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SUMMARY. A short overview is presented of a number of different discriminant analysis methods. An 
'uncertainty principle' is presented in regard to the issue of user choice of appropriate method. The 
discriminant analysis methods described are men used in the important problem of feature selection. A 
hand-classified set of HST Guide Star plate data is used, with star/galaxy/fault classes. 

1. Introduction 

In classification, prior knowledge of class membership may not be available, in which case cluster 
analysis or unsupervised classification methods can be used. Where class labels are available for 
the objects being studied, discriminant analysis or supervised classification methods are used. 
Often methods of the latter type are more likely to be in question when 'classification' is spoken 
of. 

Discriminant analysis methods are often subdivided into parametric and non-parametric 
methods. Parametric methods seek generality by assuming that the objects follow some statistical 
model . For example, the measurements made on objects in a particular class may be assumed 
to be distributed as a multivariate Gaussian distribution. This, then, implies that a first 
requirement is that we estimate the relevant model parameters, such as the mean and covariances. 

Non-parametric methods seek to be data-driven. A training set is used to train the classifier, 
i.e. to arrive at estimates for its parameters (e.g. the weights in a multilayer perceptron). Right 
away we see that a good training set is a critical requirement for good performance. The latter 
is referred to as generalisation or application, when the trained classifier is used to produce class 
memberships for objects which were not formerly used for training. These test objects can be 
used for assessment of performance. Resubstitution, using the training set, gives an over-
optimistic estimate of the error rate. Since dividing one 's data into a training and a test set 
lessens the available data for training the classifier, a popular validation strategy is referred to as 
leaving-one-out Given η objects, each object is considered in turn as a test object, with the 
training of the classifier carried out on the remaining η - 1 objects. 

Although these approaches to supervised classification are quite varied, nonetheless there are 
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many points of overlap. Some methods can be arrived at both by parametric and by non-
parametric considerations. Various relationships have been studied between the different methods. 
A very short presentation of some methods, beginning in the next section, will be followed by 
an interesting characterization of the choice of parametric versus non-parametric methods. 
Following this, we will use the methods described to present a few results on the issue of best 
features for star/galaxy separation. 

2. A Geomet r i c Fo rmu la t i on 

A geometric formulation of the mscrimination problem is based on an m-dimensional feature 
space (i.e. each object is associated with its set of m features) mapped onto a new, Euclidean 
space which takes account of the classes. In section 6, it will be shown that this works well, in 
particular if the features are well chosen. Following a presentation of this method in this section, 
the next section will show how the same separation surface between classes may be derived by 
a probabilistic and Bayesian argument. A general treatment of the mathematical formalism 
required for these analyses may be found in Duda & Hart (1973). 

Notation: Object vectors are row vectors of X = {xtj : ι e / , j e / } for a finite set of objects, 
/ , and a finite set of variables, / . The grand mean is g} = 1/n Σ ι € / xi} for all j e / where η is the 
cardinality of the object set, / . The mean of group ρ has y'th coordinate: pj = l/np Σι€/, Χψ Let 
a partition of / be denoted P , with ρ e P. 

Τ is the total variance-covariance matrix; Β is the between-groups variance-covariance matrix; 
and W is the within-groups variance-covariance matrix. W e have that: Τ = W + B. 

Multiple discrintinant analysis (or canonical discriminant analysis, or discriminant factor 
analysis) seeks an axis (and, subsequently, orthogonal axes) u such that the spread of group 
means is large, while restraining the spread within groups to be small. This is mathematically 
expressed as : maximize u'Bu and minimize u 'Wu, simultaneously (where ' denotes transpose). 

This discriminant analysis method can be characterised as principal components analysis of 
the group means, in the Mahalanobis or Τ ^-metric. The distance of an object to a group is 
(xij - Pj)'T~\xij - Pj)- Mahalanobis distance has the effect of adjusting for variations in spread 
of the cloud of object-points. 

In the two-group case, this is Fisher 's widely-used linear discriminant analysis. The separation 
surface between two groups is derived from that part of the space which is closer to one group 
than to the other, with respect to the Mahalanobis metric. Hence, in this space, a separation 
surface is a hyperplane. An identical algorithm can be derived from a parametric perspective, as 
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3 . A Parametric Formulation 

Given members of a group, p , we can sample the values of their variables. Thus we can obtain 
estimates of the probability of having certain variable values, given membership in the group 
P(x I p). T o achieve generality, the variable values associated with a group are often modelled. 
Assuming that the group is approximated by a multivariate Gaussian, we have: 

P(x \P) = (2π) 2 \Vp\
2 e x p ( - | ( x - p)'Vp\x - p)) <*> 

where we have written ρ for the group (considered as a set), and also ρ for the group's mean 
vector, Vp is the variance-covariance matrix of the group, and | . | is the determinant. W e must 
estimate the mean vector ρ and the matrix Vpy i.e. the model parameters. 

