CONTINUOUS SUMS OF MEASURES AND CONTINUOUS SPECTRA

by S. SANKARAN

(Received 4 October, 1963)

1. Introduction. Von Neumann's definition of the continuous sum of Hilbert spaces led Segal [3] to define the continuous sum of measures on a measurable space. In this note we employ Segal's definition to investigate the measure structures associated with a self-adjoint transformation of pure point spectrum and a self-adjoint transformation of pure continuous spectrum. While these transformations, as operators on separable Hilbert spaces, are the antithesis of each other we show that in their measure structure one is a particular case of the other.

In Theorem 2 we show that to every self-adjoint transformation T there corresponds a simple self-adjoint transformation A such that T has pure point (resp. pure continuous) spectrum if and only if A has pure point (resp. pure continuous) spectrum. This shows that it is enough to consider simple self-adjoint transformations in the proof of the Main Theorem. This theorem asserts that, if T is a self-adjoint transformation defined in a Hilbert space H, and $E(\lambda)$ the resolution of the identity corresponding to T, then there exists an element z in H such that a necessary and sufficient condition for T to have pure point (resp. pure continuous) spectrum is that the measure μ defined by the function $|| E(\lambda)z ||^2$ is the discrete (resp. continuous) sum of mutually disjoint measures of point mass.

In this paper, the term "Hilbert space" stands for "complex separable Hilbert space"; if S is a set of everywhere defined operators in a Hilbert space H, and $w \in H$, the closed linear manifold generated by the set $(Aw: A \in S)$ is denoted by $[Aw: A \in S]$. If μ and ν are measures on a measure space, we write $\mu \ge \nu$ (or $\nu \ll \mu$) to denote that ν is absolutely continuous with respect to μ .

2. Preliminaries.

DEFINITION 1. Let X be a locally compact Hausdorff space, and B be the σ -ring generated by the open subsets of X. The members of B are called the *Borel sets* of X, and the pair (X, B) is called a *Borel space*. A non-negative function μ of the Borel sets of X is called a *measure* of the Borel space if μ has the property $\mu(\bigcup_n B_n) = \sum_n \mu(B_n)$, where $B_n \cap B_m = \emptyset$ if

 $n \neq m$. (X, B, μ) is called a *Borel measure space*.

Let (X, \mathbf{B}) be a Borel space, and (Y, \mathbf{D}, v) a Borel measure space. Let μ_n (n = 1, 2, ...) and μ_y $(y \in Y)$ be measures of (X, \mathbf{B}) .

DEFINITION 2. A measure μ of (X, \mathbf{B}) is said to be the *discrete sum* of the measures μ_n , if, for each $B \in \mathbf{B}$, $\mu(B) = \sum_{n} \mu_n(B)$. The measure μ is said to be the *continuous sum* of the measures μ_y if

S. SANKARAN

(i) for each $B \in \mathbf{B}$, the function $b(y) = \mu_{y}(B)$ is integrable with respect to v, and

(ii)
$$\mu(B) = \int_{Y} \mu_{y}(B) \, dv(y).$$

(See [3], Definition 8.1.)

Let H be a complex separable Hilbert space.

DEFINITION 3. A mapping P of the Borel sets of a Borel space (X, B) into the set of projections of H is called a *projection-valued measure* if

(i) $P_{\alpha} = 0, P_{X} = I$, where I is the identity operator of **H**,

(ii)
$$P_{B_1 \cap B_2} = P_{B_1} P_{B_2}$$

(iii) $P_{\bigcup B_n} = \sum P_{B_n}$, where $B_n \cap B_m = \emptyset$ if $n \neq m$.

If P is a projection-valued measure of a Borel space (X, B), then to each element of H there corresponds a measure of (X, B); for, if $z \in H$, then μ_z , where $\mu_z(B) = ||P_B z||^2$, is a measure of (X, B).

Let T be a self-adjoint transformation defined in H, and let $E(\lambda)$ be the resolution of the identity corresponding to T.

DEFINITION 4. T is said to have *pure point spectrum* if H contains a complete orthonormal set of characteristic elements of T. T is said to have *pure continuous spectrum* if H contains no non-zero characteristic element of T. T is said to be *simple* if there exists an element z in H such that $[E(\lambda)z: -\infty \le \lambda \le \infty] = H$.

