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Exchange flows and plug cementing
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We present the results of an experimental study of buoyancy-driven exchange flows in
a vertical pipe, where the lower fluid is Newtonian of low viscosity and the upper fluid
has a yield stress. The fluids are initially separated by a gate valve, opened at time t̂ = 0.
The fluids are miscible, but away from the diffusive limit. For a sufficiently large ratio
Y , of the yield stress to the buoyancy stress, no sustained fluid motions arise: the flow
is stable. For smaller Y numbers an exchange flow results. Commonly, the less dense
fluid penetrates upwards in a central finger, displacing the upper fluid downwards around
the walls of the pipe. Three regimes are classified: helical finger, disconnected finger
and slug flow. The transition between regimes is governed by increasing relevance of
inertial to viscous stresses, in balancing buoyancy. The disconnected finger and slug flow
regimes are associated with yielded fluid at the interface and early growth of instabilities.
Helical fingers are viscous dominated and evolve slowly until late in the experiments. The
scenarios studied represent an idealised set-up for the industrial process of plug cementing.
The regimes identified are helpful for industrial process design.

Key words: buoyancy-driven instability, plastic materials

1. Introduction

This paper explores a particular type of buoyancy-driven instability that arises in the
industrial process of plug cementing. Plug cementing is a relatively common operation
that is carried out in both the construction and later decommissioning of an oil or gas well.
In this process, a cement slurry (typically with a density of 1600–1900 kg m−3) is pumped
down a small-diameter pipe into the well and is discharged at a certain depth. As the slurry
is pumped to fill the full diameter of the well, the pipe is slowly withdrawn. This allows
the length of cement to hydrate and plug the well when solid (Nelson & Guillot 2006).
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One reason for the plug might be to serve as a stable base for redirecting the well trajectory
during the drilling phase. In this case only the mechanical integrity matters. Alternatively,
at end of life when decommissioning a well, a series of cement plugs are set at different
depths in the well in order to provide a hydraulic seal. The hydraulic resistance is gained by
ensuring a long length of cement plug and a good hydraulic bond to the interior steel casing
(Opedal et al. 2014; Trudel et al. 2019; Vrålstad et al. 2019; Kamali, Khalifeh & Saasen
2022). Thus, concerns such as mixing and contamination of the cement are relevant.

There are many interesting fluid mechanics questions concerning the plug cementing
process in its many variations. It is possible that the cement slurry is pumped on top
of a mechanical support placed in the well, in which case the placement is generally
not problematic (Khalifeh & Saasen 2020; Harestad et al. 2023). However, positioning
of the mechanical support (bridge plug, retainer, etc.), requires additional time and cost.
Therefore, it is relatively common that the cement slurry is simply pumped on top of
another fluid: a so-called off-bottom plug. The fluid supporting the slurry may be the
drilling fluid in the well, or a specially mixed viscous pill, or even freshwater. The former
is more likely to occur when the plug is set during construction. Freshwater is more likely
at decommissioning. It is the latter that we study. The issue with all of these scenarios is
that the cement slurry is invariably denser than the fluid underneath, i.e. in a mechanically
unstable configuration. How then can the cement remain in place for long enough that it
may hydrate?

During the late 1980s and early 1990s the practice of drilling deviated wells became
more popular. For such wells a short kick-off plug was often needed to redirect the
drillpipe trajectory. It was observed that, when set off-bottom, many of these plugs failed,
meaning that they were not found to be present in the well at the depth expected when
subsequently tagged with the drillpipe. Indeed Heathman et al. (1994) and Heathman
(1996) reported that more than 2 attempts were needed for each successful plug. In
an interesting experimental study Calvert, Heathman & Griffith (1995) reported that a
common failure mode involved the heavy slurry sliding under the lighter supporting fluid
in an exchange flow. Various procedures were recommended in order to stabilise the flow
(Calvert et al. 1995). These studies are all practically relevant to the current topic, in that
they define the initial state of the fluids in the post-placement phase.

A series of studies followed, focused on the slow viscous slump flows that were observed
during failure (Frigaard 1998; Frigaard & Scherzer 1998; Crawshaw & Frigaard 1999;
Frigaard & Crawshaw 1999; Frigaard & Scherzer 2000). Cement slurries have a moderate
yield stress. Thus, although a Newtonian–Newtonian pairing of heavy fluid above light
fluid is unstable (the classical Rayleigh–Taylor configuration), the same is not true of a
yield stress fluid. Indeed, it is possible to derive criteria for the yield stresses required to
stabilise the interface between two yield stress fluids (Crawshaw & Frigaard 1999; Frigaard
& Crawshaw 1999). This direction is reviewed later in § 3.1.

While the above was relevant to setting plugs used during well construction, the plug
and abandonment (P&A) operation does not quite fit the same physical setting. In the
decommissioning process, the well is to be sealed permanently and consequently the inside
of the casing is generally washed/flushed prior to plug placement. A non-corrosive fluid is
then left inside the casing, often freshwater in Western Canada, with the cement set on top.
For off-bottom plugs this results in parameter ranges where the density difference is very
large and the lower fluid has no yield stress and low viscosity. The dimensionless yield
numbers typically found are far below the targets set in Crawshaw & Frigaard (1999) and
Frigaard & Crawshaw (1999) to arrest fluid motion.

This has led to a renewed effort to understand how off-bottom P&A plugs might be
stable. One difference with well construction plugs is that the lengths of cement slurry in
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P&A can be many 10s to 100s of metres, according to the surrounding geology and the
regulations; see Trudel et al. (2019). This means that a successful P&A plug might tolerate
a limited amount of instability/mixing at the lower end, while still providing an effective
seal. Thus, more research has been targeted at understanding the placement process and
subsequent fluid motions.

Plug placement has been studied extensively by Ghazal & Karimfazli (2021, 2022a,b)
using two-dimensional (2-D) computational simulations. Ghazal & Karimfazli (2021)
consider vertical injection of a Bingham fluid (cement slurry) into a Newtonian fluid
within a deep closed duct (well), over a range of Reynolds, Froude and Bingham numbers.
The miscibility of the fluids is varied via an artificial Péclet number, considered in 3
ranges. A variety of flows are observed, but the typical sequence involves: (i) penetration of
the Bingham fluid downwards with consequent displacement of the in situ fluids upwards
around the injector; (ii) onset of instabilities at the interface of the descending stream; (iii)
mixing across the width of the duct coupled to upwards displacement of the injected fluid
around the injector. Ghazal & Karimfazli (2022b) have studied a wide range of injector
sizes and positions (representing eccentricity in the well). Although there are differences in
the upwards flow due to the geometry, the basic message is that the flow below the injector
is stabilised by mixing across the duct. This forms a gradient of densities in a mixed
region between the fluids. Later studies have considered other operational features such
as removing the pipe from the plug in the balanced plug method (Ghazal & Karimfazli
2022a; Harestad et al. 2023).

There have also been a number of studies that investigate the motion of fluids below
an injection pipe using laboratory experiments. Varges et al. (2018) placed Carbopol
gels above less dense light vegetable and mineral oils in a vertical pipe, separated
with a sliding gate valve. Many interesting exchange flow patterns were observed, both
stable and unstable. Akbari and co-authors have systematically studied the placement
of fluids into a pipe in a related P&A process called dump bailing (Akbari & Taghavi
2020, 2021, 2022a,b, 2023). In this process the fluids are dumped from a tube onto a
mechanical support, from a height of many diameters above. There are similarities with
plug cementing in the flows just below the tube, but in dump bailing the injection velocity
is not controlled (it is a drainage flow). In these studies, effects of (well) inclination,
dumping height, fluid rheology and other geometrical features are studied. Certainly, there
are regimes in which the fluids mix effectively on exiting the tube, but others in which
e.g. a thick column of the placed Carbopol descends in a coil-like structure into the water
below (Akbari & Taghavi 2022b). In relation to the computational studies of Ghazal &
Karimfazli, we also need to note that the dumping height in the experiments is generally
smaller, i.e. these are not all properly off-bottom placements. Aside from these studies
there is also a significant body of experimental work that has considered yield stress fluid
displacement flows, in pipes of similar diameter as here and with Carbopol as one of the
fluids (Gabard & Hulin 2003; Alba et al. 2013; Amiri et al. 2019; Kazemi et al. 2024).
While not usually directly relevant, due to the imposed flow rate, these studies can exhibit
similar phenomena at the lower flow rates and where buoyancy becomes dominant.

For our study, we consider the phase after placement/injection. The evidence reviewed
above suggests that successful placement may be achieved (Ghazal & Karimfazli 2021,
2022b). However, the placement phase is driven by pumping that provides energy to the
flow, which may be important in the stabilising mixing flow that is observed. Once the
pipe is removed from the well and the pumps stopped, the heavy cement slurry must still
remain above the lighter fluid for a period of many hours in order to hydrate and form
a solid plug. If the flow is unstable, a small amount of water penetration upwards into
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the cement slurry is unlikely to be critical (considering the lengths of cement), simply
altering the water-to-cement ratio locally (Nelson & Guillot 2006). However, we would
like to understand the worst-case scenarios for such flows, which we consider likely to
occur without any pre-mixed zone separating the fluids.

