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Abstract

This paper introduces trust analysis for higher-order languages. Trust analysis encourages the

programmer to make explicit the trustworthiness of data, and in return it can guarantee that

no mistakes with respect to trust will be made at run-time. We present a confluent λ-calculus

with explicit trust operations, and we equip it with a trust-type system which has the subject

reduction property. Trust information is presented as annotations of the underlying Curry

types, and type inference is computable in O(n3) time.

Capsule Review

Often pragmatic but perhaps unclean requirements of everyday programming are ignored by

language designers to avoid spoiling an elegant design. Maybe a more honest approach is to

bring the messy features right into the same semantic space; this may spoil the pure elegance

of a language, but at least programmers are made explicitly aware of the unpleasantness, and

overall program behaviour is perhaps more predictable. Perhaps the golden rule should be:

‘If it happens, model it!’ This paper is in that genre.

The observation is made that some of the data presented to many programs is inherently

unreliable. The options are to ignore the possibility and hope for the best, or to see what can

be done by modelling the trustworthyness of data within the language semantics. The paper

gives a thorough formal treatment of a typed lambda calculus wherein types are decorated

with a trust attribute, and investigates the static analysis of trust.

1 Introduction

As computers are increasingly being used to handle important transactions (such

as interchange of legal documents) in an open environment where also information

that does not pertain directly to business is transferred between the same machines

(for example e-mail), the issue of separating these two kinds of information flow has

become more and more important. The issue is usually attacked using encryption

and digital signatures for the important information flows between machines, but

what good does this do if somewhere inside a program, there is a data path between

reading a message and some dangerous operation such that the dangerous operation

depends on the contents of a message whose signature is not checked?

An example where it is important to perform validity checks on all data paths

from input to output, is in an HTTP (HyperText Transfer Protocol, the protocol
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used on the world-wide web) server that allows a web-browser to start a separate

program (a so-called CGI script, for Common Gateway Interface) on the server

machine by requesting a specific URL. The usual convention is that the browser

requests a URL of the form http://www.company.com/cgi-bin/program-name.

Since a CGI script can in principle be any program, it is important that the server

checks that the requested program is one of the few programs that are allowed to

be run in this fashion. In a complicated server, like most servers today, there are

many data-paths from the initial reception of the URL request to the command to

be executed, and it is imperative that the checks for allowed programs be performed

on all these paths. The trust analysis presented in this paper is developed to help

the programmer ensure that the requisite checks are always made.

A very similar situation existed in a part of the Gopher (an earlier and simpler

distributed information service than the world-wide web) server, where through one

of the provided gateways to other services one could contrive a special request to

the server and thereby get arbitrary commands executed on the server machine,

including starting a remote terminal window on that machine and thus thwarting

all security measures. This security bug was later fixed by the developers when

the second author made them aware of the problem. We believe that the use of a

trust-analysis could have helped prevent this problem in the first place.

A third example of where trust analysis could be useful is in a web browser

that must forbid the retrieval of certain URLs, for example to prevent children

from viewing on-line pornography. Since there are many ways in a typical browser

program to enter a URL, (the command line, configuration files, dialog boxes, . . .)

it’s important that the checks for forbidden URLs are made on all the paths from

reading user input to getting the URL from a server.

Since we want our analysis to be generally applicable, we do not consider the

very specific tests that have to be done on input data in various situations, such as

checking digital signatures or verifying pathnames against a known pattern. Devising

these tests is still up to the careful program designer. Instead our analysis offers

a ‘trust’ construct that is meant to be applied to data after they have passed the

specific validity checks, the analysis will then propagate this knowledge around the

program. At points of the program where something dangerous is about to happen,

such as starting another program or starting a transaction against a database, the

programmer can write a ‘check’ construct to ensure that the arguments can indeed

be trusted, which means that they only depend upon data that have actually passed

the validity checks.

As an example of a run-time version of trust-checking, the programming language

Perl (Wall and Schwartz, 1991) has a switch that turns on so-called taint-checks at

run-time that will abort the program with an error message if tainted input data

are being used in ‘dangerous’ functions such as unlink. There’s also as construct to

convert tainted data to un-tainted form so that dangerous functions can be used on

it. Our trust analysis is inspired by this feature of Perl, but our analysis is entirely

static, so we can avoid run-time errors and overhead due to taint-checks.

A static check inevitably loses some flexibility as compared to run-time checking,

but in the case of trust checks, it is not very useful to get a run-time trust violation,
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as such an error would typically occur too late in the datapath for corrective action

to be possible. So not much useful flexibility is lost.

Ørbæk (1995) introduced the concept of trust analysis for a first order imperative

language with pointers using abstract interpretation and constraints. This paper1

investigates trust analysis as a type system for a pure functional language based on

the λ-calculus.

The remainder of the paper is structured as follows. First we give some intuitions

about the intended program analysis, the semantics of our example language, and

the type system. Then we present an extension of the λ-calculus together with an

operational reduction calculus. The calculus is shown to have the Church–Rosser

property. We also give a denotational semantics for our language and relate it to the

reduction rules. We define our static trust analysis in terms of a type system. The

type system is shown to have the Subject Reduction property with respect to the

reduction rules of the semantics. We then relate our type system to the classical Curry

type system for λ-calculus and obtain two simulation theorems relating reductions in

our calculus to reductions in classical λ-calculus, and finally we prove that well-typed

terms are strongly normalizing. Then a type inference algorithm is presented and

proved correct with respect to the type system. Finally, we discuss how to extend the

type system to handle recursion, modules and polymorphism, and we relate trust

analysis to other program analyses.

1.1 Intuitions and motivation

We distinguish two kinds of data: trusted data and untrusted data. Trusted data will

typically arise from program constants, company databases, trustworthy persons,

cryptographically verified input from a known partner, etc. All other pieces of data,

such as data obtained via an insecure network connection or from world writable

files is regarded as untrusted.

Figure 1 is an abstract picture of the data-dependencies in a typical function. We

see that the result of the function depends upon both the functions arguments and

its environment as symbolized by the paths entering the function through the sides

of the box. Suppose the result of that function is stored in a company database

or used in a transaction transferring money between accounts. We clearly want to

be able to trust the output of that function, regardless of how the result of the

function is derived from the arguments and the environment of the function. In

order to make the result trustworthy the programmer has inserted certain checks in

the function, symbolized by the small circles. However, there are still paths in the

function such that untrustworthy information may leak through if the function is

called with untrustworthy arguments.

The method we propose to help the programmer ensure that he inserts checks on

all the required data-paths in his program is formulated in terms of an annotated

type-system. This type-system must be able to type both trusted data and untrusted

1 An extended abstract of an earlier version of this paper appears in the Proceedings of the
1996 Static Analysis Symposium (Palsberg and Ørbæk, 1995).
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Fig. 1. Dataflow example.

data as both kinds of data occur naturally in most programs, but still it must be

able to distinguish between these two kinds of data.

As this paper is concerned with a higher-order language, functions are data as

well so a function is itself either trusted or untrusted. Intuitively it should be clear

that if we apply an untrustworthy function then the result of that application

is untrustworthy as well, since the function itself may depend on untrustworthy

information from the outside. This leads us to our type rule for function application

as shown in figure 8.

Our type system starts from the simply typed λ-calculus and annotates each

type constructor occurring in the program with a trustworthiness. A trustworthy

boolean has the annotated type Booltr, and an untrustworthy function sending

trusted booleans to trusted booleans has the annotated type (Booltr → Booltr)dis.

Suppose f is a function that can accept an untrusted argument. This must mean

that f cannot use that argument in places where a trusted value is required unless

it does some checking beforehand on the argument. If we give f a trusted argument

then these checks should succeed which means that if a function can accept untrusted

input then it can also accept trusted input. This leads us to a type system with

subtyping, such that an expression of a trusted type can be typed as an untrusted

type. The ordering between base-types as determined by their trustworthiness is

extended to higher types using the usual contra/co-variant structural subtyping idea

of Mitchell (1984), Fuh and Mishra (1990) and Cardelli (1984), and others.

The trust type system differs from many other type systems in that given a bare

value (e.g. 7) it is not possible to see by just examining the value whether it is

trustworthy or not. This is where our three extensions to the basic λ-calculus come

in. They basically link the dynamic semantics of the calculus to our type system, and

they can be seen as a kind of annotations to the program that the type inference

algorithm will attempt to verify for consistency. The trust E construct indicates to

the type system that the result of E may now be trusted. Dually, distrust E indicates

that the result of E cannot be trusted, for example after a failing validity check, and
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last but not least: the check E construct indicates to the analysis that the result of E

is required to be trustworthy. Well-written programs will only have a few syntactic

places where the three new constructs are used. The type system propagates the

trust information though the program, ensuring that for any instance of check E in

a well-typed program the expression E is statically known to be trustworthy.

