing the values of the critical Rayleigh number. However,
the instability can occur at any value of the temperature difference applied to the
boundaries of the fluid layer, and is controlled by the amplitude and frequency of
modulation. In the absence of modulation, the fluid layer is stable with respect to small
disturbances, for all values of Rayleigh number Ra< 657.511; but the modulation can
give rise to convection in subcritical conditions. Also, for supercritical conditions
(Ra> 657.511), the phenomenon of convection can be suppressed by the modulation.
We address this issue in the present study. We investigate numerically the effect of
time-periodic modulation of the free-boundary temperatures on the onset of Rayleigh–
Bénard convection in an infinite, horizontal, Boussinesq fluid layer. The stability
analysis is done using Floquet theory [6, 8]. We find that the instability in subcritical
and supercritical conditions can set in as harmonic or subharmonic flows, which
are controlled by modulation. To see this, the resonance bands in the plane of
the dimensionless wavenumber of disturbance and the amplitude of modulation, are
obtained for various combinations of the dimensionless parameters. To obtain the
resonance bands, we employ the same method as Kumar [10] and Bajaj [1].

2. Mathematical formulation

Consider an infinite, horizontal, viscous, Boussinesq fluid layer of thickness d ,
whose lower and upper ends are the planes z = 0 and z = d , respectively. The system
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is described by the equations

ρ0
∂u
∂t
+ ρ0u · ∇u=−∇ p + η∇2u+ ρg,

∇ · u= 0,
∂T

∂t
+ u · ∇T = kT∇

2T,
(2.1)

where u, p, and T are the fluid velocity, fluid pressure, and fluid temperature,
respectively, at a point (x, y, z) inside the fluid layer, at time t; g= (0, 0,−g) is the
acceleration due to gravity; ρ0 is the fluid density at a reference temperature T1; ρ

and η are the density and the dynamic viscosity of the fluid, respectively, at a
temperature T ; kT is the thermal diffusivity. The fluid density ρ is a function of T
in general and it is given by the linear expression ρ = ρ0{1− α(T − T1)}, where α is
the coefficient of volume expansion. The boundary conditions for the velocity field are

∂u
∂z
· î =

∂u
∂z
· ĵ = u · k̂ = 0 at z = 0, d.

The temperatures of the lower and upper boundaries of the fluid layer are modulated
about their mean values T1 and T2, respectively, such that the boundary conditions for
the temperature field T are

T =

{
T1 − ε0 cos(ω0t) at z = 0,

T2 + ε0 cos(ω0t) at z = d,

where ω0 > 0 and ε0 > 0, are the frequency and amplitude of modulation, respectively.
The system of equations (2.1) describes a basic state of rest given by

u0 = 0, p0 = ρ0g
∫
{1− α(T0 − T1)} dz,

T0 = T1 +
T2 − T1

d
z + ε0 real

[
sinh{(z/d − 1/2)λ}

sinh(λ/2)
exp(iω0t)

]
,

(2.2)

where λ= (iω0d2/kT )
1/2.

3. Analysis

We make the variables in the governing equations (2.1) dimensionless, using d
as the distance scale, d2/kT as the time scale, and γ d (γ =−(T2 − T1)/d) as the
temperature scale. During the nondimensionalization process, the Rayleigh number
Ra= γαd4g/(kT ν) which is the dimensionless measure of the temperature gradient
across the fluid layer, and the Prandtl number σ = ν/kT , appear as dimensionless
parameters. Considering small perturbations in the basic state (2.2) in the form

u=
kT

d
(u, v, w), p = p0 +

(
ρ0k2

T

d2

)
p1, T = T0 + dγ θ,
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we obtain the linearized system of partial differential equations satisfied by w and θ :

∇
2 ∂w

∂t
= σ∇4w − σRa

(
∂2

∂z2 −∇
2
)
θ, (3.1)

∂θ

∂t
=−

1
γ d

∂T0

∂z
w +∇2θ. (3.2)

The boundaries are assumed to be stress-free. The boundary conditions are w = θ = 0
at z = 0, 1.