Consequently, we consider the stability of a heavy fluid over a light fluid separated
initially via a gate valve. The upper fluid is a Carbopol solution, with a yield stress
controlled via the concentration and density increased using glycerin or sugar. The
lower fluid is generally water. We have reported results of our preliminary experiments
in Vogl et al. (2022) and Charabin & Frigaard (2023). The first of these provides a
phenomenological descriptions of early experiments, including below the gate valve, but
did not compute front velocities or otherwise quantify the flows. Charabin & Frigaard
(2023) presented results from 8 early experiments, but with little post-processing or
classification. Here, we give a more comprehensive report on the full range of experiments
performed, together with comparisons with dimensional analysis and simplified models.
The questions we seek to answer include: (i) first confirming the previous stability
studies (Crawshaw & Frigaard 1999; Frigaard & Crawshaw 1999); (ii) classifying and
understanding the different flow types when static stability is not immediately possible.

An outline of our paper is as follows. First, directly below we outline the experimental
methodology used (§ 2.1), present example results (§ 2.3) and introduce the main relevant
dimensionless groups (§ 2.4). The results start in § 3 by confirming the division of our
flows into static or flowing configurations, then classifying the latter. Examples are given
of each of the observed flow types. Section 3.3 introduces a 1-D lubrication model that
helps us understand our flows at the stage when the interface elongates along the pipe.
Later we try (§ 3.4) to apply a recent predictive energy theory for the finger width. The
paper ends with a discussion (§ 4).

2. Methodology

Our paper primarily addresses the questions outlined in § 1, through a targeted
experimental study. The basic experiment consists of positioning a dense visco-plastic
fluid above a less dense Newtonian fluid (water) and observing the flow. In Vogl et al.
(2022) we have covered experimental ranges where the yield stress of the upper fluid is
large enough to prevent flow. The focus of our study is therefore on smaller yield stresses,
for which flow initiates due to the mechanically unstable configuration.

We are interested to quantify the speed at which failure occurs, which we quantify via
the speed at which the light fluid is observed to rise through the heavier fluid: V̂L. This is
measured for each experiment and used to both define relevant dimensionless groups and
to quantify the various flow regimes that are observed. We have performed approximately
40 unique experiments with fully characterised fluid rheologies, with some additional
repeats. In addition, some of the experiments from Vogl et al. (2022) are included where
flow is prevented: V̂L = 0.

2.1. Apparatus and procedure

Our experiments were performed in an experimental apparatus with total length 2L̂ =
3.05 m. The flow occurs in a circular Plexiglas pipe of radius r̂ = 9.53 mm. Figure 1
shows a schematic of the experimental set-up; see also table 1. The pipe is encased in
a boxed aquarium filled with glycerin with refractive index ng = 1.47, similar to that of
the Plexiglas, to offset the refractive effects. In order not to contaminate the two fluids at
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Figure 1. Schematic of the experimental section. The viscoplastic fluid is positioned above the gate valve.
The light fluid dyed and placed below the gate valve.

the start of the experiment, the pipe is split into two equal sections of length L̂, separated
by a pneumatically actuated gate valve that seals the two separate fluid domains. This
allows the user to control when the fluids first contact. All experiments are conducted in a
vertical configuration. A hydraulic leg mounted to the rigid frame allows the apparatus to
rotate from 0◦ to 90◦. The circular pipe is backlit with an LED lighting strip with a light
diffuser to reduce background noise. Two cameras are used to analyse the experiments.
The first camera (Nikon Z5), images the upper half of the pipe, starting just above the
gate valve, which we define to be (ẑ = 0), up to a length of ẑ = 1300 mm, and is located
∼1 m away from the apparatus. The second camera (Nikon Z50), is positioned closer to
the pipe: ≈0.3 m back from the tube and 2/3 upwards from the gate valve to allow close
view imaging of any instability.

A strict protocol related to preparing the experiments was implemented to be consistent
between each experiment. The pipes were initially flushed with water to clean any residual
fluids still in the pipe from previous experiments. The light fluid was dyed black for
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Parameter Definition Range (unit)

L̂ Pipe half-length 1.58 (m)
R̂ Pipe radius 9.53 (mm)
ρ̂L Light fluid density 1000 (kg m−3)
ρ̂H Heavy fluid density 1050–1250 (kg m−3)
�ρ̂ = (ρ̂H − ρ̂L) Density difference 50–250 (kg m−3)
μ̂L Light fluid viscosity 1 × 10−3 (Pa s)
ĝ Gravitational acceleration 9.81 (m s−1)
τ̂y Heavy fluid yield stress 0–9.78 (Pa)
k̂ Heavy fluid consistency index 0.224–2.78 (Pa sn)
n Heavy fluid flow index 0.39–0.78 (−)

Table 1. Main dimensional parameters for our study, along with their experimental ranges.

contrast and is pumped through the pipes at the lowest flow rate possible to reduce bubble
entrapment. Once the light fluid has filled the pipes, the apparatus was sealed and left to
stand for 10–15 min to let bubbles rise from the solution. The gate valve is then opened and
closed to allow any bubbles to detach from the gate valve. Finally, the gate valve is closed
to isolate the upper part of the pipe. A valve at the bottom of the upper pipe is then used
to drain the light fluid and replace it with the heavy fluid of choice. Since the heavy fluid
contains a yield stress, bubbles of a small radius do not necessarily escape when static. We
circulate the heavy fluid slowly until only microsize bubbles remain. The heavy fluid valve
is then shut. The apparatus is filled with heavy fluid over light fluid, in two separate pipes
connected through the gate valve.

To start the experiment the cameras are turned on to record at 4 K resolution with 24 fps.
The pneumatic gate valve is opened, taking approximately 1 s. The cameras record the
motion, for which the main driving force is buoyancy. Usually a finger of the light fluid is
observed to initially form and propagate upwards into the heavy fluid, within a few minutes
from opening. If this instability does not occur within 10 min, the system is classified as
stable and the experiment halted.

To process the images obtained, the light intensity is normalised by subtracting a
reference image; in our case, this reference image is the first image. This eliminates any
background noise that is constant throughout the experiment, so we are only left with the
light intensity in the pipe. This intensity is normalised Inorm = (I − Imin)/(Imax − Imin),
which scales the intensity between 0 representing the less dense fluid (dark colour) and 1
representing the denser viscoplastic fluid (light colour). The images are post-processed to
extract a representative front velocity V̂L, and to classify other features of the dynamics, as
described later. Selected experiments were repeated twice to verify reproducibility. These
were found to have variations in V̂L below 5 %.

2.2. Fluid preparation
Throughout our study, the light lower fluid was tap water coloured with ink. The denser
upper fluid was made by using a base of either tap water or glycerin to which Carbopol 940
polymer was added. Carbopol 940 was chosen due to exhibiting a yield stress while being
relatively inelastic and also not showing significant aging effects. Weight concentrations
(wt%) ranged from 0.07 wt% to 0.15 wt%, allowing experiments over a wide range of yield
stress values. The density of the heavy fluid was varied using either sugar or glycerin: both
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allowed the density to vary from 1050 to 1250 kg m−3. At this maximum density, sugar
would no longer dissolve into the water, and glycerin solution approaches its maximum
value of ρ̂glycerin � 1260 kg m−3. Note that the glycerin is always diluted with some water
to prevent residual glycerin from sticking to the pipe, affecting future experiments, i.e. it
eases cleaning.

To create the Carbopol–water solutions 10 l of the base fluid was put under a mixer
at 270 rpm. The Carbopol was then slowly dispersed into the base fluid according to
the desired wt%, paying careful attention not to allow clumps to form. The solution
is then mixed for two hours. Since Carbopol is acidic (pH � 2.7–3.3), the solution is
neutralised by adding 10 % sodium hydroxide (NaOH) and testing the pH. The solution
was mixed for an additional hour, allowing complete homogenisation. For the glycerin
base, the procedure was similar except water and glycerin were premixed to attain the
desired density. The glycerin is much thicker than the water–sugar base, so care is needed
to ensure that no Carbopol is attached to the side of the bucket or the blade. Also a longer
time is needed to homogenise the mixture. The mixing proceeds for 3–8 h, with increasing
time for the higher densities. The NaOH is added after approximately 2 h After either
solution is made, the sample is capped and rested for 24 h. Mixing of both solutions is
done by a digital EUROSTAR© 60 mixer and a three-bladed stainless steel blade, which
provides constant mixing behaviour.