1.2 An Example

Consider the following piece of code written in an SML like syntax for a network

server program:

read from network :: (Clientdis → (Reqdis, Sigtr))tr

verify signature :: (Sigtr → Booltr)tr

handle event :: (Reqtr → Unittr)tr

handle wrong signature :: ((Reqdis, Sigtr)→ Unittr)tr

fun get request client =

let (req, signature) = read from network(client) in

if verify signature(signature) then

handle event(trust req)

else

handle wrong signature(req, signature).

The server first reads a packet from the network client and if the signature of the

packet can be verified, then we can trust the request data and the event handler is

called with the request part of the packet. In case the signature cannot be verified

an error handler is called which may eventually display some error message on the

client’s display.

The event handler could be called from many places in the program and to avoid

by accident calling it with a request that has not yet been verified, we use the trust

type system to require that the handler gets only trustworthy requests. The handler

code may then look something like:

fun handle event req =

let trusted req = check req

in ...

and it will therefore get the argument type Reqtr. Notice the small number of

program annotations of the form trust E and check E as opposed to the numerous

trust annotations on the types that are inferred by our inference algorithm.

2 Syntax and semantics

This section presents the syntax and operational semantics of the trust language. We

have chosen to formalize our analysis in an extension of the traditional λ-calculus

without any predetermined reduction order, that is, we study a pure calculus to

gain results that will specialize equally well to call-by-value implementations as to

call-by-need implementations. The drawback of this is of course that some results

require more work, for example we need a lengthy proof of the Church–Rosser
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E, F, G,H ::= x | λx.E | EE | trust E | distrust E | check E

Fig. 2. The syntax of expressions

property of our calculus, something that would come essentially for free had we

chosen to study just one specific reduction strategy such as left-most inner-most

reduction for call-by-value. Figure 2 defines the syntax of our language.

Variables, λ-abstraction and application behave as usual. The trust E construct

is used to introduce trusted values in a program. Symmetrically, distrust indicates

untrusted values. The check construct will reduce only on trusted values, so evalu-

ation may get stuck if an expression check(distrust E) occurs at some point during

evaluation. According to the previous section, the three new constructs should be

regarded as the interface between the dynamic semantics of the program and the

static analysis (the type system). But in order to prove the soundness of the analysis

we have to give some dynamic meaning to the new constructs. This is done in terms

of fairly obvious reduction rules for the constructs defining how they interact. One

can also see the new constructs as operating on tags associated with all values at

run-time, and this is the view taken in the denotational semantics given later.

2.1 Reduction rules

The reduction (or evaluation) rules for the language are given in figure 3. Stating

E → E′ means that there is a derivation of that reduction in the system.

There are three kinds of values around during reduction: trusted, distrusted

and untagged. Untagged lambdas are treated as trusted program constants in the

(Lambda Contraction) rules, since lambdas stem from the program text which the

programmer is writing himself and they may therefore be trusted. As discussed in

section 5 this may change in a larger scale situation with modules.

To facilitate the proof of the Church-Rosser property of the system, the reduction

rules form a reflexive ‘one step’ transition relation. This is inspired by the proof of

Church–Rosser for the ordinary λ-calculus by Tait and Martin-Löf in Barendregt

(1991, pp. 59–62).

The contraction rules exist to eliminate redundant uses of our new constructs

in the calculus. For example, trusting an expression twice is the same as trusting

it once (the first (Trust Contraction) rule) and checking the trustworthiness of an

expression then explicitly trusting it is the same as just checking the expression

(Check Contraction). Checking an explicitly trusted expression succeeds and yields a

trusted expression. Note that there is no rule contracting distrust(check E) since this

would allow the removal of the check on the trustworthiness of E. The reason this

particular choice of reduction rules is that we want check to act in a ‘call-by-value’

fashion as discussed in the next section.

In the following we always consider equality of terms modulo α-renaming. Since

we are working with a reflexive reduction relation we have to be careful in our

definition of what is meant by a normal form. A significant reduction E → F is a

https://doi.org/10.1017/S0956796897002906 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002906


Trust in the λ-calculus 563

E → E (Reflex)

E → E ′

λx.E → λx.E ′

trust E → trust E ′

distrust E → distrust E ′

check E → check E ′

(Sub)

E → trust E ′

trust E → trust E ′

distrust E → distrust E ′

check E → trust E ′

(Trust Contraction)

E → distrust E ′

trust E → trust E ′

distrust E → distrust E ′

(Distrust Contraction)

E → check E ′

trust E → check E ′

check E → check E ′

(Check Contraction)

E → λx.E ′

trust E → λx.E ′

check E → λx.E ′

(Lambda Contraction)

E → E ′ F → F ′

EF → E ′F ′

(λx.E)F → E ′[F ′/x]

(distrust (λx.E))F → distrust E ′[F ′/x]

(Application)

Fig. 3. The reduction rules.

reduction whose derivation uses at least one of the contraction rules or a β-rule.

A term E is said to be in normal form when there are no significant reductions2

starting from E. There are proper and improper normal forms. A normal form

containing a sub-term of the form check(distrust E) is said to be improper. All

other normal forms are proper. We will write →∗ for the reflexive transitive closure

of the reduction relation →.

As an example of how to extend the language with usual programming con-

structs, we show in figure 4 how a reduction rule for program constants would look

and the derived rules we get for if-then-else with the usual coding of booleans in

the λ-calculus. Notice how the (Constant) rules are patterned after the (Lambda

Contraction) rules, and how the trustworthiness of the condition in an if-then-else

construct affects the trustworthiness of the result. It shows that our function applica-

2 A reduction E → F may be significant even when E = F: Ω = (λx.xx)(λx.xx) → Ω is a
significant reduction.
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E → const

trust E → const

check E → const

(Constant)

T ≡ K ≡ λxy.x (True)

F ≡ λxy.y (False)

if E then F else G ≡ EFG (If)

E → E ′ F → F ′

if T then E else F →∗ E ′
if F then E else F →∗ F ′

if distrust T then E else F →∗ distrust E ′

if distrust F then E else F →∗ distrust F ′

(If)

Fig. 4. Example rules.

tion rule seamlessly handles what Denning (1976) called indirect data dependencies.

In section 5 we also show how to encode a rec construct in the language.

2.2 The nature of check

The contraction rules that we have in the case where check is the inner construction

are given by the (Check Contraction) rules:

E → check F

trust E → check F

check E → check F

and most notably, there is no rule for contracting distrust(check E). There is at

least one other set of rules for this case that may come to mind, namely this set of

rules:

E → check F

trust E → trust F

distrust E → distrust F

check E → check F

The intuition for the first of these alternative rules is that if we put trust around some

expression there is really no need to perform the check inside the trust construct

since the program is going to trust the resulting value anyway. The second rule is the

symmetric case, and is needed to make the resulting calculus Church-Rosser. The

last rule also occurs in our system. The calculus that results from this alternative set

of rules makes fewer programs end up in a stuck configuration, because it is now

possible to place a stuck expression in a context that will make it reducible, as in

trust(check(distrust E)) which is stuck in our calculus, but reduces to trust E under

the alternative rules.

One way to think about this is to view our definition of check as ‘call-by-value’

in that it really needs to see the (possibly implicit) tag on its subexpression before
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it can be reduced away, whereas with the alternative rules, check is ‘call-by-name’

in that it can be reduced away, depending on its context, without considering the

trustworthiness of its argument. The ‘call-by-value’ nature of check is also reflected

in the denotational semantics of check given later. Note, however, that for the core

λ-calculus we have the full β-rule. It’s only the new construct, check, that behaves

in a ‘call-by-value’ or ‘call-by-name’ fashion.

In our view the alternative rules are less intuitive to the programmer, in that

if he writes check somewhere in the program he probably wants it to check the

trustworthiness of its argument regardless of the surrounding context. But one can

argue both ways: the ‘call-by-name’ version of check might be the most natural

choice in a lazy implementation of a functional language such as Haskell, whereas

the ‘call-by-value’ version might be most suitable for a call-by-value language such

as SML. Either way it’s easy to alter the proof of the Subject Reduction theorem

(Theorem 11) for our type system to the alternative rules, so our type system is

sound for both sets of rules.

2.3 Church–Rosser

The Church–Rosser (confluence) theorem for a reduction system states that for any

term, if the term can reduce to two different terms there exists a successor term such

that both of the two reduced terms can further reduce to that common successor.

A corollary of this is that a normal form is unique if it exists.

Theorem 1 (Church–Rosser)

For expressions E, F and G. If E →∗ F and E →∗ G then there is an expression H

such that F →∗ H and G→∗ H .

Proof

By the Diamond lemma (Lemma 7) and Lemma 3.2.2 of Barendregt (1981).