THEOREM 1. Let P be a projection-valued measure of a Borel space (X, \mathbf{B}) to a Hilbert space H. There exists an element z in H with the property that $\mu_z(B) = 0$ if and only if $P_B = 0$, where $\mu_z(B) = \|P_B z\|^2$.

Proof. Let \mathfrak{U} be the von Neumann algebra (i.e., weakly closed self-adjoint algebra) generated by the set $S = (P_B: B \in \mathbf{B})$ of projections in \mathbf{H} . It follows from (ii) of Definition 3 that the members of S commute with each other, and therefore the members of \mathfrak{U} commute with each other. We recall the definition of ordered additive decomposition [2] of \mathbf{H} relative to the Abelian von Neumann algebra \mathfrak{U} :

(i) $H = H_1 + H_2 + ... + H_n + ...,$

where

(ii) $\mathbf{H}_n = [Az_n: A \in \mathfrak{U}]$

and

(iii) $\mu_{z_1} \ge \mu_{z_2} \ge \dots \ge \mu_{z_n} \ge \dots$

Let $z = z_1$. Assume that $\mu_z(B) = 0$. It follows from (iii) that $||P_B z_n||^2 = \mu_{z_n}(B) = 0$ for n = 2, 3, ... Hence $P_B A z_n = A P_B z_n = 0$ for each *n* and all $A \in \mathbb{U}$. That is, $P_B w = 0$ when $w = A z_n$. The set $(w = A z_n; A \in \mathbb{U})$ is dense in \mathbf{H}_n . Hence $P_B \mathbf{H}_n = 0$. It follows from (i) that $P_B = 0$.

10

Conversely, $P_B = 0$ implies that $\mu_z(B) = ||P_B z||^2 = 0$. This proves the theorem.

COROLLARY 1. For every element $w \in \mathbf{H}$, $\mu_w \ll \mu_z$. For $\mu_z(B) = 0$ implies that $P_B = 0$; hence $\mu_w(B) = ||P_Bw||^2 = 0$.

THEOREM 2. Let T be a self-adjoint transformation in \mathbf{H} and $E(\lambda)$ the resolution of the identity corresponding to T. There exists an element z in \mathbf{H} such that the transformation $A = TE_1$ is simple and has pure point (resp. pure continuous) spectrum if and only if T has pure point (resp. pure continuous) spectrum, where E_1 is the projection of \mathbf{H} on $[E(\lambda)z: -\infty \leq \lambda \leq \infty]$.

Proof. Let X be the extended real line $(x: -\infty \le x \le \infty)$ with the usual topology and **B** the set of all Borel subsets of X. **B** is the σ -ring generated by the bounded semi-closed intervals $[a, b) = (x: a \le x < b)$. (See [1], § 15, Theorem B).

It is an easy consequence of the spectral theorem that every self-adjoint transformation defines a projection-valued measure on the Borel space (X, \mathbf{B}) ; for, if $B = (x: a \le x < b)$, let E(B) = E(b) - E(a). From the last paragraph it is obvious that the mapping $B \to E(B)$ can be extended to all members of **B**, and that the extended mapping $B \to E(B)$ is a projection-valued measure.

We can find an element z in H with the property that $\mu_z(B) = ||E(B)z||^2 = 0$ if and only if E(B) = 0. Let

$$\mathbf{H}_1 = \begin{bmatrix} E(B)z \colon B \in \mathbf{B} \end{bmatrix} = \begin{bmatrix} E(\lambda)z \colon -\infty \leq \lambda \leq \infty \end{bmatrix},$$

and let E_1 be the projection of H onto H_1 . Since $E_1E(\lambda) = E(\lambda)E_1$, for all λ ($-\infty \le \lambda \le \infty$), it follows that $TE_1 = E_1T$. Hence the transformation

$$A = TE_1 \quad (=E_1T = E_1TE_1)$$

is self-adjoint in H_1 and its resolution of the identity $F(\lambda)$ is $E(\lambda)E_1$. The transformation A is simple; for $F(\lambda)z = E(\lambda)E_1z = E(\lambda)z$ (z being an element of H_1) implies that

$$[F(\lambda)z: -\infty \leq \lambda \leq \infty] = [E(\lambda)z: -\infty \leq \lambda \leq \infty] = \mathbf{H}_1.$$