Although a consistent preparation protocol is followed, the key point is to have
homogenous solutions of the target density, rather than any specific rheology. Samples
of the upper fluid are taken for each experiment to measure the density and rheology.
A Kinexus Ultra+ rotational rheometer was used to characterise the heavy fluid rheological
behaviour. Figure 2 shows a typical flow curve and fit to the Herschel–Bulkley model for
one of the samples. Controlled strain rate tests were used with ramp-up and ramp-down
cycles over a range of 10−3 ≤ γ̇ ≤ 101 (s−1), to cover the range of strain rates typical in the
experiments. A serrated parallel plate geometry was used to minimise wall slip: diameter
60 mm and gap width 1 mm. Before each cycle, the fluid was presheared at 15 s−1 for
60 s, followed by a zero applied rate for 60 s. Along with the controlled strain rate test, an
amplitude sweep test was also performed to characterise the linear viscoelastic regions at
varying strain % with a fixed frequency of 1 Hz. The inset of figure 2 shows results for the
same fluid. At low strain %, the heavy fluid experiences linear elastic response: the storage
modulus (G′) and loss modulus (G′′) remain relatively constant. The ramp-down cycle data
from the flow curve are used to fit to the Herschel–Bulkley constitutive model, defining
a dynamic yield stress. It is worth mentioning that Carbopol shows transient behaviour
close to the yield stress that is a function of the fluid microstructure. The difference
in ramp-up and ramp-down curves in figure 2 is related to elastic effects and the slow
development of microstructure close to yielding, as studied in Varges et al. (2019). As
the strain rate increases the time required for steady microstructure decreases and the two
curves overlap. This behaviour is distinct from long term aging effects. The ranges of the
physical parameters of the fluids in our experiments are listed in table 1. Parameter values
for 13 specific experiments illustrated later in the paper are listed in table 2.

2.3. Example results
Example images from an experiment are shown in figure 3(a). A clearly defined finger
initially forms and travels upwards, approximately centrally. At later times, a range of
instabilities emerge behind the advancing finger front, resulting in progressive mixing
across the pipe. Different variations will be discussed below in § 3. The scaled intensity I

1000 A67-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
22

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1022


S.S. Charabin and I.A. Frigaard

102

101

100

10–1

10–3 10–2 10–1

10–1 100 101 102

100 101

60

40

20

Down

Up

γ  (%)

G
′ ,G

′′  (
P

a)

G′
G′′

τ̂ = 1.76 + 18.13γ̂̇ 0.51

τ̂ (
P

a)

γ̂̇  (s–1)

Figure 2. Example rheometry for one of our test fluids. Main figure shows shear stress τ̂ vs shear rate ˆ̇γ for a
typical ramp-up (+, grey) and ramp-down (�, blue). The solid red line (—, red) represents the Herschel–Bulkley
model fit. The inset shows the elastic modulus (G’; •, green) and loss modulus (G”; •, brown).

Case ρ̂L (kg m3) ρ̂H (kg m3) τ̂y (Pa) κ̂ (Pa sn) n (−)

1 1000 1225 0 2.353 0.78
2 1000 1125 2.194 2.823 0.43
3 1000 1075 0.900 2.014 0.47
4 1000 1150 0.884 2.206 0.47
5 1000 1125 0.097 0.859 0.5
6 1000 1100 0.001 0.224 0.67
7 1000 1125 0.001 0.224 0.67
8 1000 1125 0.67 2.733 0.49
9 1000 1175 0.115 2.935 0.56
10 1000 1225 0.000 2.353 0.78
11 1000 1175 0.174 1.394 0.51
12 1000 1100 0.46 2.325 0.49
13 1000 1125 0.001 0.224 0.67

Table 2. Summary of the fitted rheological parameters for experiments 1–13.

is interpreted as a depth-averaged concentration field. The concentration field is averaged
across the pipe cross-section, to give an averaged concentration C̄(ẑ, t̂), as plotted in the
inset of figure 3(b). The steep jump from C̄ ≈ 0.2 to C̄ ≈ 0.8 in the inset indicates a
sharp front is present between the two fluids. The spacing between the curves plotted is
relatively constant, suggesting that the finger rises at a constant front velocity. To determine
this velocity we replot C̄(ẑ, t̂) against ẑ/t̂, as shown in figure 3(b). The profiles of C̄(ẑ/t̂)
collapse onto a single curve centred around the constant front velocity, here 5.7 mm s−1.

The same effect can be visualised through a spatio-temporal plot of C̄(ẑ, t̂), as shown in
figure 3(c). Here, the leading front of the finger is evident. The speed of the sharp front
in figure 3(c) does slowly change in time as the finger progresses up the pipe. In order to
make comparisons between our experiments in a consistent way, we calculate the speed,
V̂L, of the advancing light fluid finger, as the front passes the height 250 mm. We also
extract a finger radius r̂i at the same instant.
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Figure 3. Example results for an exchange flow experiment with At = 1.01 × 10−1 and m = 1.27 × 103,
defined later in (2.1) and (2.4). The physical parameters are from case 1, listed in table 1. (a) Evolution of
the rising finger in the pipe at different times. (b) The concentration front obtained by averaging across the pipe
radius at it passes through the pipe. The opacity of the concentration lines C̄ represents the time of the front. The
lighter lines represent early times and as the front advances though space and time the lines darken to display
this phenomenon the finger advancing. The larger figure in (b) shows the master curve for C̄(ẑ/t̂, t̂) and the
collapse onto a single front velocity. (c) The gap-averaged concentration C̄(ẑ, t̂) in the form of a spatio-temporal
plot: yellow represents the upper viscoplastic fluid; light blue represents the less dense lower fluid.

Since the pipe is closed, the upwards flow of light fluid is balanced by the downwards
flow of heavy fluid, around the walls. From figure 3(c) (or from the images), we can see that
there is an approximately uniform band of blue behind the front, representing the region
where there is an exchange flow of well-defined fluid layers. Further below the front in
figure 3(c), we then begin to see downwards moving streaks appear that represent surface
waves associated with instability and subsequent mixing.

2.4. Dimensional analysis

Neglecting L̂, the 7 dimensional parameters of table 1 can be arranged into 4 dimensionless
groups. In general we may consider a dimensionless parameter that represents the density
difference (or ratio), a viscosity ratio, a ratio of yield stress to buoyancy stress and a balance
of buoyancy stresses with either viscous or inertial stresses. The latter balances lead to
representative velocities that may also be used to scale V̂L. Thus, a dimensionless VL
should be defined by at most 4 dimensionless groups, plus n. Evidently, different scalings
bring out different features of the flow.
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Regarding the density difference, we use the Atwood number

At = ρ̂H − ρ̂L

(ρ̂H + ρ̂L)
∈ [2.4 × 10−2, 1.13 × 10−1], (2.1)

Debacq et al. studied exchange flows of iso-viscous miscible fluids in a similar size
laboratory experiment, varying principally At, using densified water as the working fluid
(Debacq et al. 2001). For At ≥ 4 × 10−3 they found that the fluids mixed fully across
the pipe, resulting in a diffusive axial spreading. For At ≤ 1.5 × 10−4 the flows were
non-diffusive. The transitions with At depend, however, on the fluid viscosity, becoming
less diffusive as the viscosity increases (Debacq et al. 2003). Given our Atwood number
range, we would expect a strongly diffusive regime if the upper fluid were water. However,
the effective viscosity of the Carbopol solutions is very large and as we observe in
figure 3(a), even late in the experiments and far behind the propagating finger, the mixing
is not fully effective across the pipe.

The effects of viscosity on the regime transitions, and also pipe inclination were
explored further by Séon et al. (2005). Following the approach of Seon and co-authors, to
understand the flow regimes we proceed to define inertial (V̂t) and viscous velocity scales.

The buoyancy–inertia balance ( ˆ̄ρV̂2
t ∼ �ρ̂ĝR̂) leads to V̂t =

√
2AtĝR̂. Buoyancy–viscosity

balances with either fluid lead to

V̂v,L = �ρ̂ĝR̂2

μ̂L
, V̂v,H =

[
�ρ̂ĝR̂

κ̂

]1/n

R̂. (2.2a,b)

The ratio V̂v,L/V̂t defines a Reynolds number Ret,L relevant to V̂t and the light fluid. We
find Ret,L > 650 for our experiments, which confirms that the lower fluid viscous stresses
are largely irrelevant. Indeed, V̂v,L is as much as 4 orders of magnitude more than the V̂L
that we measure. In contrast, on using the heavy fluid properties, we have

Ret,H =
[

V̂v,H

V̂t

]n

=
ˆ̄ρR̂V̂t

κ̂(V̂t/R̂)n−1
∈ [0.21, 11.8]. (2.3)

The transition from viscous-dominated exchange flows to inertia-dominated occurs at
Ret � 100 for iso-viscous Newtonian fluids (Séon et al. 2005), suggesting that we remain
firmly in a viscous regime for the heavy fluid. Thus, the picture emerging is of a
buoyancy-driven flow in which the motions are principally resisted by viscous deformation
of the thicker upper fluid.

When we have a structured finger we may develop better understanding of the upper
fluid viscous stresses, within the wall layers for example, as we do later in § 3.3. Here,
we deal only with bulk flow quantities. The speed V̂v,L can be used to define a strain rate
and consequently an effective viscosity for the upper fluid. Using this, we may define a
viscosity ratio (heavy to light) as follows:

m =
κ̂
(

V̂v,H/R̂
)n−1

μ̂L
= V̂v,L

V̂v,H
. (2.4)

For larger values of V̂v,H the effective viscosity is reduced through shear thinning and the
viscosity ratio above reduces. Nevertheless, for all experiments m > 23 and for most of
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Figure 4. Overview of all experimental regimes in the Ret,H , m plane: +, green designates experiments
displaying helical finger regimes; �, red signifies fingers with a disconnected finger front; �, grey indicates
experiments manifested a slug finger regime; ×, yellow shows experiments that result in no flows; •, blue
shows no-flow experiments conducted by Vogl et al. (2022).

our experiments m is significantly larger. Figure 4 plots Ret,H vs m for our experiments,
showing a reduction in m as the flows become progressively inertial. The flow regimes
indicated in this figure are discussed later in § 3.2.4.