In practice, we need to know Pip \ x). To determine this, use is made of Bayes ' theorem: 

r<p\*)--P(x\p)y (2) 

By calculating the right hand side for two groups, pl and p 2 , on the basis of a given set of values 
for the vector x , we can choose px in preference to p2 if Ρ(Ρι \ x ) > P(p2 I *)· This is m e Bayes 
minimum risk criterion, which can be solved using equs. 1 and 2. 

If variances and covariances Vpl and Vp2 are considered to be the same for two groups, pi and 
p 2 , then the decision rule is a linear one. Take Vp now as the population variance-covariance 
matrix, denoted Τ in section 2 above. If the groups' prior probabilities, P(px) and P(p2)> are the 
same, then this decision rule is identical to the Fisher linear discriminant analysis one. 

4. K-Nearest Neighbours Discriminant Analysis 

K-nearest neighbours discriminant analysis is used below in section 6. The decision surfaces 
between classes are piecewise linear, so the net effect is that of a nonlinear classification method. 
It shares this property with the multilayer perceptron and with classification (or decision) trees. 
In the next section, section 5, we will raise the question as to the conditions under which 
nonlinear (and non-parametric) methods of these types might be preferred (or otherwise) to 
methods based on statistical modelling. 

In k-nearest neighbours, a non-parametric estimation of P(p \ x) is obtained as follows. 
Consider volume ν around x . Suppose k cases are 'captured' in v. Suppose further that kp of 
these are associated with (or labelled) group p. 

The approximate joint density function of χ and ρ is P (x , p) = (kp I n)/v, where there are η 
cases in total. 

Now, by definition P(p \ x) P(x) = P(x , p). Hence, 

D/W* ι ^ _ P(x>P) 

will now be shown. 
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( * , / « ) / Κ _kp 

This is the fraction of cases labelled ρ in the volume around x. Therefore χ is labelled group ρ 
if the majority of its k nearest neighbours are labelled this. 

Using diverse datasets, w e have found the multilayer perceptron to yield results which are very 
similar to k-nearest neighbours (Murtagh 1992). This is not surprising since the transfer functions 
in the neural net classifier can be regarded as imposing a two-way split on their inputs (hence a 
linear split on each neuron's scalar throughput). The compound effect of linear splits of the data, 
occasioned at each node of the multilayer perceptron, is reminiscent of what is done by the k-
nearest neighbours approach (Lippmann 1987). Turning to the parametric perspective, error 
bounds for the k-nearest neighbour method can be expressed in terms of the Bayesian error rate 
(Duda & Hart 1973). Two recent papers which experimentally compare results obtained by k-
nearest neighbours, multilayer perceptrons, and classification (or decision) trees are Ripley (1993a, 
1993b). 

5. T h e Bias /Var iance Di lemma 

The methods sketched out in previous sections have been described in terms of two major 
alternative approaches: either statistical modelling of the classes is attempted, or else a flexible 
and data-sensitive method is sought Both general approaches have advantages and disadvantages. 
Since every data set is different, it is difficult to favour one method over another in all 
circumstances. When skilfully and carefully used, methods based on quite different assumptions 
can give rise to roughly comparable results. In this section we will briefly present an aspect of 
discrimination methods which clarifies the polarity between parametric and non-parametric 
approaches. 

Discriminant analysis provides us with a mapping, which takes given input vectors x, and 
produces an output value (or vector, depending on the problem), fix). W e would like this output 
to be as close as possible, on average, to a desired y. 

Without undue loss of generality, consider a squared discrepancy estimate of error, 
E[(y -fix))2 I *]· Here, Ε is the expected value, and y is the function we wish to fit to our 
function of x. A prediction in regression would then be E(y \ x). In classification, we can 
define y = 1 if χ e group 1, and y = 0 otherwise. 

The following relationship can be established (see German et al. 1992): 

E[(y -fix))2 I x] = E[(y - E\y | x])2 \ x] + (E\y \ x] -fix)f 

The first term on the right hand side is the variance of y given x\ it is the scatter of predicted y 
values about the function y. The second term on the right hand side is the effectiveness o f / a s 
a predictor of y, i.e. the prediction minus the given input function. 