To solve the system of differential equations (3.1) and (3.2), we express w and θ in
terms of suitable eigenfunctions such that

(w, θ)=

N∑
`=1

(A`(t), B`(t)) sin(`π z) exp{i(k1x + k2 y)}, (3.3)

where N is a positive integer. Multiplying (3.1) and (3.2) throughout by sin( jπ z), and
integrating under the limits of z, we obtain

N∑
`=1

(k2
+ `2π2)δ`j Ȧ` =−

N∑
`=1

σ(k2
+ `2π2)2δ`j A` + σRa k2

N∑
`=1

δ`j B`, (3.4)

N∑
`=1

δ`j Ḃ` =
N∑
`=1

{δ`j − 2ε real[Pj` exp(iωt)]}A` −
N∑
`=1

(k2
+ `2π2)δ`j B`, (3.5)

for each j = 1, 2, 3, . . . , N , where k = (k2
1 + k2

2)
1/2, δ`j is the Kronecker delta,

ε = ε0/(γ d), ω = ω0d2/kT , and

P`j =
λ

sinh(λ/2)

∫ 1

0
cosh {(z − 1/2)λ} sin(`π z) sin( jπ z) dz.

The system of equations (3.4) and (3.5) can be represented in the form of a matrix
differential equation given by

AẊ=BX, det A 6= 0, (3.6)

where A and B are the respective coefficient matrices in (3.4) and (3.5) and

X= (A1 A2 · · · AN B1 B2 · · · BN )
′,

where the symbol ′ denotes the matrix transpose. The system (3.6) has been found
to be reasonably stiff so that Runge–Kutta methods are not suitable for integrating
it numerically, because these methods take a huge amount of time for numerical
computation. To deal with a stiff system, we have used another numerical integration
technique which is been explained in brief in the next section and works well with the
present problem.
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3.1. Floquet analysis The periodic, homogeneous system (3.6) of ordinary
differential equations can be solved using Floquet analysis [6, 8]. The details of the
numerical method employed are given in the references [6, 11]. For the eigenfunction
expansions (3.3), we take N = 3. The interval [0, 2π/ω] is divided into m equal
parts by t0 = 0< t1 < t2 < · · ·< tm = 2π/ω, such that each subinterval [t j−1, t j ),
j = 1, 2, . . . , m, has length h = 2π/(ωm).

Let F(t)=A(t)−1B(t). Then F(t j−1 + t)≈ F(t j−1), for all t ∈ [t j−1, t j ), for h
sufficiently small. Let 8(t) denote a fundamental matrix for the regular system (3.6).
Its value at t = t j is approximated by

8(t j )=8(t j−1) exp{hF(t j−1)}. (3.7)

Using this iteration scheme, the approximate solution at t = 2π/ω is found to be

8(2π/ω)=8(0) exp{hF(0)} exp{hF(h)} exp{hF(2h)} · · · exp{hF((m − 1)h)},

where we take 8(0)= I as the identity matrix of order 2N . The eigenvalues of
8(2π/ω) are the Floquet multipliers. The Floquet exponents λ j and the Floquet
multipliers µ j are related by µ j = exp(2πλ j/ω), 1≤ j ≤ 2N .

The µ j and hence λ j terms are functions of the dimensionless parameters: the
modulation frequency ω, the modulation amplitude ε, the Rayleigh number Ra, the
Prandtl number σ , and the wavenumber k.

The marginal state of the modulated system is determined by setting

max
1≤ j≤2N

{real(λ j )} = 0. (3.8)

The basic modulated flow is stable for max1≤ j≤2N {real(λ j )}< 0, and unstable for
max1≤ j≤2N {real(λ j )}> 0. If a Floquet exponent satisfying (3.8) is identically zero,
then the disturbance in the marginal state oscillates periodically with the forcing
frequency ω, and the instability response is called synchronous or harmonic. On the
other hand, if the imaginary part of the Floquet exponent satisfying (3.8) is equal
to ω/r , for some positive integer r > 1, the disturbance in the marginal state oscillates
with a frequency ω/r , and the instability response is called subharmonic of order 1/r .