On measuring V̂L, since the net flow on any cross-section is zero, the heavy fluid velocity
is: V̂H = V̂Lr̂2

i /(1 − r̂2
i ), which is generally smaller than V̂L for the observed r̂i. We use V̂H

to define

ReH =
ˆ̄ρR̂V̂H

κ̂(V̂H/R̂)n−1
∈ [0, 12.3]. (2.5)

Figure 5(a) plots ReH vs Ret,H for our experiments. The two variables follow a trend
of increasing inertia along which the observed flow regimes change sequentially. The
transition between regimes is similar to that of figure 4 above, underscoring the relevance
of the buoyancy viscous stress balance, with the heavy fluid. Figure 5(b) plots the
analogous ReL vs Ret,L, which shows a wide range of Ret,L � 600 in each regime and
is generally less coherent.

In the above analysis we have not discussed the role of the yield stress of the upper fluid.
Briefly, the yield stress may act in 2 ways. First, the yield stress may prevent significant
motion from occurring in the flow, beyond the initial disturbance of opening the gate valve.
This is governed by the ratio of yield to buoyancy stress, Y

Y = τ̂y

�ρ̂ĝR̂
, (2.6)

known as the yield number. Secondly, when sustained motion occurs, it is often convenient
to include the effects of the yield stress in comparison with those of the effective viscosity.
This ratio is referred to as a Bingham number. Using a Bingham number instead of Y
is simply a different choice of dimensionless groups, and is less relevant here where
buoyancy drives the flow.

3. Results

We present our observations in 2 principal subsections. First, directly below we consider
the loss of mechanical stability of the system, i.e. the transition from no flow to a sustained
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Figure 5. (a) Comparison of scaled heavy fluid Reynolds number Ret,H and experimental Reynolds number
ReH . (b) Comparison of scaled light fluid Reynolds number Ret,L and experimental Reynolds number ReL.

exchange flow. Secondly, we consider the different flows observed when a sustained
exchange flow occurs.

3.1. No-flow experiments
The question of mechanical stability is deceptively simple. For a vertical pipe, a perfectly
perpendicular (horizontal) interface generates no shear stresses: a hydrostatic solution
exists. Thus, for any fluid with a finite yield stress, such interfaces should be statically
stable. A linear perturbation from the horizontal interface induces linear deviatoric
stresses, i.e. proportional to the destabilising buoyancy stress (�ρ̂ĝR̂) and linear in
amplitude of the perturbation. Thus, we can also expect the critical Y , needed to ensure
static stability, will also be linear in the perturbation.

However, now the complexity manifests. Different interface orientations induce different
shear stresses. Thus effectively, in order to guarantee stability, one requires an exhaustive
examination of all interface configurations, to determine the level of deviatoric stresses
induced. This is impractical, but configurations which destabilise and evolve into a
sustained viscous exchange flow are of importance. One idea is to understand what yield
number range allows such flows to occur. This approach is followed analytically and
computationally by Frigaard (1998) and Frigaard & Scherzer (1998, 2000), dealing with
plane channel flow and pipe flow with different interface configurations. The chief idea is
to develop a thin-film two-layer model for the exchange flow and then find conditions
where there is no flow possible. Although these studies consider 2 Bingham fluids in
exchange flow, for the limit of zero flow, all simple yield stress fluid models have the same
limits. In Frigaard & Crawshaw (1999) these results are combined with those for interfaces
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perpendicular to the pipe axis (the worst case in a horizontal pipe), to give estimates of
critical yield numbers in pipes of varying inclination.

Consideration of different interface configurations is, however, necessary, as this aspect
appears quite variable and sensitive in experimental observations. In inclined pipes,
unsurprisingly a slump-like interface is the most common (Crawshaw & Frigaard 1999;
Malekmohammadi et al. 2010). In vertical pipes, Varges et al. (2018) placed Carbopol gels
over less dense (vegetable or mineral) oil. The resulting exchange flow patterns observed
included a ‘plug’ flow in which a central finger of (unyielded) Carbopol descended into the
less dense oils, displacing them upwards along the wall. Plausibly here, fluid immiscibility
may ensure that the aqueous Carbopol solution cannot wet the wall and hence descends
centrally in the pipe. However, more recently, Longo et al. (2022) report experiments
in which Carbopol solutions are placed below denser glycerol or honey, i.e. miscible. In
these experiments the Carbopol finger was again observed to ascend centrally. In contrast,
for all the experiments reported here: (a) it is the water that ascends into the Carbopol;
(b) it does so centrally. In the earlier experiments of Vogl et al. (2022), in the same
apparatus, we also mostly observed the same phenomena but did observe a ‘side-by-side’
mode in 2 experiments, (effectively corresponding to the stratified slumping configurations
of inclined pipe exchange flows). Why particular interface configurations are selected
remains unsolved, i.e. beyond the influence of initial disturbances. An interesting study
in this regard is that of Beckett et al. (2011), who considered vertical Newtonian exchange
flows at very low Reynolds numbers and with carefully regulated initial conditions. They
still, however, observed both concentric and side-by-side configurations developing.

The above discussion explains the reasons for considering a range of interface
configurations in determining static stability. The bounds in Frigaard & Crawshaw (1999)
are determined for combinations of 2 yield stress fluids. For a single yield stress fluid
flowing axially in a vertical pipe, the stability criterion corresponds to Y > Yc = 0.6086
for static stability of a side-to-side configuration (Frigaard & Scherzer 2000). For the
concentric interface configuration that we observe, in which the outer fluid has a yield
stress, this reduces to Y > Yc = 0.5 for static stability (Frigaard & Scherzer 2000).
However, it is worth noting that the concentric interface configuration in which the outer
fluid has no yield stress, has no critical value of Y , i.e. the central flows observed by Varges
et al. (2018); Longo et al. (2022) are not prevented by the yield stress.

Thus, an effective Y = Yc,exp should be determined from the actual experiments
conducted, for the observed interfacial motions. Experiments from Crawshaw & Frigaard
(1999) and Frigaard & Crawshaw (1999) are interesting in this regard. In these, a tube
was half-filled with dense fluid, then light fluid added carefully on top (density stable).
The tube was initially either vertical (perpendicular interface) or angled to give a slanted
interface. To start the experiment the (closed) stable tube was inverted and placed at a
desired inclination. It was then observed to see if the interface failed or not. This enabled
Yc to be estimated for different angled interfaces. For a single yield stress fluid in a vertical
pipe, it is found that Yc,exp ≈ 0.2 for an interface at 10◦ from horizontal and Yc,exp ≈ 0.3
for an interface at 45◦ from horizontal. Although this procedure does not directly disturb
the (initially stable) interface, inversion of the tube imposes initial accelerations. For other
experiments, such as Malekmohammadi et al. (2010), Varges et al. (2018), Longo et al.
(2022) and Vogl et al. (2022); and here, the experiment is initiated by opening a sliding
gate valve, which also initiates motion. The size of this initial motion is not quantified
and in our set-up the gate valve obscures the view of the initial interface. A different
method could involve injection of the heavier fluid into the pipe, which creates an initial
disturbance from the perspective of static stability. Thus, Yc,exp depends on the protocol
adopted for placement of the fluids and any initial condition.
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Figure 6. Overview of all experimental results, classified in the (ReH, Y) plane, to compare with the no-flow
criteria established by Frigaard & Crawshaw (1999). Two critical Y values: Yc, Yc,exp are marked: +, green
designates experiments displaying helical finger regimes; �, red signifies fingers with a disconnected finger
front; �, grey indicates experiments manifested a slug finger regime; ×, yellow shows experiments that result
in no flow; •, blue shows no-flow experiments conducted by Vogl et al. (2022).

For the current experiments, in figure 6 we show a plot of Y against ReH , for our data and
the no-flow data of Vogl et al. (2022), totalling twelve no flows. The results show that Yc =
0.5 remains a valid but conservative estimate of the no-flow limit. We observed no flows
well below this limit, with the lowest being Y = 0.17. A practical limit for our apparatus
and protocols is Yc,exp ≈ 0.2. Generally speaking, our fluids have a high consistency and
consequently high effective viscosities. This might mean that the initial disturbance is
viscously damped before the interface can evolve to a sufficiently unstable configuration
for a sustained exchange flow to develop when theoretically possibly.