Lemma 2

If E → F and E has a certain structure then some conditions on the structure of F

hold, as made explicit below.

• If E = trust E1 → F then F = α F1 where α ∈ {check, trust, λx.}.
• If E = check E1 → F then F = α F1 where α ∈ {check, trust, λx.}.
• If E = distrust E1 → F then F is of the form distrust F1.

• If E = λx.E1 → F then F is of the form λx.F1.

Proof

In each case by inspection of the reduction rules.

Lemma 3 (Trust/Check Identity)

Let α ∈ {trust, check, λx.}. If E → α E1 then check E → α E1 and trust E → α E1

Proof

By inspection of the reduction rules, especially the contraction rules.
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Lemma 4 (Symmetry)

Let α, β ∈ {trust, distrust}. If α E → α E′ then β E → β E ′

Proof

By induction on the structure of the derivation of α E → α E′, verifying that in each

case there is also a corresponding rule for the opposite combination.

Lemma 5 (Pre-Substitution)

If E → F then G[E/x]→ G[F/x].

Proof

By induction on the structure of G. This is essentially a consequence of the (Sub)

rules and the first (Application) rule.

Lemma 6 (Substitution)

If E → F and G→ H then E[G/x]→ F[H/x].

Proof

By induction on the structure of the derivation of E → F . If F = E by the (Reflex)

axiom, we must show that E[G/x] → E[H/x] given that G → H . This is the

Pre-Substitution Lemma (5).

For all the rules except the (Application) case: Suppose that α, β, and γ are in the

set {check, trust, distrust, λx.} as appropriate, and β and γ may be empty as well.

Assume the rule

E1 → β F1

E = α E1 → γ F1 = F

is the last rule in the derivation of E → F . By the induction hypothesis we get

E1[G/x]→ (β F1)[H/x] = β(F1[H/x]).

Now E[G/x] = α E1[G/x] and F[H/x] = γ F1[H/x], and we may now deduce

E1[G/x]→ β F1[H/x]

α E1[G/x]→ γ F1[H/x]

as required. Of course, in the case of a lambda, if the bound variable is the one

substituted for, nothing happens during substitution, i.e.

E[G/x] = E → F = F[H/x]

as the only rule applicable to the case of α = λx. is the (Sub) rule.

The (Application) cases: If E = E1E2 → F1F2 = F , where E1 → F1 and E2 → F2

then the result follows directly from the induction hypothesis. Suppose the last rule

in the derivation of E → F was (x 6= y):

E1 → F1 E2 → F2

E = (λy.E1)E2 → F1[F2/y] = F

By the induction hypothesis E1[G/x]→ F1[H/x] and similarly for E2. Also E[G/x] =

(λy.E1[G/x])(E2[G/x]) and

F[H/x] = (F1[F2/y])[H/x] = (F1[H/x])[F2[H/x]/y]
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where the last equality depends upon y not being free in H . This can be assured by

α-renaming H . We may now deduce:

E1[G/x]→ F1[H/x] E2[G/x]→ F2[H/x]

(λy.E1[G/x])(E2[G/x])→ (F1[H/x])[F2[H/x]/y]

Suppose the last rule in the derivation of E → F was:

E1 → F1 E2 → F2

E = (λx.E1)E2 → F1[F2/x] = F

By the induction hypothesis, E2[G/x]→ F2[H/x]. Also E[G/x] = (λx.E1)(E2[G/x])

and

F[H/x] = (F1[F2/x])[H/x] = F1[F2[H/x]/x].

Now

E1 → F1 E2[G/x]→ F2[H/x]

(λx.E1)(E2[G/x])→ F1[F2[H/x]/x]

as required. Two similar cases apply to the distrust λx.E case.

Lemma 7 (Diamond )

For expressions E, F and G. If E → F and E → G then there is an expression H

such that F → H and G→ H .

Proof

By induction on the derivation of E → F and E → G and by cases on how F and

G must look depending on E.

Depending on E there are a number of applicable rules. In all cases (Reflex) and

(Sub) are applicable.

1. E = λx.E1: none other.

2. E = trust E1:

(a) E → trust E ′1 when E1 → trust E ′1. (Trust Contraction)

(b) E → λx.E ′1 when E1 → λx.E ′1. (Lambda Contraction)

(c) E → check E ′1 when E1 → check E ′1. (Check Contraction)

(d) E → trust E ′1 when E1 → distrust E ′1. (Distrust Contraction)

3. E = distrust E1:

(a) E → distrust E ′1 when E1 → trust E ′1. (Trust Contraction)

(b) E → distrust E ′1 when E1 → distrust E ′1. (Distrust Contraction)

4. E = check E1:

(a) E → trust E ′1 when E1 → trust E ′1. (Trust Contraction)

(b) E → check E ′1 when E1 → check E ′1. (Check Contraction)

(c) E → λx.E ′1 when E1 → λx.E ′1. (Lambda Contraction)

5. E = (λx.E1)E2: E → E ′1[E ′2/x] when E1 → E ′1 and E2 → E ′2.

6. E = (distrust λx.E1)E2: E → distrust E ′1[E ′2/x] when E1 → E ′1 and E2 → E ′2.
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If E → F or E → G by (Reflex) then there is no problem, one may just use the

rule applied in the other branch to get to the common successor. Case 1 is easy as

well: there is only one applicable rule except (Reflex) namely (Sub).

The tables below map pairs of ‘outgoing’ reductions to proofs of the corresponding

case.

Case 2 2a 2b 2c 2d (Sub)

2a B B C A

2b B C A

2c C A

2d D

Case 3 3a 3b (Sub)

3a G F

3b E

Case 4 4a 4b 4c (Sub)

4a B B A

4b B A

4c A

For Case 6 the argument is as follows: Here the last rules in the derivation of

E → F and E → G were:

E1 → F1 E2 → F2

E = (distrust λx.E1)E2 → distrust F1[F2/x] = F
(Application)

and

E1 → G1 E2 → G2

E = (distrust λx.E1)E2 → (distrust λx.G1)G2 = G
(Sub)

respectively. By the induction hypothesis there are H1 and H2 such that F1 → H1,

G1 → H1 and F2 → H2, G2 → H2. So by the Substitution lemma (Lemma 6) (and

(Sub)):

F = distrust F1[F2/x]→ distrust H1[H2/x] = H

and by (Application)

G = (distrust λx.G1)G2 → distrust H1[H2/x] = H.

Case 5 without distrust is similar.
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In each of the cases below, the quest is to find an appropriate common successor

H to F and G.

Case A. Let α ∈ {trust, check} and β ∈ {trust, check, λx.}. The last rules of the

derivation of E → F and E → G were

E1 → β F1

E = α E1 → β F1 = F
(β Contraction)

E1 → G1

E = α E1 → α G1 = G
(Sub)

By the induction hypothesis there is an H1 such that G1 → H1 and β F1 → H1. By

Lemma 2 and the restriction on β; H1 = γ H2 where γ ∈ {trust, check, λx.}. By the

Trust/Check Identity lemma (Lemma 3), G1 → γ H2 implies that α G1 → γ H2 = H1.

So we can use H = H1.

Case B. Let α, β, γ ∈ {trust, check, λx} as appropriate. The last rules used in the

derivation of E → F and E → G are:

E1 → β F1

E = α E1 → β F1 = F
(β Contraction)

E1 → γ G1

E = α E1 → γ G1 = G
(γ Contraction)

By the induction hypothesis there is an H1 such that β F1 → H1 and γ G1 → H1.

We may now use H1 as H .

Case C. Let α ∈ {trust, check, λx.}. The two last rules used in the derivation of

E → F and E → G are:

E1 → α F1

E = trust E1 → α F1 = F
(α Contraction)

E1 → distrust G1

E = trust E1 → trust G1 = G
(Distrust Contraction)

By the induction hypothesis we know there exists H1 such that α F1 → H1. Here

Lemma 2 says that H1 = β H2 where β ∈ {check, trust, λx.}. Also by the in-

duction hypothesis we have distrust G1 → H1. And here Lemma 2 says that

H1 = distrust H2! This is a contradiction so it cannot be the case that both

E1 → α F1 and E1 → distrust G1.

Case D. The two last rules used in the derivation of E → F and E → G are:

E1 → distrust F1

E = trust E1 → trust F1 = F
(Distrust Contraction)
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E1 → G1

E = trust E1 → trust G1 = G
(Sub)

By the induction hypothesis there is an H1 such that distrust F1 → H1 and G1 → H1.

By Lemma 2 H1 = distrust H2 so

G1 → distrust H2

trust G1 → trust H2

(Distrust Contraction)

By Symmetry (Lemma 4) distrust F1 → distrust H2 implies trust F1 → trust H2. So

we can use trust H2 as H .

