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A NOTE ON SMALL BAIRE SPACES 

SAHARON SHELAH AND STEVO TODORCEVIC 

A Baire space is a topological space which satisfies the Baire Category 
Theorem, i.e., in which the intersection of countably many dense open sets 
is dense. In this note we shall be interested in the size of Baire spaces, so to 
avoid trivialities we shall consider only non-atomic spaces, that is, spaces X 
whose regular open algebras ro(X) are non-atomic. All natural examples 
of Baire spaces, such as complete metric spaces or compact spaces, seem to 
have sizes at least 2S(). So a natural question, asked first by W. Fleissner 
and K. Kunen [5], is whether there exists a Baire space of the minimal 
possible size Sj . The purpose of this note is to show that such a space need 
not exist by proving the following result. 

THEOREM. If ZF is consistent, then so is ZFC plus the following Wo 
statements simultaneously. 

i) MA + 2*° = S2, 
ii) There is no non-atomic Baire space of size S}. 

This completes a list of a number of weaker or related results on the 
Fleissner-Kunen problem ( [5], [9], [3], [7], [1] ). The most general previous 
results in the direction of this problem are a result of P. Davies [3] who 
proved that MAS implies that there is no Baire ccc space of size S h a 
result of K. Kunen [7] who proved the theorem assuming the consistency 
of the existence of an inaccessible cardinal, and a result of U. Abraham 
[1, p. 647] who proved the theorem for partially ordered sets with the 
forcing topology. 

MA + 1CH is not sufficient to solve the Fleissner-Kunen problem. This 
has been pointed out by K. Kunen ( [3], [7] ) who showed that an 17 j-linear 
ordering remains Baire in ccc forcing extensions. In fact, this is an 
immediate consequence of the well-known result of W. Easton [4] that 
a-closed posets remain a-distributive in ccc forcing extensions. 

The proof is given in a sequence of lemmas. We shall assume that our 
ground model V satisfies GCH and 1 S ( ^ I > <o2), where S(K, X) denotes the 
fact that there is a /c-complete X-saturated nontrivial ideal on K. Some 
information about S(/c, À) can be found in [6]. We shall assume the facts 
that 15,(co1, co2) holds, for example, in any set-forcing extension of L, 
and that ~IS'(co1, co2) is preserved under S2-cc forcing extensions ([6, 
p. 67] ). 
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The first lemma is due to K. Kunen [7] and it is included here with his 
kind permission. Its proof uses some ideas of P. Davies [3]. 

LEMMA 1 (Kunen). Assume MA^ and l£(co,, <o2). Let X be a space of 
size N,. Then X is Baire if and only if ro(X) is o-distributive. 

Proof. Only the direct implication requires a proof. Let X be a Baire 
space such that ro(X) is not a-distributive. We may assume that there are 
maximal antichains An ç ro(X), (n < co) withv4,?+1 refining An such that 
whenever an e An then 

int( n an) = 0. 

Let 

Y = n u A}V 
n 

and let <€ be the set of all nonempty intersections nnan where an e An, 
(n < CÔ). Pick a continuous f:Y —> R such that f~x(x) e ^ for all 
x G rang(/) ( [5, p. 233] ). By MAS , every subset of rang(/) is relatively 
Fa so every union of elements of ^ is Fa in Y. Hence the union of every 
subset of ^ n o t in 

J = {Q) Q <g: U Sd is meager in Y) 

has nonempty interior. Thus J^is an Sx-complete S2-saturated ideal on % a 
contradiction. 

The above proof, as Kunen [7] remarks, also explains a result of 
P. Davies [3] that MAS implies that there are no ccc Baire spaces of size 
Sj . Namely, in this case in showing that TO(X) is a-distributive one needs 
only lS(<Oj, coj) which is a theorem of ZFC [10]. 

We say that a tree T is special [2] if and only if there is a 
decomposition 

such that for each n no element of Dn has two incomparable successors in 
Dn. We say that a non-atomic Boolean algebras? embeds a tree T of height 
co j if and only if 

1) each level Ta of T is a maximal antichain ois/; 
2) if a < ft < 60] then 7^ everywhere properly refines 7^, and so 

^ r is equal to ^ ^ \ T\ 
3) A6 = 0 for every coj-branch Z? of T. 

LEMMA 2. 7 / ^ embeds a special tree T, then s/ is not o-distributive. 

Proof. Let T = U D be a witness of T being special. For « < co, let 
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stfn be the set of all a e stf such that / £ Dn for any / e T with proper­
ties a A / ¥= 0 ^ a\t. Then each srfn is a dense open subset of J / + and 
f \ j ^ 7 = 0. So J / is not a-distributive. 