3.2. Sustained exchange flows
After the initial opening of the gate valve, many of our experiments evolve into a sustained
flow. The initial transient close to the gate valve is not observable in our experiment, but we
note that the time scales for viscous dissipation in the 2 fluids are quite different and this
disparity may allow for the interface to evolve to a less stable configuration. We observe
a long viscous finger or slug that initially rises centrally in the pipe. Figure 7 shows the
variation of observed behaviours at fixed At as the yield stress (hence Y) is progressively
reduced. The width of initial finger/slug decreases with Y . Each flow appears to become
vulnerable to interfacial instabilities, behind the leading front. These instabilities can
propagate as surface waves, even catching the front, (see figure 7b,c), and/or they grow
in amplitude allowing the rising finger to detach into a slug; see figure 7(d–f ). Helical
asymmetries are commonly observed in the instabilities.

3.2.1. Helical finger
The helical finger was the most common flow type observed in our experiments. Figure 8
shows two experiments that illustrate this type of flow. The early time images of
figure 8(a i,b i) show the finger penetrating as a centrally stable finger. The time scale
of any initial inertia-dominated regime is very short as the interface elongates into a
steady viscous-dominated finger. This steady finger regime is evident at early times of the
spatio-temporal plot in figure 8(a ii,b ii), where we see a distinct sharp front persisting.
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Figure 7. Sequence of experiments for cases 2–7 at At = 10−2, with decreasing Y , describing the evolution
from a helical to a disconnected finger, ultimately transitioning to a slug-type flow. From (a–f ), Y =
1.88 × 10−1, 1.32 × 10−1, 6.31 × 10−2, 8.23 × 10−3, 1.06 × 10−4, 8.59 × 10−5. The times for each image
are t̂ = [0, 86, 173, 259, 346, 432] s, t̂ = [0, 229, 458, 687, 916, 1145] s, t̂ = [0, 107, 215, 323, 431, 539] s, t̂ =
[0, 26, 53, 79, 106, 132] s, t̂ = [0, 15, 30, 46, 61, 76] s, t̂ = [0, 9, 18, 27, 36, 45] s.

The steady front velocity V̂L is measured in this part of the flow. This steady finger
characterises the viscous-dominated phase of the helical finger and during this phase no
instabilities are evident, either at the interface in the images or in the spatio-temporal plots.

The upwards flow of the finger displaces the heavy fluid downwards, which requires the
heavy fluid to yield at the wall. At the interface r̂ = r̂i, things are less clear. Considered as
a shear flow, the heavy fluid layer may be yielded at the interface or not, depending on r̂i.
However, the flow also develops slowly in ẑ, which allows for extensional deformations.
In either case the effective viscosity of the descending heavy fluid layer is large (typically
0.2–10 Pa s, based on m). Thus, the interfacial instabilities that appear do so on a slow
viscous time scale, controlled by the heavy fluid. In the spatio-temporal plots, we begin
to see downwards streaks that correspond to these interfacial wave speeds. The initial
growth/propagation appears to be helical, but as the amplitudes grow, any symmetry is
lost. Tracing horizontally in the spatio-temporal plots, we see that at the lower ẑ, there
is a significant delay before an instability is observed. However, higher in the pipe the
interfacial waves occur progressively close to the front as it passes. It is unclear why this
happens.
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Figure 8. Cases 8 and 9 illustrating the helical finger regime: (a i) represents an experiment with ReH = 3.91 ×
10−2, Re/Fr2 = 4.29 × 10−1, Y = 5.92 × 10−2, m = 6.22 × 102 taken at different times t̂ indicated under the
image. (a ii) Shows the spatio-temporal plot C̄ with pure blue colour representing the light Newtonian fluid
while yellow shows the heavy yield stress fluid and black displaying C = 0.5. (b i) Shows another typical helical
finger with ReH = 1.16 × 10−1, Re/Fr2 = 2.29 × 10−1, Y = 7.26 × 10−3, m = 7.79 × 102. (b ii) Shows the
spatio-temporal C̄ of the experiment in (b i).

Behind the advancing finger at later times, interfacial yielding and buoyancy-driven
deformation causes 3-D flow features to emerge between the two fluids. This results in
some advective mixing of the two fluids, but we still observe distinct fluid regions even
late in the flow. The growth of interfacial waves of the heavy fluid seems to cut into the
conduit of clear lower fluid, making any pathway more tortuous. The larger surface waves
descend below the gate valve into the light fluid region, where they eventually break off
from the wall layer. Experiments from Vogl et al. (2022) show the descent of detached
viscoplastic droplets, the larger of which are jellyfish-shaped. These features were also
observed in our experiments.

3.2.2. Disconnected finger
The initiation of this regime is similar to the helical finger regime. However, in the
disconnected finger regime detachment from the bulk flow is observed; see figure 9(a i,b i)
for examples. The detached finger proceeds upwards at speed approximately V̂L,
maintaining a near-constant length during the experimental time. Behind the finger, there
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Figure 9. Disconnected finger regime illustrated by cases 10 and 11: (a i) represents a disconnected finger
characterised by ReH = 4.92 × 10−2, Y = 4.75 × 10−5, Re/Fr2 = 1.01 × 10−1, m = 1.27 × 103 taken at
different times t̂, as indicated under the image. (a ii) Shows the spatio-temporal plot with a gap-averaged
concentration C̄ with pure blue colour representing the light Newtonian fluid while yellow shows the heavy
yield stress fluid and black displaying C̄ = 0.5. (b i) Displays another disconnected finger with ReH = 1.49,
Re/Fr2 = 3.93 × 10−1, Y = 1.06 × 10−2, m = 1.30 × 102. (b ii) Shows the spatio-temporal plot C̄ of the
disconnected finger.

is some advective mixing driven by buoyancy and we see some degradation of the rear of
the finger.

The most striking features are seen in the spatio-temporal plots of figure 9(a ii,b ii). It
seems that the transition at the end of the finger is relatively sharp and the detachment of
the finger breaks continuity with the bulk of the lower fluid. Below the rising blue band
(detached finger) in these plots, we see emerge a brown triangular region denoting the
mixed C̄. Notable here is that where the fluids mix the most, the downwards and upwards
streaks/contours are significantly shallower than the advancing front speed (or the earlier
descending waves). The finger detachment appears to result in a stabilising buffer region
in which fluid motions are significantly reduced.

3.2.3. Slug flow
The slug flow regime was observed in the more inertial regimes (larger ReH).
Figure 10(a i,b i) shows examples of the slug propagation. The main difference with the
disconnected finger regime is that the initial stable finger does not form and instead
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Figure 10. Slug regime illustrated by cases 12 and 13: (a i) represents an experiment with ReH = 1.34 × 10−1,
Re/Fr2 = 2.84 × 10−1, Y = 5.09 × 10−2, m = 5.65 × 102 taken at different time t̂, as indicated under the
image. (a ii) Shows the spatio-temporal plot of the gap-averaged concentration C̄ with pure blue colour
representing the light Newtonian fluid while yellow shows the heavy yield stress fluid and black displaying C̄ =
0.5. (b i) Displays a slug with ReH = 1.23 × 101, Re/Fr2 = 3.01 × 10−1, Y = 8.59 × 10−5, m = 3.20 × 101.
(b ii) The spatio-temporal plot of the gap-averaged concentration C̄ vs time t̂.

a detached slug or droplet rises. We distinguish these from the detached finger also
by the shorter observed lengths (a few diameters). This may of course be simply part
of continuous variation in the detachment process as the Carbopol concentration is
reduced. The spatio-temporal plots in figure 10(a ii,b ii) show that the front speed decreases
throughout the experiment. In figure 10(a) the slug detaches completely from the lower
fluid, although we do see a secondary front moving upwards through a thin helical path.
As previously, the brown regions of intermediate C̄ in the spatio-temporal plots have
shallower contours, indicating stabilisation. Reasons for the decline in velocity are unclear.
In case 12 (figure 10a) the slug is detached completely. Possibly the volume decreases via
miscibility at the edges. Behind the slug, there is an exchange flow region that widens and
mixes laterally with time, presumably reducing the driving force for the motion. The same
mechanisms may be present in case 13 (figure 10b).

3.2.4. Classification of flow regimes
The above classification is based on experimental observation. To quantify our results and
gain insight into the physical cause of the transitions, we plot our experiments against some
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Figure 11. Classification of the flowing experiments into the different regimes. (a) Average velocity VH (colour
map) plotted in the (FrH, ReH)-plane. (b) Value of ri (colour map) plotted in the (m, ReH)-plane. Symbols: +
denotes helical finger; � denotes disconnected finger; � denotes slug finger regime.

of the dimensionless parameters derived in § 2.4. Figure 11(a) shows our experiments,
as the inertial stresses increase. This is captured in both ReH and in FrH = V̂H/V̂t.
The regimes are identified by the symbol shape and the symbol colour scale gives the
range of VH . As the flow becomes progressively inertial, we move from helical finger to
disconnected to slug. Figure 11(b) illustrates the change in effective viscosity ratio through
the flow regimes. It also presents the range of observed ri, which is quite limited. In general
the larger ri are associated with the more inertial regimes.