Case E. The two last rules used in the derivation of E → F and E → G are:

E1 → distrust F1

E = distrust E1 → distrust F1 = F
(Distrust Contraction)

E1 → G1

E = distrust E1 → distrust G1 = G
(Sub)

By the induction hypothesis there is an H1 such that distrust F1 → H1 and G1 → H1.

By Lemma 2 H1 = distrust H2. By (Distrust Contraction) G1 → distrust H2 implies

distrust G1 → distrust H2 = H1. So we use H = H1 in this case.

Case F. The two last rules used in the derivation of E → F and E → G are:

E1 → trust F1

E = distrust F1 → distrust F1 = F
(Trust Contraction)

E1 → G1

E = distrust E1 → distrust G1 = G
(Sub)

By the induction hypothesis there is an H1 such that trust F1 → H1 and G1 → H1.

By Lemma 2 H1 = α H2 where α ∈ {trust, check, λx.}.
If α = trust then we have G1 → trust H2 and trust F1 → trust H2 and by Symmetry

distrust F1 → distrust H2. By (Trust Contraction) we also get distrust G1 →
distrust H2, so here we may use H = distrust H2.

If α = check or α = λx. then by (Sub) we get distrust G1 → distrust (α H2). Since

trust F1 → α H2 one sees by inspection of the rules that for each α there is just one

possible last rule for this reduction so we must have F1 → α H2. Now by (Sub) we

get distrust F1 → distrust (α H2). So here we may use H = distrust (α H2).

Case G. The two last rules used in the derivation of E → F and E → G are:

E1 → distrust F1

E = distrust E1 → distrust F1 = F
(Distrust Contraction)

E1 → trust G1

E = distrust E1 → distrust G1 = G
(Trust Contraction)
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D = (((D → D)⊕ base)⊗ {tr, dis}⊥)⊕ {error}⊥.
Env = Var → D.

[[·]] ∈ Exp→ Env → D

E, F ∈ Exp

x ∈ Var

ρ ∈ Env.

Fig. 5. Domain equations.

By the induction hypothesis there is anH1 such that distrust F1 → H1 and trust G1 →
H1, but by Lemma 2 this is a contradiction so this case cannot arise.

This concludes the proof of the Diamond lemma.

2.4 Denotational semantics

In this section we give a denotational semantics for the calculus and prove it sound

with respect to the calculus. Some readers may find the direct style denotational

semantics easier to comprehend than the reduction rules. However, as we saw in

the section on the nature of check, the reduction rules are easy to alter to get a

different, but justifiable, semantics of check, whereas the denotational semantics for

the alternative set of rules would be substantially different, as we would have to

abandon the direct style and instead use a continuation based semantics.

In figure 5 we define our semantic domains, using coalesced sums and smash

products. A value is either error (standing for a semantic error) or a pair consisting

of the ‘real’ value (a function or a value of base-type from the base domain) and a

trust tag, either tr or dis. The domain {tr, dis}⊥ is the usual flat three-point domain

where ⊥ is the bottom element. For the definition of application we define another

ordering between tr and dis, namely: tr ≤ dis. We denote by ∨ the least upper

bound according to this ordering.

The semantic equations are given in figure 6. We employ a pattern matching case

construct in the semantic description language.

Lemma 8 (Environment)

For expressions E and F and environment ρ we have:

[[E[F/x]]]ρ = [[E]]ρ[x 7→ [[F]]ρ].

Proof

By structural induction on E.

The connection between the operational calculus and the denotational semantics

is the following soundness theorem:

Theorem 9 (Semantic soundness)

The denotation of an expression is invariant under reduction: If E → F then

[[E]] = [[F]].
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[[x]]ρ = ρ(x)

[[λx.E]]ρ = 〈(λd : D. case [[E]]ρ[x 7→ d] of

| error→ error

| 〈v, t〉 → 〈v, t〉), tr〉

[[EF]]ρ = case [[E]]ρ of

| error→ error

| 〈v, t〉 → case v([[F]]ρ) of

| error→ error

| 〈v′, t′〉 → 〈v′, t ∨ t′〉

[[trust E]]ρ = case [[E]]ρ of

| error→ error

| 〈v, t〉 → 〈v, tr〉

[[distrust E]]ρ = case [[E]]ρ of

| error→ error

| 〈v, t〉 → 〈v, dis〉

[[check E]]ρ = case [[E]]ρ of

| error→ error

| 〈v, tr〉 → 〈v, tr〉
| 〈v, dis〉 → error.

Fig. 6. Semantic equations.

u, v, w ::= dis | tr
τ, σ ::= tu

s, t ::= base | τ→ σ.

Fig. 7. Syntax of trust-types

Proof

By induction on the derivation of E → F, applying the equational theory of the

semantic description language and using Lemma 8 in the application case.

3 The type system

Our annotated type system is based on Currys monomorphic type system for the

λ-calculus, also known as simply typed λ-calculus. Figure 7 shows the mutually

recursive definition of the syntax of our types. Recall from section 1.1 that tr means

that the value is trusted and dis means that it is untrusted.

We write u, v or w (and primed and subscripted versions thereof) for trust

annotations, s and t for bare types without their outermost annotation, and σ

or τ for annotated types. The generic term ‘type’ will be used both for bare types

without their outermost annotation and for annotated types.

Just as was the case in the denotational semantics, trust annotations are subject
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A ` x : τ if x ∈ dom(A) and A(x) = τ (Var)

A ` E : τ τ ≤ τ′
A ` E : τ′

(Sub)

A[x 7→ τ] ` E1 : σ

A ` λx.E1 : (τ→ σ)tr
(Lambda)

A ` E1 : (τ→ tu)w A ` E2 : τ

A ` E1E2 : tu∨w
(App)

A ` E1 : tu

A ` trust E1 : ttr
(Trust)

A ` E1 : tu

A ` distrust E1 : tdis (Distrust)

A ` E1 : ttr

A ` check E1 : ttr
(Check)

Fig. 8. The type system.

to a partial ordering ≤, defined as the least partial ordering including the relation

tr ≤ dis. This ordering is extended to bare types and annotated types such that two

bare base-types are ordered only if they identical; for annotated types we have:

tu ≤ sv if and only if u ≤ v and t ≤ s,

and for bare arrow types we define:

τ→ σ ≤ τ′ → σ′ if and only if τ′ ≤ τ and σ ≤ σ′,

so argument types are ordered contravariantly. This is inspired by the work on

structural subtyping by Mitchell (1984), Fuh and Mishra (1990), Cardelli (1984) and

others.

As in the denotational semantics, we denote by ∨ the least upper bound operation

on the trust lattice according to the ≤ ordering. In section 5 we discuss several

extensions of the type system to cope with recursion, modules, polymorphism and

more general lattices of annotations.

3.1 Rules

A type assumption A is a partial function which takes a program identifier to an

annotated type τ. Figure 8 shows the inference rules for the type system. A type

judgment A ` E : τ means that from the assumptions A we can deduce that the

expression E has type τ.

The rule for variables and the subtyping rule should give no surprises. Since

lambda abstractions in the program are written by the programmer, we treat them
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distrust ◦ check : ttr → tdis

trust: tdis → ttr

check: ttr → ttr distrust: tdis → tdis

Fig. 9. The relationship between arrow types

as trusted in the type system. This only means that the function is trusted, and

does not indicate how its argument and result are treated. In section 5 we discuss

how this can be extended to a larger scale setting with multiple modules written by

multiple programmers.

In the application rule, the annotated type of the actual argument is required to

match the annotated type of the formal argument. This includes the trustworthiness.

The trust of the result of the application is the least upper bound of the result-trust

from the arrow type and the trust of the function itself. The intuition is that if we

cannot trust the function, we cannot trust the result of applying it.

The three rules for trust, distrust and check show that they behave as the identity

on the underlying type. Trust makes any value trusted and distrust makes any value

untrusted. Check E has a type only if E is trusted. This means that we cannot

type improper normal forms and together with Subject Reduction (Theorem 11) this

ensures the soundness of the type system.

Figure 9 shows the ordering of arrow types and how the constructs trust, distrust

and check would fit into it.

3.2 Subject reduction

An important part in proving the Subject Reduction theorem is that replacing an

appropriately typed term for a variable in an expression does not change the type

of the expression.

Lemma 10 (Substitution)

If A[x 7→ σ] ` E : τ and A ` F : σ then A ` E[F/x] : τ.

Proof

By induction on the derivation of A[x 7→ σ] ` E : τ.

The main result of this section is the Subject Reduction theorem. The theorem

states that types are invariant under reduction.

Theorem 11 (Subject Reduction)

If A ` E : τ and E → F then A ` F : τ.