Considering again the system of equations (3.4) and (3.5), we write the coefficients
A`(t) and B`(t) in terms of the truncated Fourier series

(A`(t), B`(t))=
L∑

q=−L

(A`q , B`q) exp{(s + iqω)t},

where L is a positive integer and s is the Floquet exponent.
The system of equations (3.4) and (3.5) now satisfies

Hq2q = ε(Q2q−1 +Q2q+1), (3.9)
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for each q =−L ,−L + 1, . . . , 0, . . . , L − 1, L . Here,

2q = (A1q A2q · · · ANq B1q B2q · · · BNq)
′, Hq =

(
Aq D
C Bq

)
, Q=

(
0 0
P 0

)
,

where

Aq =−(a`qδ`j )N×N , Bq =−(b`qδ`j )N×N , C= (δ`j )N×N ,

D= σRa k2(δ`j )N×N , P= (P`j )N×N ,

and 0 denotes the zero matrix of order N . The elements a`q and b`q are given by

a`q =
(

k2
+ `2π2

)
(s + iqω)+ σ

(
k2
+ `2π2

)2
, b`q = s + iqω + k2

+ `2π2.

Equation (3.9) leads to the eigenvalue problem given by

TZ= εUZ, det T 6= 0, (3.10)

where T and U are the coefficient matrices related to (3.9) such that it is equivalent to
the representation (3.10) and Z= (2′

−L ,2
′

−L+1, . . . ,2
′

L−1,2
′

L)
′.

The eigenspectrum of the linear operator T−1U in (3.10) consists of the values of
1/ε, ε 6= 0. The real positive values of ε can be calculated by numerically evaluating
the eigenspectrum of T−1U as a function of the dimensionless parameters.

4. Results and discussion

The fundamental matrix 8(2π/ω) is obtained using the recurrence relation (3.7). A
reduced step size h is required to obtain high accuracy as the modulation amplitude ε
increases. To check the correctness of the numerical results obtained by the present
integration technique, we carried out numerical integration of the system (3.6) to
obtain the critical Rayleigh number for a typical value of ε = 10; the other parametric
values are taken as σ = 0.73 and ω = 20. Letting m denote an approximate minimum
number of points of evaluation required for convergence of a numerical method over
one time period, then h = 2π/(ωm). The Rac values obtained by solving (3.6), using
the present method are compared in Table 1 with those obtained by employing the
powerful Runge–Kutta methods of integration, namely, the Runge–Kutta–Fehlberg
method (RKF45), the fourth-order Runge–Kutta method (RK4), and the Runge–
Kutta–Gill procedure (RKG) (see Table 1).

From Table 1 we see that the various methods converge to almost same value of
Rac. The number of points of evaluation for the convergence of Runge–Kutta methods
is very small compared to the number of points of evaluation required by the present
method. However, it has been found that the Runge–Kutta methods take a great deal
of time to obtain the velocity and temperature profiles (where it is necessary to use
a particular method repeatedly) even if m is taken small, whereas the present method
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TABLE 1. Critical Rayleigh number Rac and corresponding wavenumber kc as obtained using different
numerical integration techniques for ε = 10, σ = 0.73 and ω = 20.

N Present method m RK45 m RK4 m RKG m kc Rac

8 3000 132 360 360 3.47 305.5038
7 3000 132 360 360 3.47 305.5038
6 3000 151 431 431 3.47 305.5038
5 3000 151 431 431 3.47 305.5038
4 3000 153 431 431 3.47 305.4998
3 3000 153 431 431 3.47 305.4998
2 3000 153 431 431 3.46 303.4753
1 3000 153 431 431 3.46 303.4753
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RKF45
RK4
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Present

w

FIGURE 1. Normalized vertical velocity profile at the onset of harmonic flow for two time periods as
predicted by the various numerical integration methods for ε = 10, N = 3, σ = 0.73, w = 20.

works faster even when m is quite high. Figures 1 and 2 demonstrate the normalized
velocity and temperature profiles as depicted by the various numerical integration
methods for N = 3, which are practically indistinguishable.