Now assume that A has pure point spectrum and that $B = \{\lambda_1, \lambda_2, ...\}$ are the points of the point spectrum of A. If $Aw_n = \lambda_n w_n$, with $w_n \neq 0$, it follows from

$$T(E_1w_n) = TE_1w_n = Aw_n = \lambda_n w_n = \lambda_n (E_1w_n)$$

that λ_n is a point of the point spectrum of T. Let \mathbf{M}_n be the characteristic manifold of T for the characteristic value λ_n . We shall show that $\sum_n \bigoplus \mathbf{M}_n = \mathbf{H}$, which would prove that T has pure point spectrum. Choose $w \in \mathbf{H} \bigoplus \sum_n \bigoplus \mathbf{M}_n$. Since

$$\mu_{z}(X-B) = \| E(X-B)z \|^{2} = \| E(X-B)E_{1}z \|^{2} = \| F(X-B)z \|^{2} = 0,$$

it follows from Corollary 1 that $\mu_w(X-B) = 0$. Since w is orthogonal to \mathbf{M}_n and $E(\{\lambda_n\})$ is the projection of H on \mathbf{M}_n , it follows that

$$\mu_w(\{\lambda_n\}) = \| E(\{\lambda_n\})w \| = 0 \quad (n = 1, 2, ..., N).$$

Hence $\mu_w(B) = 0$, and therefore

$$\|w\|^2 = \|E(X)w\|^2 = \mu_w(X) = \mu_w(B) + \mu_w(X-B) = 0.$$

It is easy to verify that, if T has pure point spectrum, then $A = TE_1$ has pure point spectrum.

Finally, we observed earlier that $\mu_z(B) = ||F(B)z||^2$. Now, A being a simple self-adjoint transformation, a point λ is in the point spectrum of A (resp. T) if and only if $\mu_z(\{\lambda\})$ (resp. $E(\{\lambda\})) \neq 0$. But from the choice of z we know that $\mu_z(\{\lambda\}) \neq 0$ if and only if $E(\{\lambda\}) \neq 0$. Hence λ is in the point spectrum of A if and only if λ is in the point spectrum of T. Equivalently, A has pure continuous spectrum if and only if T has pure continuous spectrum.

This proves the theorem.

COROLLARY 2. The self-adjoint transformation A of Theorem 2 is unique up to unitary equivalence.

For, let A_1 , A_2 be two simple self-adjoint transformations satisfying the condition of Theorem 2; let z_1 , z_2 be the elements which define A_1 , A_2 respectively. It is easy to show that $\mu_{z_1}(B) = 0$ if and only if $\mu_{z_2}(B) = 0$. Hence A_1 and A_2 are unitarily equivalent.

3. MAIN THEOREM. Let T be a self-adjoint transformation defined in a Hilbert space H, $E(\lambda)$ the resolution of the identity corresponding to T, and z an element in H possessing the properties of Theorem 2. Then a necessary and sufficient condition for T to have pure point (resp. pure continuous) spectrum is that the measure μ defined by the function $|| E(\lambda)z ||^2$ is the discrete (resp. continuous) sum of mutually disjoint measures of point mass.

Proof. As we pointed out in the introduction, there is no loss of generality in assuming that T is a simple self-adjoint transformation and that $[E(\lambda)z: -\infty \leq \lambda \leq \infty] = \mathbf{H}$. The proof depends on certain known results concerning simple self-adjoint transformations, which we list here.

Let μ be the measure on the Borel subsets of the real line defined by the monotone increasing function $|| E(\lambda) z ||^2$.

(1) ([4], Definition 7.2 and Theorem 7.9.) If λ_0 is a point of the point spectrum of T, then there exists an $\varepsilon > 0$ such that the range of $E(\Delta)$ is a one-dimensional manifold in **H**, where $\Delta = (\lambda_0 - \varepsilon, \lambda_0 + \varepsilon)$.

(2) ([4], Theorem 7.16.) A non-zero closed linear manifold M is an invariant subspace for T if and only if M is isometric to a subspace M' of $L^2(\mu)$ consisting of the functions which vanish outside a Borel set B of positive measure; in particular, if M is the characteristic manifold corresponding to a characteristic value λ_0 , then $B = \{\lambda_0\}$.