Proof

By induction on the structure of the derivation of E → F and by cases on the

structure of E. The (Reflex) case is trivial. In the (Sub) cases the result follows

directly from the induction hypothesis. The type rule (Sub) is applicable in all cases,
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so when reasoning ‘backwards’ (as in ‘when α E has type τ then E must have type

σ’) we must take care to handle the case where the (Sub) type rule was used in

between.

For the contraction rules we show just two illustrative cases, the remaining cases

are extremely similar. Suppose the last rule used in the derivation of E → F was

E1 → trust F1

E = trust E1 → trust F1 = F
(Trust Contraction)

By assumption we have A ` trust E1 : tu so by the rules we must have A ` E1 : tu1

1

where t1 ≤ t. By the induction hypothesis we now get A ` trust F1 : tu1

1 and again

we must have A ` F1 : tu2

2 where t2 ≤ t1. Now by the (Trust) rule of the type system

we get A ` trust F1 : ttr2 and finally by (Sub) we get A ` trust F1 : tu as required.

Another case: Suppose the last rule used in the derivation of E → F was

E1 → distrust F1

E = distrust E1 → distrust F1 = F
(Distrust Contraction)

By assumption we know A ` distrust E1 : tu and therefore u = dis, so by the rules

we must have A ` E1 : tu1

1 where t1 ≤ t. From the induction hypothesis we get

A ` distrust F1 : tu1

1 . By the (Distrust) rule we must have A ` F1 : tu2

2 where t2 ≤ t1
and u1 = dis. By the (Distrust) rule we now get A ` distrust F1 : tdis

2 which via

(Sub) yields the required result.

Regarding application: If E = E1E2 → F1F2 = F then the result follows by two

applications of the induction hypothesis. If the last rule used in the derivation of

E → F was

E1 → F1 E2 → F2

E = (distrust(λx.E1))E2 → distrust F1[F2/x] = F
(Application)

then by assumption A ` (distrust(λx.E1))E2 : tu. By definition of the type rules this

must mean that A ` distrust(λx.E1) : (σ → sv)w and A ` E2 : σ where s ≤ t and

v ∨ w ≤ u. Again, we must also have A ` λx.E1 : (σ1 → sv1

1 )w1 and it must be case

that w = dis and thus u = dis. Also s1 ≤ s, v1 ≤ v, and σ ≤ σ1. Once again by the

type rules we must have A[x 7→ σ2] ` E1 : sv2

2 where σ1 ≤ σ2, s2 ≤ s1 and v2 ≤ v1. By

the (Sub) rule we get A ` E2 : σ2.

We can now apply the induction hypothesis to get A[x 7→ σ2] ` F1 : sv2

2 and

A ` F2 : σ2. By the Substitution lemma (Lemma 10) we then get A ` F1[F2/x] : sv2

2 .

By the (Distrust) rule we get A ` distrust F1[F2/x] : sdis
2 and by (Sub) we get the

desired result as s2 ≤ s1 ≤ s ≤ t.
The case without distrust is similar.

3.3 Comparison with the Curry system

Our type system may be viewed as a restriction of the classic Curry type system for

λ-calculus. This notion is formalized in the following. Define the erasure | · | of a
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A `C x : t if x ∈ dom(A) and A(x) = t

A[x 7→ s] `C E1 : t

A `C λx.E1 : s −→ t

A `C E1 : s −→ t A `C E2 : s

A `C E1E2 : t

Fig. 10. The Curry type system.

term as:

|x| = x |λx.E| = λx.|E|
|E1E2| = |E1||E2| |trust E| = |E|
|distrust E| = |E| |check E| = |E|

and likewise the erasure of an annotated type as:

|baseu| = base |(σ → τ)w| = |σ| −→ |τ|.

The notion of erasure is extended pointwise to environments: |A|(x) = |t| if and only

if |A(x)| = t.

The Curry type rules for erased expressions are defined in figure 10. Here type

assumptions A map program identifiers to Curry types.

Lemma 12 (Erasure)

If σ and τ are annotated types and σ ≤ τ then |σ| = |τ|.

Proof

For base-types su ≤ tv implies s = t. For arrow types note that by definition of ≤, σ

and τ must have the same arrow structure. So the result follows by an induction on

the common structure of σ and τ.

Theorem 13

If A ` E : τ then |A| `C |E| : |τ|.

Proof

By induction on the derivation of A ` E : τ.

E = x: By assumption we have x ∈ dom(A) and τ = A(x). Thus x ∈ dom(|A|) and

|A|(x) = |τ|.
E = α E1: Here α ∈ {trust, distrust, check}. By the definition of erasure, |E| = |E1|

and the result follows from the induction hypothesis.

E = λx.E1: By assumption we must have A[x 7→ σ] ` E1 : σ′ where (σ → σ′)tr ≤ τ.
By the induction hypothesis |A|[x 7→ |σ|] `C |E1| : |σ′|. By the lambda rule in

the Curry system we get |A| `C λx.|E1| : |σ| −→ |σ′|. By definition of erasure

and the Erasure lemma we get the desired result.

E = E1E2: By assumption we must have A ` E1 : (σ → tu)w and A ` E2 : σ

where tu∨w ≤ τ. From the induction hypothesis we get |A| `C |E1| : |σ| −→ |tu|
and |A| `C E2 : |σ|. By the application rule in the Curry system we get

|A| `C |E1E2| : |tu|. Finally by the Erasure lemma we get the desired result.
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E → E (Reflex)
E → E ′

λx.E → λx.E ′
(Sub)

E → E ′ F → F ′

EF → E ′F ′

(λx.E)F → E ′[F ′/x]

(Application)

Fig. 11. Reductions in the ordinary λ-calculus.

The preceding theorem also implies that the erasure of a trust-typable program

is trust-typeable, but the reverse does not hold in general. However, if there are no

sub-terms of the form check E in a program and the erasure of the program is

Curry typable then the program is trust-typable and all the trusts may be chosen as

dis. The formalisation of this and its simple proof has been elided from the paper

as it will not be used in the following.

3.4 Simulation

The aim of this section is to show that for well-typed terms one may erase all

the trust, distrust and check constructs and reduce expressions according to the

ordinary λ-calculus as displayed in figure 11 (this is taken from Definition 3.2.3

in (Barendregt, 1981).) We use the same symbol for this reduction relation as for

our own and it will be clear from the context which reduction relation is meant.

Note that the relation defined in figure 11 is a sub-relation of the reduction relation

defined in figure 3.

More formally, the two following simulation theorems show that for well-typed

terms, reduction and erasure commute: | · |◦ →∗ = →∗ ◦| · |.
In terms of implementation, this means that after type-checking, an interpreter

may erase all the constructs having to do with trust, and run the program without

them, thus no run-time performance penalty is paid.

Lemma 14 (Step)

If E →∗ α F (α may be empty) and there is a reduction rule

E1 → α F1

β E1 → γ F1

then β E →∗ γ F .

Proof

By induction on the length of the sequence E →∗ α F . If E = α F then by (Reflex)

we have E → α F and we may apply the rule to get β E → γ F and since →⊆→∗
this is the required result.

Otherwise the last step in the reduction sequence E →∗ α F must look like

E ′ → α F , where E →∗ E ′ and E ′ 6= α F . Now we apply the rule mentioned in the
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statement of the lemma:

E′ → α F

β E ′ → γ F

By the induction hypothesis one gets (via the (Sub) rule and using β for γ): E →∗ E ′
implies β E →∗ β E ′. By appending the two reductions we get β E →∗ γ F as we

wanted. In effect we get this derived rule:

E1 →∗ α F1

β E1 →∗ γ F1

Similarly, from

E → G F → H

EF → GH
we get

E →∗ G F →∗ H
EF →∗ GH

Some notation: We write E0 = CTD∗F to mean that E0 is produced by the

following grammar, where F is an ordinary term.

E0 ::= check E0 | trust E0 | distrust E0 | F

We also write distrust? E to mean either E or distrust E.

Lemma 15 (CTD)

If E = CTD∗(λx.E1), A ` E : τ and E1 →∗ F1 then E →∗ distrust? (λx.F1).

Proof

By induction on the length of the CTD sequence. Suppose that

CTD∗λx.E1 = (α (β . . . (λx.E1) . . .)).

In the base case (the empty sequence) E1 →∗ F1 implies (via Sub and Step) that

λx.E1 →∗ λx.F1.

Otherwise, there are two cases depending on whether (β . . .) reduces to a lambda

or a distrusted lambda.

Suppose that (β . . .) →∗ λx.F1 by the induction hypothesis then via the Step

lemma and (Lambda Contraction):

α = trust: (trust (β . . .))→∗ λx.F1.

α = distrust: (distrust (β . . .))→∗ distrust λx.F1.

α = check: (check (β . . .))→∗ λx.F1.