As there is no imposed flow rate, the driving force for the (increasingly inertial) flow
regimes must come from buoyancy. The combination ReH/Fr2

H can be unravelled to give

ReH

Fr2
H

= �ρ̂ĝR̂

κ̂
(

V̂H/R̂
)n , (3.1)

which clearly represents the balance of buoyancy with the viscous stresses of the heavy
fluid. Figure 12 shows the regime transitions in the (ReH, ReH/Fr2

H) plane. We see that the
flows all occur with ReH/Fr2

H ∼ 1 and the transitions away from the helical finger regime
occur at a critical ReH = Rec ≈ 1.

3.3. Lubrication model and analysis
Using standard scaling methods we can derive a reduced model, relevant to the stage of
the experiments when the velocity field is approximately aligned with the axis of the tube
and the interface is finger-like. We assume an axisymmetric flow with a buoyant finger
of the light fluid rising upwards, displacing the lower fluid downwards. Following scaling
arguments as in Frigaard (1998) and Frigaard & Scherzer (1998), we find that to leading
order the velocity is in the axial direction, denoted ŵ(r̂), the pressure does not vary across
the pipe and the axial momentum balance is

0 = −∂ p̂
∂ ẑ

+ 1
r̂

∂

∂ r̂
[r̂τ̂k,rz] − ρ̂kĝ, k = H, L. (3.2)

Here, for r̂ ∈ [0, r̂i) we have k = L and we are in the light fluid finger. For r̂ ∈ (r̂i, R̂] we
have k = H and are in the heavy fluid.
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Figure 12. Flowing regime transitions in the (ReH, ReH/Fr2
H) plane. Symbols: +, green denotes helical

finger; �, red denotes disconnected finger; �, grey denotes slug finger regime.

Having simplified the mathematical description above, we now adopt scalings based on
the heavy fluid buoyancy–viscous stress balance: �ρ̂ĝR̂ = κ̂(V̂v,H/R̂)n. The velocity ŵ(r̂)
is scaled with V̂v,H , the lengths with R̂ and the stresses with �ρ̂ĝR̂. We also define f as
the scaled modified pressure gradient in the light fluid

f �ρ̂ĝR̂ = −∂ p̂
∂ ẑ

− ρ̂Lĝ. (3.3)

The dimensionless momentum balances are

1
r

d
dr

(rτL) = −f , ⇒ τL = − fr
2

, r ∈ (0, ri), (3.4)

1
r

d
dr

(rτH) = 1 − f , ⇒ τH = 1
2

(
(1 − f )r − r2

i
r

)
, r ∈ (ri, 1). (3.5)

Here, τk is the leading-order shear stress in fluid k: τk = τk,rz, defined via constitutive
laws below. The following conditions are satisfied as symmetry, interface and boundary
conditions:

τL(0) = 0, (3.6)

w(r−
i ) = w(r+

i ), (3.7)

τL(r−
i ) = τH(r+

i ), (3.8)

w(1) = 0. (3.9)

Flows of this type have been studied in Frigaard & Scherzer (1998, 2000). In general,
(3.4)–(3.9), can be solved to give a unique axial velocity w = w(r; ri, f ), which depends
on the interface position and on f , (plus of course the dimensionless rheological parameters
m, Y, n).

For the exchange flow configuration, the ascending upwards finger is balanced by
the descending heavy fluid near the walls. Thus, we expect that w is maximal at the
centre, decreasing with r to the interface. In order for the fluid near the wall to be
pushed downwards, we would also expect that w(r) is increasing as r → 1. These
expectations lead to the intuitive notion that f ∈ (0, 1), i.e. fluid L is pushed upwards and
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fluid H downwards. To make more precise the notion of balance, suppose that we have
calculated the velocity, w(r; ri, f ). We then integrate across each layer

QL(ri, f ) = 2π

∫ ri

0
rw(r; ri, f ) dr, QH(ri, f ) = 2π

∫ 1

ri

rw(r; ri, f ) dr. (3.10a,b)

The results from Frigaard & Scherzer (1998, 2000) can be applied. For example, it is
known that the total flow rate Q = QL + QH increases monotonically with f , which means
we can always find a value of f for which Q = 0, i.e. an exchange flow. If neither fluid has
a yield stress then the monotonicity of Q( f ) is strict and there will be a single value of
f ∈ (0, 1) for which Q = 0. When fluid H has a yield stress it may become stuck to the
outer wall, over some range of f . This can mean that a range of values of f allow Q = 0.
Lastly, in general QL increases with f and QH decreases with f .

Moving now to the specific exchange flows relevant to our experiments, the inner fluid
is Newtonian and the outer fluid can be described as a Herschel–Bulkley fluid. The scaled
constitutive laws are

τL = 1
m

dw
dr

, (3.11)

τH =

⎛
⎜⎜⎝
∣∣∣∣dw

dr

∣∣∣∣
n−1

+ Y∣∣∣∣dw
dr

∣∣∣∣

⎞
⎟⎟⎠ dw

dr
⇔ |τH| > Y,

∣∣∣∣dw
dr

∣∣∣∣ = 0 ⇔ |τH| ≤ Y.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.12)

Here, the viscosity ratio m is defined in (2.4) and the yield number is defined in (2.6).
The exchange flow solution can be calculated iteratively for each ri, by using e.g. the

bisection method, to find an f (ri) for which QL + QH = 0. We therefore assume that we
have found [w(r; ri, f ), f (ri)] for each ri ∈ [0, 1]. Figure 13(a) shows a typical example of
the variations in QL(ri) and QH(ri), computed for (m, Y, n) = (x, Y, Z). These functions
approach zero as ri → 0, and also typically QL = QH = 0 for a band of ri close to ri = 1,
provided that fluid H has a yield stress.

For fixed fluid properties, having computed QL(ri), the interface evolves according to

∂

∂t
[πr2

i ] + ∂

∂z
QL(ri) = 0. (3.13)

We do not solve (3.13), as it is well known that the lubrication model on its own does not
predict the finger width, which is selected in the 2-D region at its tip.

3.3.1. Stress variations in the exchange flows
From the solution, for any given f the interfacial stress τi and the wall shear stress τw, are
computed from (3.4)

τi = − fri

2
, τw = 1

2

(
1 − f − r2

i

)
. (3.14)

It is not hard to see that, in order to have a non-trivial velocity, the velocity must increase as
it approaches the wall at r = 1. This requires that τw > Y . Therefore, a necessary condition
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Figure 13. (a) An example of QL(ri) and QH(ri), computed for (m, Y, n) = (5.65 × 102, 5.09 × 10−2, 0.52).
(b) The dimensionless interfacial radius ri, plotted against Y for our experiments, compared with the critical
Yc(ri) (dashed line).
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Figure 14. (a) Dimensionless excess wall shear stress τw − Y , plotted against Y . (b) Excess interfacial stress
Y + τi plotted against τi. The colour map displays the intensity of the Froude number VH/Vt.

to flow is that
1 − f − r2

i
2

> Y, ⇒ f < 1 − r2
i − 2Y = fmax. (3.15)

Because also fmax ≤ 1, we see that there is a critical yield number Yc(ri) = (1 − r2
i )/2

above which there can be no flow in our lubrication model. At ri = 0 we see that Y ≥
0.5 is sufficient to prevent all non-zero flows. Figure 13(b) compares this critical Yc(ri)
with the experimental values of Y and ri. We see a clear demarcation of our experiments,
above and below Yc(ri). For experiments that do not flow, we simply take ri = 1. For the
sustained exchange flows, as commented before, these are limited to Y < Yc,exp ≈ 0.2 for
our experimental protocols.

Since we have also measured the interface radius ri of the initial finger/slug that rises
centrally in our experiments, we can compute f , τi and τw for each experiment. Figure 14(a)
plots the excess wall shear stress τw − Y , against Y . This confirms that the transition from
no-flow to flow coincides with τw = Y , as should be the case.

Figure 14(b) plots the excess interfacial stress Y + τi against τi for our experiments. We
observe that the transition through the observed regimes (helical finger → disconnected
finger → slug) appears to be associated with Y + τi passing through zero. The more
inertial regimes and those for which the finger/slug disconnects early correspond to those
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Figure 15. Schematic illustration of type I and type II velocity profiles, and associated stresses in an
axisymmetric geometry. Blue indicates Newtonian fluid and red indicates viscoplastic.

closer to yielding at the interface. The helical finger regime appears to be found exclusively
with Y + τi > 0. In other words, helical finger regimes corresponded to an unyielded plug
at the interface. As it is simple to check this condition for the lubrication model, this could
be used predictively to state whether a helical finger of given radius may be found.

The relevance of τi = −Y becomes clearer if we consider qualitatively the type of
velocity profile found in the sustained exchange flows. Fluid L is Newtonian, the stress
is linear, the velocity in [0, ri) is parabolic and we always have τi < 0. The outer fluid may
be yielded or unyielded at the interface, but must yield at the wall in order for there to be
a flow. When |τi| ≤ Y , the fluid is unyielded at the interface, which we define as a type
I solution. Alternatively, the fluid may be yielded, τi < −Y , which we define as type II.
Figure 15 shows these two types of fluid velocity profile and the associated shear stress
variations.