This equation decomposes estimation error into variance plus bias terms. German et al. (1992) 
propose it as a fundamental uncertainty principle of statistical inference, shared by problems such 
as regression and classification, and shared equally by non-parametric statistical and neural 
network methods. For a given error, one may improve on the bias, but at the expense of the 
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variance, or vice versa. 
Model-based approaches can suffer from high bias, i.e. incorrect predictions due to over-

straightjacketing the data. Non-parametric methods can suffer from high variance, i.e. "letting 
the data speak" implies high sensitivity to the data, which in turn means that a very large number 
of training cases are needed in order to pin down good predictions. 

Modelling may be algorithmically difficult, but is not conceptually so. On the other hand, for 
non-model based approaches, the choice of training data may be problematic. The dimensionality 
of the space of variables affects model-based approaches in regard to computational aspects of 
the optimization of model fits. On the other hand, increasing spatial dimensionality can hugely 
accentuate the problem of acceptable behaviour of non-parametric methods on the training set, 
coupled with potentially very bad behaviour on test sets. 

6. Feature Selection 

The appropriate choice of features is an important issue. Trivially, we can note that no amount 
of sophistication in the discriminant analysis method used can allow very badly chosen features 
to discriminate between classes. Conversely, we show below that even linear separation between 
classes performs well when the classifier is provided with reasonably good features. 

The data used comprised 628 hand-classified objects from Guide Star Scan plates: 549 stars, 
48 galaxies, 27 faults and 4 weak faults. For convenience, the latter two groups were merged. 
These objects were for the most part of intermediate brightness — not near the noise limit, nor 
very large. 

Four sets of features were used: 
1) ' traditional' variables: log total luminosity; ratio of peak to total luminosity; surface brightness 

for two different thresholds; two spike values; ellipticity; area ratio; offset from peak to 
centroid; 

2) Texture features (Haralick et al. 1973), averaged over 4 angles, for an 8-fold quantization of 
the grey levels: angular second moment; contrast; correlation; variance; inverse difference 
moment; sum average; sum variance; sum entropy; entropy; and others. Motivation for the 
use of texture measures may be found in various papers of Malagnini (e.g. 1983); 

3) spreads (max minus min) of the foregoing texture features. The motivation is that a range of 
variation might be a more sensitive mscriminatory measure; 

4) a new texture-like set of 12 features (not further explained here). 
The method initially used was as follows. Perform multiple discriminant analysis on data; 

determine projections of group centres in the new coordinate system; for each case in turn (using 
coordinates in the new coordinate system), determine its squared Euclidean distance to each 
group, and hence determine the closest group centre; check if this was the correct group, and 
build a contingency table to summarize all results. 

Results for the 'Traditional' or first set of features are given in Table 1, while those obtained 
using all four sets of variables together (46 variables altogether) are given in Table 2. 

https://doi.org/10.1017/S0074180900047379 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900047379


232 F. MURTAGH 

Tab le 1. Traditional features 

Assignment to class: 1 2 3 

Known class 1 (stars) 530 12 7 
Known class 2 (galaxies) 11 22 15 
Known class 3 (faults) 4 18 9 

Percentage correct (i.e. (530+22+9)/628) = 89 .3% 
Star purity (i.e. 530/(530+12+7)) = 96 .5% 

Tab le 2. All four sets of features 
Assignment to class 1 2 3 

Known class 1 (stars) 537 10 2 
Known class 2 (galaxies) 9 27 12 
Known class 3 (faults) 3 15 13 

Percentage correct (i.e. (537+27+13)/628) = 91 .9% 
Purity of stars (i.e. 537/(537+10+2)) = 97 .8% 

W e conclude that even linear methods give good results, when the right features are used. 
W e next ask if non-linear methods can squeeze more performance out of the data, e.g. with 

K-nearest neighbours, k = 9, using 'traditional' or first set of features. Table 3 gives cross-
validation results, using leave-one-out estimates. Proximity of cases to their nearest neighbours 
used the Mahalanobis distance, proportional priors were used. 

Tab le 3 . Traditional features with K-nearest neighbours 

Assignment to class: 1 2 3 

Known class 1 (stars) 544 4 1 
Known class 2 (galaxies) 13 32 3 
Known class 3 (faults) 14 4 13 

Percentage correct (i.e. (544+32+13)/628) = 93 .8% 
Purity of stars (i.e. 544/(544+4+1)) = 9 9 . 1 % 

By using texture-related measures, we probably could have achieved even superior results. 
However, before doing so we would prefer to re-check the correctness of the hand-classified data! 
The greater the number of features used, the more accentuated the problem of high-variance 
estimates (discussed in section 5) becomes. 

W e plan next to assess which features are of most use, among the rather large set studied. 
Having done this, we will look at the possibilities for unsupervised classification, or clustering. 
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