Finally, suppose that (β . . .) →∗ distrust λx.F1 by the induction hypothesis then

via the Step lemma and (Distrust Contraction):

α = trust: (trust (β . . .)) →∗ trust λx.F1 and via a (Lambda Contraction) step:

trust λx.F1 → λx.F1.

α = distrust: (distrust (β . . .))→∗ distrust λx.F1.

α = check: As E is well-typed this case cannot occur since check(distrust E1) is

untypable.
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Theorem 16 (Simulation 1 )

If A ` E : τ and |E| → F then there is a term G such that E →∗ G and |G| = F .

Graphically:

E G

|E| F

| · |

→

→∗

| · |

Proof

By structural induction on E.

E = x: Here |E| = E and the only applicable rule is (Reflex), thus we get E = F = G.

E = α E1, where α ∈ {trust, distrust, check}. Here we have |E| = |E1|, A ` E1 : τ′

and |E| = |E1| → F . So by the induction hypothesis there is a G1 such that

E1 →∗ G1 and |G1| = F . By the Step lemma we can deduce:

E1 →∗ G1

E = α E1 →∗ α G1 = G
(Sub)

and the erasure of G is F as required.

E = λx.E1: By the assumptions we must have A[x 7→ σ] ` E1 : σ′. Also, |E| =

λx.|E1| and F = λx.F1. By the nature of the reduction rules, we must have

|E1| → F1. By the induction hypothesis we know there is a G1 such that

E1 →∗ G1 and |G1| = F1. By the (Sub) rule and the Step lemma we get

E1 →∗ G1

E = λx.E1 →∗ λx.G1 = G
(Sub)

and |G| = λx.|G1| = λx.F1 = F as required.

E = E1E2: By the assumptions E is well-typed thus E1 and E2 are well-typed. By

definition of the reduction rules we must have |E1| → F1 and |E2| → F2. By

the induction hypothesis we get G1 and G2 such that E1 →∗ G1, E2 →∗ G2,

|G1| = F1 and |G2| = F2.

There are two cases depending on the form of |E|:
|E| = not a β-redex: Here F = F1F2 where |E1| → F1 and |E2| → F2 so by the

reasoning above |G1G2| = F and we are done.

|E| = (λx.H1)H2: If F = (λx.F ′1)F2 where H1 → F ′1 and H2 → F2 then also

|E1| = λx.H1 → λx.F ′1 = F1 by (Sub). By the above statements and the Step

lemma we get E →∗ G1G2 and |G1G2| = F .

Otherwise a β-reduction happens. Here H1 → F ′1, H2 → F2 and F =

F ′1[F2/x].

Clearly, E1 must have form CTD∗(λx.Q1) where |Q1| = H1. By the induction

hypothesis there is a Q′1 such that Q1 →∗ Q′1 and |Q′1| = F ′1.

By the CTD lemma E1 →∗ distrust? (λx.Q′1) and by the Subject Reduction

theorem (Theorem 11) we get that distrust? (λx.Q′1) is well-typed.
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We may now reason as follows:

E1 →∗ distrust? (λx.Q′1) E2 →∗ G2

E1E2 →∗ (distrust? (λx.Q′1))G2

(Sub + Step)

and

Q′1 → Q′1 G2 → G2

(distrust? (λx.Q′1))G2 → distrust? Q′1[G2/x]
(Application)

since |Q′1| = F ′1 and |G2| = F2:

|distrust? Q′1[G2/x]| = |Q′1[G2/x]| = F ′1[F2/x] = F

as required.

This concludes the proof of the Simulation theorem.

Theorem 17 (Simulation 2 )

If E → F then |E| → |F |.

Proof

By induction on the derivation of E → F .

• If E → F by (Reflex) then |E| = |F | and the result holds trivially.

• If E → F by the (Sub) rule. The subterm(s) Ei of E then must reduce Ei → Fi
and by the induction hypothesis |Ei| → |Fi|. We may now apply the (Sub) rule

to these erased terms and get |E| → |F |.
• Let α, β, γ ∈ {trust, distrust, check}. If the last rule in the derivation of E → F

was

E1 → α F1

E = β E1 → γ F1 = F
(α-Contraction)

then |E| = |E1| and |F | = |F1|. By the induction hypothesis we know |E1| → |F1|
which is the desired result.

• If the last rule used in the derivation of E → F was

E1 → λx.F1

E = α E1 → λx.F1 = F
(Lambda Contraction)

where α ∈ {trust, check} then by the induction hypothesis we get |E1| → λx.|F1|
and since |E| = |E1| and |F | = λx.|F1| this is the desired result.

• If the last rule used in the derivation of E → F was

E1 → F1 E2 → F2

E = (distrust λx.E1)E2 → distrust F1[F2/x] = F
(Application)

We have |E| = (λx.|E1|)|E2| and |F | = |F1|[|F2|/x]. By the induction hypothesis

|E1| → |F1| and |E2| → |F2|. We may now apply the (Application) rule to get

the desired result. The case for the trusted lambda is similar.
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Well-typed terms in our extended calculus are strongly normalizing, that is: If

A ` E : τ then there is a normal form G such that E → G. This is proved by

an argument using Theorem 13, Strong Normalization for Curry typed λ-calculus,

Theorem 1 and the two simulation theorems.

4 Type inference

The type inference problem is:

Given an untyped program E possibly with trust, distrust, and check expressions in it, is

E typable? If so, annotate it.

From Theorem 13 we have that trust typing implies Curry typing. Our type

inference algorithm works by first checking if the program has a Curry type and

then checking a condition that only involves trust values.

4.1 Constraints

The type inference problem can be rephrased in terms of solving a system of

constraints.

Definition 18

Given two disjoint denumerable sets of variables Vy and Vr , a T-system is a pair

(C,D) where:

• C is a finite set of inequalities X ≤ X ′ between constraint expressions, where

X and X ′ are of the forms V or VW1

1 → VW2

2 , and where V1, V2 ∈ Vy and

W1,W2 ∈ Vr .

• D is a finite set of constraint of the forms W ≤W ′, W = tr or W = dis, where

W,W ′ ∈ Vr .

A solution for a T-system is a pair of maps (δ, ϕ), where δ maps variables in Vy to

types without their outermost annotation, and where ϕ maps variables in Vr to trusts,

such that all constraints are satisfied. If ϕ satisfies all constraints in D, we say that D

has solution ϕ.

Given a λ-term E, assume that E has been α-converted so that all bound variables

are distinct. Let Vy be the set consisting of:

• A variable [[F]]y for each occurrence of a subterm F of E; and

• A variable xy for each λ-variable x occurring in E.

The notation [[F]]y is ambiguous because there may be more than one occurrence

of F in E. However, it will always be clear from context which occurrence is meant.

Intuitively, [[F]]y denotes the type of F after the use of subsumption. Moreover, xy
denotes the type assigned to the bound variable x.

Let Vr be the set consisting of:

• A variable [[F]]r for each occurrence of a subterm F of E; and

• A variable xr for each λ-variable x occurring in E.
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• A variable 〈GH〉r for each occurrence of an application GH in E.

As before, the notation [[F]]r is ambiguous. Intuitively, [[F]]r denotes the trust value

of F after the use of subsumption. Moreover, xr denotes the trust value assigned to

the bound variable x. Finally, 〈GH〉r denotes the trust value of GH before the use

of subsumption.

From the λ-term E, we generate the T-system (C,D) where:

For each

occurrence in E We have in C We have in D

x xy ≤ [[x]]y xr ≤ [[x]]r

λx.F xxry → [[F]][[F]]r
y ≤ [[λx.F]]y

GH [[G]]y ≤ [[H]][[H]]r
y → [[GH]]〈GH〉ry

[[G]]r ≤ [[GH]]r
〈GH〉r ≤ [[GH]]r

trust F [[F]]y ≤ [[trust F]]y

distrust F [[F]]y ≤ [[distrust F]]y [[distrust F]]r = dis

check F [[F]]y ≤ [[check F]]y [[F]]r = tr

Denote by T (E) the T-system of constraints generated from E in this fashion.

The solutions of T (E) correspond to the possible type annotations of E in a sense

made precise by Theorem 21.

Let A be a trust-type environment. If δ is a function assigning types to variables

in Vy and ϕ a function assigning trusts to variables in Vr , we say that (δ, ϕ) extend

A if for every x in the domain of A, we have A(x) = δ(xy)
ϕ(xr).

As a shorthand in the following, we write (δ, ϕ) |= (C,D) to mean that (δ, ϕ) is a

solution to the constraints (C,D). Define also, for two functions δ and δ′ agreeing

on dom(δ)∩ dom(δ′), δ+ δ′ as the unique function on dom(δ)∪ dom(δ′) that agrees

with the two functions on their respective domains.