The change in flow type may explain the persistence of the helical fingers until late
in our experiments, whereas instabilities for the other regimes grew visibly earlier.
The type I solutions are part of a family of possible stable viscoplastically lubricated
solutions. Frigaard (2001) showed that retaining an unyielded plug at the interface of a
multilayer viscoplastic flow could eliminate the possibility of linear interfacial instabilities.
Remarkably, such flows can also be nonlinearly stable (Moyers-Gonzalez, Frigaard &
Nouar 2004) and are realisable experimentally (Huen, Frigaard & Martinez 2007). The
flows of Moyers-Gonzalez et al. (2004) and Huen et al. (2007) were, however, isodense
and pumped co-currently. The set-up here involves counter-current flow and is driven by
buoyancy. Although the arguments of Frigaard (2001) should apply to linear perturbations
of an unyielded interface, as the interface elongates in our experiments we develop long
layers of fluids of different density within which the neglected stress components may
become significant. For example, extensional stresses arise in slowly developing thin-film
flows of yield stress fluids, resulting in a pseudo-plug region within which the stress is
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asymptotically just above the yield stress (Balmforth & Craster 1999). Certainly there is
no obvious stabilising influence for our layered flows once the plug yields.

3.3.2. Comparisons with the exchange flows experiments
Further comparisons can be made directly with the experiments. Having found the
exchange flow solution [w(r; ri, f ), f (ri)], the net flow rate is

Q = QL + QH = −π

∫ ri

0
r2 dw

dr
dr − π

∫ 1

ri

r2 dw
dr

dr = 0. (3.16)

Thus, QH = −QL. The flux in fluid L is given by

QL = πr2
i w(ri) + π

mfr4
i

8
, (3.17)

where w(ri) is the velocity at the interface and can be found by integrating from the wall

w(ri) =
∫ ri

1

dw
dr

dr = −
∫ 1

ri

sgn(τH(r)) (|τH(r)| − Y)
1/n
+ dr, (3.18)

where (·)+ denotes the positive part. Similarly, QH can be directly calculated

QH = −πr2
i w(ri) + π

∫ 1

ri

r2sgn(τH(r)) (|τH(r)| − Y)
1/n
+ dr. (3.19)

The mean velocity in the light and heavy fluids: V̄L and V̄H are defined by

V̄L = QL

πr2
i
, V̄H = −QH

π(1 − r2
i )

= r2
i

1 − r2
i

V̄L. (3.20)

The above may be compared with our experimental values. However, in the experiments
we measure both V̂L and r̂i. Consequently, for comparison we take the measured r̂i, scale
with R̂ and compute V̄H(ri), as above, to compare with the experimental V̂H , also scaled
with V̂v,H . Figure 16(a) shows 3 examples of this comparison. We also plot a representative
error bar in ri, noting that the observed ri values in our experiments are typically in the
range of ri where V̄H(ri) is decreasing to zero. The observed and computed velocities
are comparable. This is repeated with the dimensional velocities in figure 16(b), for all
flowing experimental values, compared with computations using the measured r̂i. We see
that the comparison is reasonable for the helical and disconnected regimes, but diverge
for the slug regimes. This suggests that the longer near-parallel flows with approximately
axisymmetric fingers (helical and disconnected regimes) are represented by the viscous
shear flow vs buoyancy balance of our model. The slug flows likely represent a transition
to a regime in which inertia–buoyancy is the more relevant balance. Additionally, in the
slug flow regime some of the scaling arguments that underly the lubrication approximation
are less valid.

3.4. Energy analysis
In our analysis and flow classification, it is curious that in all cases the initial (viscous)
finger appears unable to persist in a stable state over long times. Although the experimental
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Figure 16. (a) Model velocity V̄H(ri) (lines) compared with experimental VH and ri for 3 examples. Error
bars in are ri ± 0.02: (—, green) represents viscoplastic rheology ρ̂H = 1200 kg m−3, ρ̂L = 1000 kg m−3,
τ̂Y,H = 0.579 Pa, κ̂H = 8.003 Pa sn, n = 0.51; (—, yellow) represents viscoplastic rheology ρ̂H = 1125 kg m−3,
ρ̂L = 1000 kg m−3, τ̂Y,H = 0.001 Pa, κ̂H = 0.224 Pa sn, n = 0.67; (—, blue) represents viscoplastic rheology
ρ̂H = 1150 kg m−3, ρ̂L = 1000 kg m−3, τ̂Y,H = 0.436 Pa, κ̂H = 3.06 Pa sn, n = 0.52. (b) Predicted velocity
V̄H plotted against the corresponding experimental velocity, dashed lines indicate ±15 % error range.

finger velocities VL (and radii) compare reasonably with those computed from the
lubrication model (figure 16b), it is well known that the lubrication model on its own
is not predictive of the actual finger width observed.

In Longo et al. (2022) the authors develop an energy method, based on the work of
Picchi, Suckale & Battiato (2020) that was constructed for a Newtonian Taylor drop/slug.
This method considers the energy balance for an idealised rising cylinder of core fluid,
balanced with an annulus of descending fluid. Although the number of data points in
Longo et al. (2022) is quite limited, the authors show a reasonable match between
experimental rise velocities and those predicted as the asymptotic steady-state interface
radius of their analysis.

In terms of our variables, the same energy balances as made in Longo et al. (2022) lead
to the following evolution equation for the finger radius ri(t):

t
dri

dt
= Pt(ri) − D(ri)

d
dri

[
Q2

L(ri)
2r2

i − 1

2πr2
i (1 − r2

i )

] , (3.21)

where

Pt(ri) = Q2
L(ri)

1 − 2r2
i

πr2
i (1 − r2

i )
, (3.22)

where QL(ri) is calculated as in the lubrication model and where D(ri) represents the rate
of dissipation, given here by

D(ri) = 2π(V̄L + V̄H)

(
1
m

∫ ri

0
r
∣∣∣∣dw

dr

∣∣∣∣
2

dr +
∫ 1

ri

r
∣∣∣∣dw

dr

∣∣∣∣
n+1

+ rY
∣∣∣∣dw

dr

∣∣∣∣ dr

)
. (3.23)

The first term in (3.21) has a zero at ri = 1/
√

2. A small dissipation shifts this zero slightly.
This zero represents an equilibrium solution of (3.21), which can be interpreted as an
autonomous first-order differential equation for ri = ri(ln t). Longo et al. (2022) show that
this equilibrium point is stable, and hence use this as the prediction for the asymptotic ri.
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Figure 17. Examples from the energy analysis with: ρ̂H = 1100 kg m−3, ρ̂L = 1000 kg m−3, τ̂Y,H = 0.232 Pa,
κ̂H = 0.947 Pa sn, n = 0.49. (a) Variation in QL (black), V̄L (red), V̄H (blue), with ri. (b) Variation in D(ri)

(red) and Pt(ri) (green), together with the numerator of (3.21) in black.

We have followed the same procedure as Longo et al. (2022), but find no equilibrium
points for the parameters that coincide with our experiments! While this may appear
strange, note that in contrast to Longo et al. (2022) we have always found the less viscous
Newtonian fluid to rise centrally in our experiments while the yield stress fluid descends
near the walls. In figure 17 we show plots of the functions in (3.21), for one of our
experiments. In the mid-range of ri that we observe, the right-hand side of (3.21) is
generally negative. This is because the dissipation rate dominates the first term of the
numerator (related to the time derivative of the potential energy). The contrast with Longo
et al. (2022) is then intuitive. For our fluids to flow, the outer more viscous fluid must
yield at the wall. Thus, the most viscous fluid is deformed and occupies a larger area
than if the fluids were reversed. Indeed, feasible exchange flow configurations with the
Newtonian fluid on the outside include that with the inner fluid entirely unyielded, which
has no contribution to the dissipation rate (Frigaard & Scherzer 1998).

4. Discussion and conclusions

We have presented the results of a series of 40–50 experiments in which a denser yield
stress fluid is positioned above water in a vertical circular pipe. The fluids are miscible
and in the absence of any yield stress there is no static equilibrium. In contrast, with
a yield stress there are many static equilibria, governed only by the configuration of
the interface between the fluids and the yield number Y . In our experiments the initial
interface is horizontal, perpendicular to the pipe, which is statically stable for any Y > 0.
However, there is an initial disturbance due to opening of the gate valve separating the
two fluids, which both induces stresses and disturbs the interface. Our results separate
into two: those that flow and those where the initial disturbance decays and remain
static in this mechanically unstable configuration. We find that there are no flowing
(i.e. unstable) configurations with Y > Yc,exp = 0.2. For the unstable configurations, the
initial development of the front between fluids results in an approximately central finger
of the water moving upwards through the Carbopol, which is displaced downwards
around the walls. Fully developed core–annular exchange flows of this type cannot evolve
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for Y ≥ Yc = 0.5. Our no-flow results are consistent with both earlier experiments and
theoretical understanding (Frigaard & Crawshaw 1999).