Our strategy in proving the theorem can shortly be described as follows. 
Given a space Xoi size Nj with io{X) a-distributive we shall try to embed 
a special tree into ro(X). This should be done via a poset which does not 
collapse cardinals. Clearly, we can easily embed an cortree T into ro(Ar), 
but in general 7" can have > Nj co] -branches so it cannot be made special 
in any cardinal preserving forcing extension. Our strategy is to project T 
onto a tree T' with ^ Nj w rbranches which still embeds into xo{X) and 
which can be made special by a ccc poset of size Nj. Moreover, ro(JQ will 
embed T' in any forcing extension which decides x e int cl( U C) for 
x <E X and C e [T]s°, C G F i n the same way as V does. 

Let T be a fixed tree of size #x and height œ} with the property that any 
point of T is contained in an coj-branch of T. Let BT be the set of all 
corbranches of T7, and let 0T be the set of all pairs p = (irp,fp) where: 

4) 77 is an order and level preserving map from a countable initial part 
of T onto a countable initial part of (co1)

<t°1; 
5)f is a countable partial map from BT into co] such that every member 

of dom(fp) intersect each level of dom(77/7); 
6) if fp(b) = fp(c) then 7rp(s) = irp{t) for all 

s <= b n dom(77/?) and t <E C PI dom(77/7) 

of the same height. 

For p, q <= @>T we let g ^ p if and only if 7Tq ^ 77̂ , fq^fp and 

7) 77̂ (5) ^ 77 (0 for all s e dom(77/?) and t <E dom^V 7 ^) . 

LEMMA 3. Let %> = ^ be the standard poset for adding Sj Cohen reals 
and let &T be the poset ^T as defined in V . Let G = G^@ be a generic 
subset of ' <ê' * &T and let, in V\G\ 

T* = U{rang(77/?):jp e G&J 

considered as a subtree o/(co1)<Wl. Then every co^-branch of T* has the form 
7Tf'b for some b e BT. 

Proof. Working in V[G^\ and going to a dense subset of & = &T, we 
may assume that d o m ^ ) <= Kfor every p G @. Assume there is a^-name 
b* for an co]-branch of t* which is not of the form ¥'b for any b e BT. 
Let H e a large enough regular cardinal, and let N < H0 be countable 
such that N D V <E F and T, &>, b* e TV. Let Ô = TV n cob and let s e T5. 
Let ^ be the set of all p e ^ n TV for which there exist a < ô and 
/ <= dom(77/?) n Ta such that 

p I h TV(0 <E £ * , 
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but u < 7 s for any u G dom(77_) D Ta with 77̂ (1/) = IT (t). 

Claim. 3)s is dense open in & n TV. 

Proof. Assume p <^ & n N cannot be extended to a condition in 3)s. 
Let 

S = {r G T: ^ ^ /?(/ G dom(77^) and (7 |h T>(/) £ 6*) }. 

Then S ^ N and {/: / < r s } ç ^ so S is an uncountable initial part of T 
which contains no coj -branch. Since every point of T is contained in an 
60]-branch, we can find a q îâ /? in TV such that for some a < S and 
f, w e dom(77 ) O 7^ n S we have 77 (7) 7̂  ^(w). Extending q to a 
condition r which forces that 77r of something from dom(7r,.) n Ta is in è * 
gives a contradiction with one of the facts / G S or 1/ G S. 

Define F Q (0> X T) by 

F(p, t) = t G dom(77/?) and/? Ih T>(/) G ft*. 

Pick a £ < <o, such that ^ n TV, F f ( ^ X T) n TV G K[GVJ. Then 

S> G V[G^] for all j G TS, 

so we can use the generic subset of ^ ^ + w to build a condition 67 of & which 
intersect each of <2)s for s G 7^. Then by our definition of i^„ g forces 

b* n f$ = 0, 

a contradiction. This completes the proof of Lemma 3. 

Note that the above proof also shows that ^ * &T does not add new 
toj-branches to T, so the tree T* has = Kj 60j -branches. Thus we may 
specialize T* by a ccc poset S^ of size Kj [2]. It is clear that the 
compatibility relation of &T is essentially determined by the 77-part of 
the conditions from ^ r , that is, p, q G 0>T are compatible in @T if m = m . 
Using this observation one easily shows that &T satisfies the N2-proper 
isomorphism condition of [8, Chapter VIII]. Hence we can iterate &J with 
other ccc posets of size Nj co2 times preserving properness and the 
X2-chain condition ( [8, Chapters III and VIII] ). So, let (^a:a ë 6o2) be a 
countable support iteration of ccc posets of size Sj and the posets of the 
form @T such that ^ forces MA plus 2S° = S2, and such that for any 
^Wi-name t of a tree of size Sj and height co] there exist stationarily many 
8 < 6o2 with cf S = 60 j such that 

We shall show that 

lh^> there is no non-atomic Baire space of size S,, 

but first we need to prove a lemma. 
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Let X be a space and let T be a tree of height to,. We say that ro(X) 
strongly embeds T if and only if vo(X) embeds T and: 

8) for any x G X there is a £ < co, such that JC £ U 7j, 
9) for any x G X and B G [BTf° there is a £ < to, such that 

x £ int cl(U((Ufi) n 7^)). 