Lemma 19 (Soundness)

If (δ, ϕ) |= T (E), and δ, ϕ extend A then A ` E : δ([[E]]y)
ϕ([[E]]r).

Proof

By induction on the structure of E.

Lemma 20 (Completeness)

If A ` E : tu then there is a solution (δ, ϕ) |= T (E) with δ and ϕ extending A, and

δ([[E]]y) = t and ϕ([[E]]r) = u.

Proof

By induction on the derivation of A ` E : tu.
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E = x: As A ` x : tu we must have x ∈ dom(A), A(x) = sv and s ≤ t, v ≤ u. In

this case T (E) = {xy ≤ [[x]]y, xr ≤ [[x]]r}. Put δ(xy) = s and ϕ(xr) = v so that

(δ, ϕ) extends A. Finally assign δ([[x]]y) = t and ϕ([[x]]r) = u to satisfy the

constraints.

E = λx.F: By the type rules we must have A[x 7→ σ] ` F : sv where σ → sv ≤ t.

By the induction hypothesis we get (δ, ϕ) |= T (F), δ([[F]]y) = s, ϕ([[F]]r) = v,

and (δ, ϕ) extends A[x 7→ σ]. Now assign δ′ = δ[[[λx.F]]y 7→ t] and ϕ′ =

ϕ[[[λx.F]]r 7→ u]. Now check that σ → sv ≤ t implies

δ′(xy)
ϕ′(xr) → δ′([[F]]y)

ϕ′([[F]]r) ≤ δ′([[λx.F]]y)

as required. So we get (δ′, ϕ′) |= T (E).

E = GH: By the type rules we must have A ` G : (σ → sv)w , A ` H : σ where

s ≤ t and v ∨ w ≤ u. By the induction hypothesis we get (δ, ϕ) |= T (G) and

(δ′, ϕ′) |= T (H) and both solutions extending A which means that they agree

on their common domain (the xy ’s and the xr ’s in dom(A)). The definition of

T (E) says

T (E) = T (G) ∪ T (H) ∪ ({[[G]]y ≤ [[H]][[H]]r
y → [[GH]]〈GH〉ry },

{[[G]]r ≤ [[GH]]r, 〈GH〉r ≤ [[GH]]r}) .

Define δ′′ = δ + δ′[[[GH]]y 7→ t] and ϕ′′ = ϕ + ϕ′[[[GH]]r 7→ u, 〈GH〉r 7→ v].

Now, (δ′′, ϕ′′) |= T (E) because

δ([[G]]y) ≤ σ → tv = δ′([[H]]y)
ϕ′([[H]]r) → δ′′([[GH]]y)

ϕ′′(〈GH〉r)

ϕ([[G]]r) = w ≤ u = ϕ′′([[GH]]r)

ϕ′′(〈GH〉r) = v ≤ u = ϕ′′([[GH]]r) .

and clearly (δ′′, ϕ′′) extend A.

E = check F: From the type rules we must have A ` F : str where s ≤ t. By the in-

duction hypothesis we get (δ, ϕ) |= T (F), δ([[F]]y) = s, and ϕ([[F]]r) = tr. Now,

T (E) = T (F)∪({[[F]]y ≤ [[check F]]y}, {[[F]]r = tr}). Put δ′ = δ[[[check F]]y 7→
t] and ϕ′ = ϕ[[[check F]]r 7→ u].

Clearly, δ′, ϕ′ extend A, δ′([[F]]y) ≤ δ′([[check F]]y), and ϕ′([[F]]r) = tr as

required. The cases for trust and distrust are very similar.

Theorem 21

The judgment A ` E : tu is derivable if and only if there exists a solution (δ, ϕ) of

T (E) with (δ, ϕ) extending A such that δ([[E]]y) = t and ϕ([[E]]r) = u. In particular,

if E is closed, then E is typable with type t and trust u if and only if there exists a

solution (δ, ϕ) of T (E) such that δ([[E]]y) = t and ϕ([[E]]r) = u.

Proof

Combine Lemma 19 and 20.
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4.2 Algorithm

Definition 22

Given a T-system (C,D), define the deductive closure (C̄, D̄) to be the smallest T-

system such that:

• C ⊆ C̄ .

• D ⊆ D̄.

• If VW1

1 → VW2

2 ≤ VW3

3 → VW4

4 is in C̄ , then V3 ≤ V1 and V2 ≤ V4 are in C̄ , and

W3 ≤W1 and W2 ≤W4 are in D̄.

• If X1 ≤ X2 and X2 ≤ X3 are in C̄ , then X1 ≤ X3 is in C̄ .

Lemma 23

(C,D) and (C̄, D̄) have the same solutions.

Proof

Since C ⊆ C̄ and D ⊆ D̄, any solution of (C̄, D̄) is also a solution of (C,D). The

converse can be proved by induction on the construction of (C̄, D̄).

If we remove all mentioning of trust and subtyping from the type rules in figure 8

and from the constraints defined earlier in this section, we obtain two equivalent

formulations of Curry typability (Palsberg and Schwartzbach, 1995). Clearly, E is

Curry typable if and only if |E| is Curry typable. The constraint system (written out

below) that expresses Curry typability will be denoted Curry(E).

For each

occurrence in E We have in Curry(E)

x xy = [[x]]y

λx.F [[λx.F]]y = xy → [[F]]y

GH [[G]]y = [[H]]y → [[GH]]y

trust F [[trust F]]y = [[F]]y

distrust F [[distrust F]]y = [[F]]y

check F [[check F]]y = [[F]]y

To aid the definition of our type inference algorithm we define the following

operations: If s, t are bare trust types such that |s| = |t|, then define the operators

t|s| and u|t| as follows:

s t|s| t =


base if s = t = base

(s1 u|s1| t1)u1uv1 → (s2 t|s2| t2)u2tv2 if s = su1

1 → su2

2

and t = tv1

1 → tv2

2
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s u|s| t =


base if s = t = base

(s1 t|s1| t1)u1tv1 → (s2 u|s2| t2)u2uv2 if s = su1

1 → su2

2

and t = tv1

1 → tv2

2

If t1, . . . , tn are bare trust types, and s is a Curry type such that |ti| = s for all i ∈ 1..n,

then define
⊔s
i ti = t1 ts . . . ts tn. If t is a Curry type, define

small(base) = base big(base) = base

small(s→ t) = big(s)dis → small(t)tr big(s→ t) = small(s)tr → big(t)dis

If s is a bare trust type and t is a Curry type such that |s| = t, then stt small(t) = s

and s ut big(t) = s. In other words, small(t) is the least bare type with erasure t.

For each constraint expression X define

L(C,X) = {VW1

1 → VW2

2 | VW1

1 → VW2

2 ≤ X is in C̄}

Intuitively, L(C,X) is the set of syntactic lower bounds for X.

We also define the erasure of a constraint expression used in C , mapping trust-type

constraint expressions to Curry constraint expressions:

|V | = V

|VW1

1 → VW2

2 | = V1 → V2

where V1, V2 ∈ Vy and W1,W2 ∈ Vr .

Lemma 24

If T (E) = (C,D), and ψ is a solution to Curry(E), and X1 ≤ X2 is a constraint in

C̄ , then ψ(|X1|) = ψ(|X2|).

Proof

By induction on the construction of C̄ .

Theorem 25

Suppose T (E) = (C,D). Then T (E) is solvable if and only if E is Curry typable and

D̄ is solvable.

Proof

Suppose first that T (E) is solvable. By Theorem 21, E is trust typable. It follows from

Theorem 13 and the remark above that E is Curry typable, and from Lemma 23

that D̄ is solvable.

For the reverse implication, suppose that Curry(E) has solution ψ and that D̄ has

solution ϕ. We define δ inductively in the Curry types of the constraint variables.

δ(V ) = if ψ(|V |) = base then base

else let {VW1i
1i → V

W2i
2i } = L(C, V ) ∪ {small(ψ(|V |))}

in
⊔

i
ψ(|V |)(δ(V1i)

ϕ(W1i) → δ(V2i)
ϕ(W2i))

To see that δ is well-defined, we need that the Curry types of the variables V1i and

V2i are of strictly less size than the Curry type of V . For (VW1i

1i → VW2i

2i ) ∈ L(C, V ),

we get by Lemma 24 that ψ(|VW1i

1i → VW2i

2i |) = ψ(|V |) = s → t for some s, t. This

means that ψ(|V1i|) = s and ψ(|V2i|) = t which are both of smaller size than s → t,

so δ is well-defined.
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To see that (δ, ϕ) is a solution of T (E), consider an inequality X1 ≤ X2 in C . If

ψ(|X1|) = base, then by Lemma 24, ψ(|X2|) = base, δ(X1) = δ(X2) = base, thus

δ(X1) ≤ δ(X2) as required.