The normalized velocity profile for w is not affected by increasing N , but the
normalized temperature profile for N = 1 has been found to be different from those
drawn at higher N (Figures 3 and 4). Nevertheless the shape of the profile remains
unaltered in all the cases. We have seen that N = 3, along with m ≥ 3000, is sufficient
to obtain the correct profiles by employing the present numerical integration technique,
for ε values not exceeding 10.

It has been found numerically that the critical state oscillates time periodically,
either with the natural frequency or with half of the natural frequency of modulation.
Figure 5 illustrates a variation of critical Rayleigh number Rac with the amplitude of
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FIGURE 2. Normalized temperature profile at the onset of harmonic flow for two time periods as predicted
by the various numerical integration methods for ε = 10, N = 3, σ = 0.73, ω = 20.
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FIGURE 3. Normalized vertical velocity profile at the onset of harmonic flow for two time periods as
predicted by the various numerical integration methods for different values of N at ε = 10, σ = 0.73,
ω = 20.

modulation ε, for the Prandtl number of air (0.73). For ε = 0 (that is, in the absence
of temperature modulation), the Rayleigh–Bénard convection starts at Ra= 657.51.
With an increase in modulation amplitude, the onset of convection is delayed. For
ε ≥ 1.2, subharmonic instability appears. The critical value of the Rayleigh number
for the onset of subharmonic instability decreases with an increase in the amplitude
of modulation. When ε exceeds approximately 2.1, the critical Rayleigh number falls
below its value corresponding to no modulation.

The streamline patterns at the onset of instability as harmonic flow and subharmonic
flow are shown in the (y, z) plane in Figures 6 and 7, respectively. The roll patterns
extending periodically in the y direction are evident from the figures. The flow
alternates between the adjacent rolls. The cell size in each roll is comparatively smaller
in the case of harmonic flow.
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FIGURE 4. Normalized temperature profile at the onset of harmonic flow for two time periods as predicted
by the various numerical integration methods for different values of N at ε = 10, σ = 0.73, ω = 20.
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FIGURE 5. Critical curve in (ε, Rac) plane at σ = 0.73 and ω = 20.
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FIGURE 6. Cell pattern in (y, z) plane at the onset of harmonic for ε = 1.1, Ra= 1324 and σ = 0.73.
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FIGURE 7. Cell pattern in (y, z) plane at the onset of subharmonic flow for ε = 1.1, Ra= 1423 and
σ = 0.73.
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FIGURE 8. The normalized z component of the velocity field perturbation at the onset of subharmonic
flow for σ = 0.73 and ω = 20.

The normalized velocity field w at the critical onset of convection is shown with
respect to t in Figure 8 for different values of the amplitude of modulation. The profiles
have been drawn for 0≤ t ≤ 10π/ω and z = 1/2. The fluctuations in w increase with
an increase in modulation amplitude. Observe that w can be negative, zero, or positive
with increase in t . A similar variation (not shown here) occurs in the normalized
profiles for the x and y components of the velocity field perturbations.

The time evolution of the corresponding normalized temperature field θ is
illustrated in Figure 9. It is interesting to note that there is a time lag between the
corresponding extreme values of w and θ , the former lagging behind the latter. This is
due to the counter-action of the inertia of the fluid carried by the disturbance w which
acts so as to oppose the change of flow direction. Figures 10 and 11 illustrate the time
evolution of the normalized z component of the velocity field and the temperature field,
respectively, at the critical onset of convection for 0≤ t ≤ 10π/ω and z = 1/2.
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FIGURE 9. Normalized temperature profile at the onset of subharmonic flow for σ = 0.73 and ω = 20.
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FIGURE 10. Normalized z component of the velocity field perturbation at the onset of harmonic flow for
σ = 0.73 and ω = 20.
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FIGURE 11. Normalized temperature profile at the onset of harmonic flow for σ = 0.73 and ω = 20.
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FIGURE 12. Resonance bands in the (k, ε) plane for σ = 0.73 and ω = 20.