LEMMA 4. If X has size S, and if vo(X) is o-distributive, then ro(X) 
strongly embeds a tree T of height coj. 

Proof. Fix an enumeration {x^ < coj} of X. The tree T is constructed 
by induction on the levels 7̂  (£ < coj) which are maximal antichains in 
vo(X) with 71 everywhere properly refining 7 ,̂ (£ < 17 < coj) and such 
that for every £ < to,, x% £ UT^+]. Moreover, for any £ < co1 one of the 
following two conditions holds: 

10) there is an TJ < co, such that x^ £ int cl(UC) for all C G [T^f0, 
or 

11) for every maximal antichain A Q ro(X) there is a C G [A] ° such 
that X£ G int cl(UC). 

We claim that ro(X) strongly embeds 7. So let B Q BT be countable and 
let £ < co|. If (10) holds we are done, so assume (11) holds. Let A be the set 
of all minimal points of T\UB. A simple argument shows that A is a 
maximal antichain of ro(X). So there is a C G [A p such that 

^ G int cl(UC). 

Let 17 > £ be above the height of any member of C. Then we must have 

*£ S int c l ( U ( ( U £ ) O 7;)). 

This completes the proof of Lemma 4. 

Now we are ready to finish the proof that ^ forces that there is 
no non-atomic Baire space of size N,. To simplify the notation, let Va 

denote V^a for a ^ co2. Assume V"2 contains a non-atomic Baire space 
X = (toj, T) . By Lemma 1 ro(X) is a-distributive so by Lemma 4 ro(X) 
strongly embeds an K,-splitting tree T of height to,. Since subtrees of T 
without co,-branches are special, it follows from Lemma 2 that every point 
of 7"is contained in an to,-branch of T. For x G X, £ < coj and C G [7^] ° 
we define, in F"2, 7(x, £, C) to hold if and only if 

x £ int cl(UC). 

So the fact that vo(X) strongly embeds T means that for all x G X and 
B G [BTf° there is a £ < <o, such that 

/(JC, i j , (UB) O 7;) holds for all 77 S & 

Let £ be the set of all S < to2 with cf S = co, such that 
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T G Vs and Is = / n (w, X «, X [Tf°f e F5. 

It follows directly that for any 8 <E E, V satisfies the following 
sentence 

12) for all x e X and 5 G [ £ 7 ] S ° there is a £ < <o, such that 

Is(x9 i?, (UB) O T )̂ holds for all 77 ^ & 

Since ( ^ : a = <o2) is a proper N2-cc iteration in which no real can first 
appear at a limit stage of cofinality col5 it follows easily that E is closed and 
unbounded relative to 

{5 < co2: cf S = coj}. 

So by our definition of (^a:a = to2) there must be a 8 G £ such that 

where f is a ^ - n a m e for our tree T. Define in V0*2 

V = {int cl(U{s e T:ir(s) = t] ): t e 7*}. 

Then 7 ' is a special tree isomorphic to 71*. Moreover, the levels of 7 ' are 
maximal antichains of ro(X) with T everywhere properly refining T^ for 
£ < 17 < coj. So by Lemmas 1 and 2 this will give us a contradiction if we 
can show, in V"2, that Ac = 0 for every coj-branch c of T'. 

So let c be an coj-branch of Tf and let x e I By the way T* is defined 
there is an ordinal y < coj such that if £ < coj and if {c^} = c n 7^, then 
there is a /? e G^ such that if 

B = {6 G dom(/,):/ ,(fc) = y} 

and if C = ( U £ ) n 7 ,̂ then 

C ç dom(irp) and ĉ  = int c/(UC). 

Since every countable set of co,-branches of T in (V ) w> is covered by a 
countable set of branches from V , and since (12) holds in V , a simple 
density argument in ( F ) w> over ^ r shows that there exist | < coj and 
p <^ G& such that 

5 = {Z> G domOp: fp(b) = y} and 

c = (ufi) n r̂  ç dom(irp) 

are members of V and T8(x, £, C) holds. Since S E £, we have that 
I(x, £, C) holds in F^2, and so 

K<°2 H x <£ int cl(UC) = ^ ^ Ac. 

Since x e X was arbitrary it follows that Ac = 0. This completes the 
proof. 
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