In case ψ(|X1|) = s→ t, we have by Lemma 24 that ψ(|X2|) = s→ t and since C̄

is transitively closed we get L(C,X1) ⊆ L(C,X2) so δ(X1) ≤ δ(X2) as required.

Using the characterization of Theorem 25, we get a type inference algorithm:

Input: A λ-term E of size n.

1. Construct T (E) = (C,D) (in log space).

2. Close (C,D), yielding (C̄, D̄) (in O(n3) time, see, for example,

Palsberg, 1995).

3. Check if E is Curry typable (in O(n) time).

4. Check if D̄ is solvable (in O(n2) time).

5. If E is Curry typable and D̄ is solvable,

then output ‘typable’

else output ‘not typable’.

The entire algorithm requires O(n3) time. To construct an annotation of a typable

program, we can use the construction of the second half of the proof of Theorem 25.

5 Extensions

In this section we discuss several possible extensions of the type system.

Recursion. The type system can be extended to handle recursion by adding a rec

rule. In the (untyped) reduction system, the rec combinator can be coded with the

classical Y combinator: rec x.E ≡ Y(λx.E). The following reduction rule is a derived

rule in the λ-calculus and in our system, and correspondingly we would have a rec

rule in the type system:

E →∗ F
YE →∗ F(YE)

A[x 7→ τ] ` E1 : τ

A ` rec x.E1 : τ

Subject Reduction still holds, but Strong Normalization of course fails in this case.

The type inference algorithm can also be extended in a straightforward way to deal

with the rec construct.

Polymorphism. ML style let polymorphism can be achieved in the usual way by

replacing let bound variables with their definition. This is of course inefficient as

each definition might then be type-checked many times. The type system can be

extended along the same ideas that extend Curry types to Hindley–Milner types. An

extension of our type inference algorithm remains to be found.

Finding a good type inference algorithm for a type-system with both structural

subtyping and polymorphism is a nontrivial task although the work by Aiken and

Wimmers (1993) and by Eifrig et al. (1995) is promising.
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A trust-case construction. One could imagine the usefulness of a trust-case con-

struction that would allow dynamic dispatch on the trustworthiness of a value. The

reduction rules added for such a construction could be:

E → trust E ′

trust case E F G→ F(trust E ′)

E → λx.E ′

trust case E F G→ F(λx.E ′)

E → distrust E ′

trust case E F G→ G(distrust E ′)

and the corresponding type-rule:

A ` E : tu A ` F : ttr → τ A ` G : tdis → τ

A ` trust case E F G : τ

Church–Rosser and the Subject Reduction theorem still holds with these exten-

sions and generating constraints for this construct is not hard either. However, this

would only make sense in the presence of a polymorphic trust type system. With

monomorphic trust-types all the trust-case choices would be statically determinable

from the type system, so such a construction would be of very limited use. And since

we have not developed an inference algorithm for a polymorphic trust type system,

this has not been an issue.

Other lattices. The values of trust-tags may be extended from the two point lattice

used in this paper to any finite lattice. Extending the lattice to a longer linear

lattice accommodates multiple levels of trust. Extensions to non-linear orderings

may allow different properties to be modeled at once: Take the four point lattice

(P({path ok, signature ok}),⊆) with the empty set denoting completely untrusted.

This could be used in a web server that can both verify digital signatures and do

consistency checking on URL paths. In such a situation one would extend check to

a construct checking for reverse subset inclusion.

Modules. In a larger scale system with many program modules and many program-

mers, it is useful to differentiate between functions located in different modules

such that there would be trusted and untrusted modules, where functions defined in

untrusted modules would not be trusted in any other module. This can be realized

in our simple system by having a preprocessor that wraps all lambdas in an un-

trusted module in the distrust construct. Some external programming environment

might also be used to ensure that only trustworthy programmers get to write trusted

modules.

One might also make another distinction among modules, akin to the difference

between safe and unsafe modules in Modula-3 (Cardelli et al., 1989), where only

unsafe modules are allowed to use arbitrary type casts and unlimited address

arithmetic. In a trust analysis system, unsafe modules would then correspond to

modules where the trust construct is used, and just as in Modula-3 one has to take

extra care in the unsafe modules.
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6 Related work

The original notion of trust analysis was presented in Ørbæk (1995), where an

abstract interpretation analysis and a constraint based analysis for an imperative,

first order language with pointers were given. This work extends trust analysis to

the higher order functional case and formalizes it in terms of an annotated type

system.

Mitchell (1984) developed the structural subtyping idea, and our type system

borrows some of these ideas to handle automatic coercion from trusted data to

untrusted data.

In an earlier version of the paper we used a different syntax for trust-types inspired

by the work on effect systems by, for example, Gifford and Jouvelot, writing for

example Bool
tr dis−→ Bool # tr for what is now written (Booltr → Booldis)tr. This

turned out to be misleading in that our type system does not involve accumulating

representations of side effects and input/output. We thank our referees for pointing

this out and making us change the syntax of types.

6.1 Why trust analysis isn’t...

• Binding-time analysis. If trust analysis was equivalent to binding-time analysis

then one would equate tr with static and dis with dynamic, and without

using any of our special constructs this analogy goes a long way. However,

the trust construct would correspond to an unrestricted ‘down-lift’ operation

able to convert arbitrary dynamic data to static data, something that is clearly

unsound in a binding-time analysis. Our distrust construct would correspond

nicely to the lift operation, but again the check construct has no counterpart

in binding-time analysis.

• Security analysis. Since the seminal papers by Denning (1976, 1982) and Den-

ning and Denning (1977), there has been a great deal of work on using static

analysis to ensure that classified information would not leak out of information

systems (cf. Banâtre et al., 1994). In security analysis, the basic distinction is

between unclassified information and classified (secret) information. The task

is to prevent classified information from being shown to unprivileged users.

Usually this is done by assigning security classes to users as well as to data, and

making sure that information is never transferred from higher (more secret)

security classes to lower (less secret) classes.

Whereas security analysis focuses on preventing classified information leaking

out of the system to unprivileged users, trust analysis focuses on preventing

untrustworthy information flowing into the system. In this sense, trust analysis

can be viewed as the dual of security analysis.

A simple example of a security analysis setup would have just two classes:

secret and unclassified. The key relation between these classes is that wherever

secret information is needed, unclassified information will do just as well, so

in analogy with the subtyping system for trust, one can automatically coerce

unclassified information into secret information. Continuing this analogy one
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would equate unclassified with tr and secret with disand, furthermore, the

trust construct would correspond to a declassify construct, something rarely,

if ever, found in security analysis systems. We think, however, that for trust

analysis, the trust construct is a very natural construction, it is in fact the

cornerstone of the analysis.

• Dynamic typing. Dynamic typing also known as tagging/untagging analysis

(Aiken and Murphy, 1991; Henglein, 1992; Wright and Cartwright, 1994) aims

to remove type tags as much as possible in a dynamically typed language. One

might be tempted to view, say, distrust as a tagging operation and trust as

the corresponding untagging operation. However, this does not explain how

check should be interpreted and it doesn’t match with our application type

rule, in that applying a tagged function to an argument does not necessarily

result in a tagged result.

One idea is that trust analysis might be used as a kind of soft typing extension

to languages like C or C++ which are almost strongly typed, but contain

loopholes such as unrestricted type-casts. The idea is to essentially have two

copies of every C type, a trusted variant and an untrusted variant, such that the

compiler could guarantee no type errors for variables having a trusted type,

whereas the compiler could insert run-time checks for values of untrusted

types. However, it turns out that this kind of analysis is not equivalent to trust

analysis, as illustrated by the following C example:

if ((int) p)

x = 5;

else

x = 7;

Since type-casting is supposed to correspond to distrust and the two assign-

ments to x are dependent on the condition; following Ørbæk (1995), x would

have to be treated as untrusted after the if-statement. This is not what we

want for this kind of analysis, because in both cases x would clearly contain

an integer. This illustrates that trust analysis does not serve the purpose of

this analysis.

7 Summary

We have argued for the usefulness of so-called trust analysis to help programmers

produce safer and more trustworthy software. We have presented an extension of

the λ-calculus, together with a reduction semantics as well as a sound denotational

semantics. The reduction calculus is proved Church–Rosser. We then gave a type

system that enables the static inference of the trustworthiness of values and the

type system was proved to have the Subject Reduction property with respect to the

semantics of our language.

We have related our extension of the λ-calculus to the classical λ-calculus and

obtained two simulation theorems, as well as shown that well-typed terms in our

calculus are strongly normalizing.
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Then a constraint based type inference algorithm was presented and proved

correct with respect to the type system.

Finally we have discussed certain possible extensions to our analysis and given

several examples of why it is different from already known analyses.
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