In the eigenvalue problem (3.10), the reciprocal of an eigenvalue of T−1U gives the
amplitude of modulation for the onset of instability. The eigenvalue 1/ε is a function
of the Rayleigh number Ra, the Prandtl number σ , the modulation frequencyω, and the
wavenumber of disturbance k. For calculation purposes, we fix the value of the Floquet
exponent s equal to zero to obtain the results for the synchronous mode and s = 1/2
for the subharmonic mode of instability. The resonance bands in the (k, ε) plane have
been obtained using L = 12 and N = 3. The eigenvalues of the fundamental matrix
give the Floquet multipliers.

We obtain numerically the values of ε in a range of k, for various values of the
Rayleigh number, Prandtl number, and forcing frequency. Instability zones in the form
of tongues are observed. Figure 12 shows the pattern of instability zones at various
values of Ra, for fixed parametric values σ = 0.73 and ω = 20. The points on each
band correspond to harmonic or subharmonic instability. Within a particular tongue
the basic state is unstable, and outside the tongue the basic state is stable. The darker
points in the figure correspond to harmonic instability and lighter points correspond to
subharmonic instability. Alternate harmonic and subharmonic resonance bands appear
for different Rayleigh numbers. The fundamental region of instability appears for Ra
exceeding its critical value corresponding to convection in the absence of modulation,
that is, Rac = 657.511. For Ra> Rac, the system is unstable without temperature
modulation. The fundamental mode of instability can be stabilized with sinusoidal
modulation of boundary temperatures; however, this stabilization is bounded above by
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FIGURE 13. Instability zones in the (k, ε) plane for Ra= 1000 and ω = 20.

the resonant instability zones. As the Rayleigh number increases, the resonance bands
become narrower. However, the number of bands increases in the region considered.

It has been observed that at a fixed Rayleigh number, the instability regions are
affected by increasing the Prandtl number. This variation is evident from Figure 13.
The instability zones become narrower with an increase in σ . The synchronous and
subharmonic modes of instability alternate with an increase in the Prandtl number.
However, at a subcritical Rayleigh number Ra= 300, the resonance bands may
shift upwards or downwards along the ε axis, depending upon the Prandtl number
(Figure 14). The instability zones also shift towards the higher wavenumber, indicating
that the convection cells will become narrower for higher Prandtl numbers.

We have also observed the resonance bands in the (k, ε) space for various values
of the modulation frequency ω (see Figure 15). At ω = 5, the resonance bands are
densely packed, and overlapping between some of them also occurs. The density
of the packing decreases gradually when the frequency is increased. Observe that
the fundamental region also rises with an increase in ω. Thus, a higher amplitude
of modulation is needed to stabilize the fundamental mode of Rayleigh–Bénard
convection at higher frequencies. At or above ω = 40, we observe that only one
tongue remains above the fundamental region in the range of k and ε considered,
which corresponds to subharmonic instability. The pattern shows that an increase in
the modulation frequency suppresses the onset of a periodic flow.
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FIGURE 14. Instability zones in the (k, ε) plane for Ra= 300 and ω = 20.
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FIGURE 15. Resonance bands in the (k, ε) space for Ra= 1000 and σ = 0.73.
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5. Concluding remarks

The effect of time periodic modulation of the free-boundary temperatures in the
Rayleigh–Bénard convection of an infinite, horizontal, Boussinesq fluid layer has been
studied numerically using Floquet theory. The critical onset of convection can be a
time-periodic harmonic or subharmonic flow, depending upon modulation.

Modulation can cause the convection to occur even in the subcritical Rayleigh
numbers. Also, the presence of modulation can suppress the convection in the
supercritical flow regime. In the presence of modulation, an increase in the Rayleigh
number has a tendency to advance the onset of periodic flows, while an increase in the
Prandtl number and the modulation frequency oppose this effect. Thus, with the proper
tuning of the parameters, the onset of convection in the form of periodic flows can be
controlled. These results may be helpful in giving some insight into understanding
and controlling the instability phenomena driven by temperature modulation in the
real physical situations where the natural convection occurs.
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