The flowing experiments have been further classified according to the behaviour of the
initial central front. A long well-defined rising central finger may evolve, which either
tends to destabilise slowly late in the experiment (helical finger), or can completely
disconnect from the lower fluid (disconnected finger). Alternatively, the finger breaks
and detaches very early in the experiment (slug). The transition through the regimes
follows an increase in ReH and decrease in Y (figure 6), or decrease in m (figure 11b).
The more viscous helical finger regime is found for ReH � Rec = 1. In other words, the
flows become increasing inertial, noting that only buoyancy drives the flow.

Both m and Y contribute to an effective viscosity ratio between the fluids, when flowing.
At the typical shear rates of the experiments, the effective viscosity of the Carbopol
dominates that of the water. Regardless of regime, the viscosity of the Carbopol plays
a key role in balancing the driving buoyancy. This is captured in the balance ReH/Fr2

H , as
illustrated in figure 12.

For the regimes where a long finger (or slug) evolves, it is reasonable to consider the
flow at the sides of the finger to be close to one-dimensional. This leads to the lubrication
(thin-film) model developed in § 3.3. Although such models give reasonable agreement
with observed motions (figure 16b), these are simply based on the 1-D momentum balance
and are not fully predictive. The 1-D model is useful in understanding the type of velocity
profile around the rising finger. We see that helical fingers are associated with interfacial
stresses lying below the yield stress (|τi| < Y) and type 1 velocities, whereas disconnected
fingers and slug regimes correspond to type 2 velocities (see figure 15), with |τi| > Y; see
figure 14(b).

The observation that disconnected finger and slug regimes both correspond to
core–annular regimes with a yielded interface is notable. Based on linear stability studies
of multi-layer flow one expect that the configuration with the more viscous fluid near the
wall will be unstable (Joseph & Renardy 1992). Indeed for many situations studied this
configuration is absolutely convectively unstable (d ’Olce et al. 2009; Selvam et al. 2009).
Considering the effective viscosity of the yielded Carbopol near the interface, compared
with that of water, we may interpret our flows as falling into this category.

The dichotomy between stable core–annular flows with yield stress vs unstable purely
viscous flows has been noted and observed before. For example, in displacement flows of
(viscous, shear-thinning) xanthan solutions with density-matched water, Gabard (2001);
Gabard & Hulin (2003) found an initially uniform central finger that only destabilised
much later in their experiments. Displacing Carbopol (with a yield stress) did not
destabilise. Some of our late stage destabilising fingers are reminiscent of those in Gabard
(2001) and also helical modes are commonplace in the Newtonian–Newtonian literature,
so the form of our instabilities is somewhat expected. Equally, the earlier mentioned studies
of viscoplastic lubrication flows have shown that co-current yield stress fluid flows can be
remarkably stable. Here, we have a significant (unstable) density difference to contribute
to destabilisation and our flows are always counter-current exchange flows.

Zare & Frigaard (2018) studied density unstable displacement flows of a Bingham fluid
by a Newtonian fluid computationally. Increases of a buoyancy parameter χ , (similar to
our ReH/Fr2

H), led to an increased occurrence of instabilities (of a wide range), from an
otherwise stable advancing central finger. This was related to characterisation of the flows
using a 1-D momentum balance (as here), showing that the increasing χ transitioned from
flows unyielded at the interface, to yielded flows at the interface, to counter-current flows
(also yielded at the wall). The latter were always found to be unstable. Note that similar
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sizes of buoyancy force were studied in the density stable configuration (Zare, Roustaei &
Frigaard 2017) with no sign of instability observed.

The negative result of the energy analysis is hard to interpret. We do not believe it
invalidates the usage of the energy method in Longo et al. (2022), as their equilibrium
solutions appear to represent their observations reasonably. However, the implied uniform
evolution of the interface radius ri(t) contradicts with that of a conventional lubrication
model analysis. In our experiments also the energy method (3.21) predicts decreasing
ri(t) which would result in an increased V̄L. However, the spatio-temporal plots of
our experiments have shown a slow evolution in which V̂L usually decreases slightly
throughout the experiment. Lastly, viewed in the context of viscous–viscous core–annular
flows, the configurations of Longo et al. (2022) may be stable (less viscous fluid outside),
whereas our flows are not. A stable interface over long times would be a pre-requisite for
the type of interface evolution implied.

We must also acknowledge limitations of our experiments. As we use visualisation,
there are various restrictions on transparency etc. of the fluids to be used. With Carbopol
(and many other yield stress fluids) we also have a working range of concentrations
for which the generalised Newtonian description is reasonable (in our experience other
effects become significant at around 0.2 % wt/wt). So we have used a couple of lower
concentrations only. Thirdly, our apparatus size is also modest (cm scale) to avoid strictly
capillary regimes and lean more towards industrial scale (10–30 cm diameters), while
remaining mostly non-inertial. Lastly, the fixed pipe diameter plus yield stresses of the 2
Carbopol concentrations used means that the flow/no-flow transition is generally crossed
by controlling the density difference. Thus, we have used 2 ways of densifying: sugar
& glycerin, but not salt which is detrimental. As we vary e.g. glycerin at fixed %wt/wt
we admittedly do adjust the rheology and density together. The effects of the sugar and
glycerin on the rheology are slightly different. This is the nature of the restrictions we
have: basically we have explored 4 different fluid systems in these experiments. Possibly
we could have explored also 0.1 % wt/wt, but much lower than 0.07 % wt/wt produces
very low yield stress. Thus, the working fluids available all have practical limits. In order
to explore physical effects independently and over wider parameter ranges, we would need
to use computational methods, which we are developing.

In this paper we have focused exclusively on the upper part of the experimental
apparatus. Practically speaking, this is the part that would represent water mixing into the
cement slurry and is of most importance industrially. However, this ignores what happens
lower down. Vogl et al. (2022) showed some images of the flow below the gate valve. In
brief the upwards moving central finger of our experiments is matched with a downwards
moving wall layer of Carbopol. Although initially axisymmetric, the interface of the wall
layer with the ascending figure appears to destabilise initially with a helical interfacial
mode that travels downwards. The helical mode grows and results in a (nonlinear) surface
wave that breaks from the wall layer. These larger droplets descend into the water below
often with a slug-like jellyfish shape. The wave speed, instability and descent rate of the
droplets all merit a separate study, which is planned.

Lastly, we discuss the role of miscibility on our results. To be brief, we do not feel it has a
great effect on the initial dynamics for the flow regimes identified. In working with similar
fluids and flow loops for displacement flows over many years, we generally operate at high
Péclet number when the flows are laminar. In displacement flows the imposed velocity
(flow rate) makes the Péclet number easy to define, but here the velocity scale comes
from buoyancy. However, using the measured values of V̂H (in the mm s−1 range), we
typically find Péclet numbers 105 − 106, based on a reference liquid molecular diffusivity
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of 10−10 m2 s−1. Thus, we expect relatively small diffusive effects, but potentially mixing
may be reinforced by secondary flow, i.e. mixed fluids can be advected away from the front,
keeping gradients sharp but eventually leading to diffuse regions dispersed in the flow. If
we look at the regions behind the advancing finger/slug in figures 7–10, we see that even
late in the experiments the two fluids have complex channels which remain distinct, i.e. the
two fluids have not fully mixed diffusively across the pipe. We also see that the images are
progressively more smeared/diffuse late in the experiment. This phenomenology coincides
with the above high Péclet number description. Late in the experiments, diffusive mixing
may be responsible for minor mass loss from the advancing slugs/droplets and consequent
slowing of the front speed that we see in some cases. It would be interesting to see if
using two immiscible fluids with similar properties have the same phenomena. Our pipe
is relatively large (non-capillary), but the channelled zones in figures 7–10 have order mm
scale and likely would be affected. Probably the disconnection of the slugs/fingers would
also be affected.

To close, we consider the practical impact of our results for the off-bottom plug
cementing process, as commonly used in Western Canada. Typical cement slurries have
a yield stress below 5 Pa, density differences of 700–900 kg m−3 are common and
D̂ = 12–20 cm, so that Y � Yc,exp. Regimes in the field are most likely to be disconnected
fingers and slug regimes. This shifts the focus of future work to understanding: (i) Whether
complete transverse mixing occurs, and does this then arrest the exchange flow and over
what length of pipe does this happen? (ii) What volume of water escapes upwards into the
cement slurry?

Knowledge of the flow regimes identified helps in understanding how rheology
modifiers may affect the downhole stability. For example, a more viscous cement slurry
is more likely to be in the helical finger regime, which is more structured and persists
for longer into the flow. This may paradoxically exchange larger volumes with the water
layer below, compared with the more inertial regimes. Further study is needed. For the
larger-diameter pipes and with typical density differences, it is very unlikely that a large
enough yield stress to exceed Yc,exp would be pumped. We must also acknowledge that the
time scales of the different regimes have not been quantified here, beyond characterising
the speed of the fronts. Lastly, our approach has been to isolate the post-placement flow
from the dynamics of the actual placement, which we know leads to a good degree of
mixing at the bottom of the plug (Ghazal & Karimfazli 2022a,b). Our assumption has been
that the ‘clean interface’ flow we study is a worst case from the operational perspective.
It would be of value to perform experiments that test this, i.e. looking at instability from
an initial condition that has a gradient of fluid densities varying over a given length of
wellbore.
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