(3) T has pure continuous spectrum if and only if μ is absolutely continuous with respect to Lebesgue measure. For, if T has a point λ_0 in the point spectrum, then $\mu(\{\lambda_0\}) > 0$. Since the Lebesgue measure of $\{\lambda_0\}$ is zero, it follows that μ is not absolutely continuous with respect to Lebesgue measure. Conversely, if T has pure continuous spectrum, then the monotone increasing function $f(\lambda) = || E(\lambda)z ||^2$ is continuous. It follows from Lemma 7.1 of [4] that μ is the Lebesgue measure on $0 \le y \le r = || z ||^2$.

12

CONTINUOUS SUMS OF MEASURES AND CONTINUOUS SPECTRA 13

Pure point case.

The condition is necessary. Assume that (w_n) is a complete orthonormal set of characteristic elements; let w_n correspond to the characteristic value λ_n . We know from (1) that it is possible to choose $\varepsilon_n > 0$, such that the range of $E(\Delta_n)$ is generated by w_n , where

$$\Delta_n = (\lambda_n - \varepsilon_n, \lambda_n + \varepsilon_n).$$

We may assume that $\Delta_n \cap \Delta_m = \emptyset$ for $n \neq m$. If $\mu(B) > 0$, where $B \subseteq \Delta_n - \{\lambda_n\}$, then it follows from (2) that T has a non-zero invariant subspace contained in the range of $E(\Delta_n)$ and orthogonal to w_n , which is impossible. Hence $\mu(\Delta_n) = \mu(\{\lambda_n\})$. Now suppose that $\Delta \subseteq [-\infty, \infty] - \bigcup_{n=1}^{\infty} \Delta_n$ is a Borel set. Then $E(\Delta)E(\Delta_n) = 0$ for every n. Since (w_n) is complete, it follows that $E(\Delta) = 0$, and therefore $\mu(\Delta) = 0$. Hence, for every Borel set B, we have

$$\mu(B) = \mu\left(\left(\bigcup_{n=1}^{\infty} \Delta_n\right) \cap B\right) = \mu\left(\bigcup_{n=1}^{\infty} (\Delta_n \cap B)\right)$$
$$= \sum_{n=1}^{\infty} \mu(\Delta_n \cap B) = \sum_{n=1}^{\infty} \mu_n(B).$$

It is clear that the μ_n have point mass, and are mutually disjoint.

The condition is sufficient. Assume that $\mu = \mu_n$, where μ_n , has its mass at λ_n . Since $\mu(\{\lambda_n\}) \neq 0$, by a known theorem (see [1], pp. 178–182), the points λ_n are points of discontinuity for the function $|| E(\lambda)z_0 ||^2$. Hence ([4], p. 184) the points λ_n are in the point spectrum of T. Let $\Lambda = \{\lambda_1, \lambda_2, ...\}$ and let $N = H \ominus M$, M being the characteristic manifold of T. Since N is an invariant subspace for T, there is, by (2), a Borel set B which corresponds to it. Since N is orthogonal to M, B is contained in $[-\infty, \infty] - \Lambda$, and consequently $\mu(B) = \sum \mu_n(B) = 0$. Hence N = 0. That is, M = H, and T has pure point spectrum.

Pure continuous case.

The condition is necessary. Let the spectrum of T be purely continuous. Since μ is then absolutely continuous with respect to Lebesgue measure, we have, by the Radon-Nikodym theorem,

$$\mu(B) = \int_B f(y) \, dy,$$

where f(y) is a non-negative Lebesgue integrable function. For each real number y, define a function μ_y on the Borel subsets of the real line as follows:

$$\mu_{y}(B) = f(y)\chi_{B}(y),$$

where B is an arbitrary Borel subset of the real line, and

$$\chi_B(y) = \begin{cases} 1 & \text{if } y \in B, \\ 0 & \text{if } y \notin B. \end{cases}$$

S. SANKARAN

It is easy to verify that, for each y, μ_y is a measure on the Borel subsets of the real line, and that the mass of μ_y is at y. Finally,

$$\mu(B) = \int_B f(y) \, dy = \int_{-\infty}^{\infty} f(y) \chi_B(y) \, dy = \int_{-\infty}^{\infty} \mu_y(B) \, dy,$$

and this shows that μ is the continuous sum of the measures μ_{ν} .

The condition is sufficient. Let μ be the continuous sum, with respect to Lebesgue measure, of the measures μ_y , y being real. Assume that μ_y has its mass at y. Since the measures μ_y are mutually disjoint, the measures μ_y and μ_s , for $y \neq s$, do not have their mass at the same point. Consequently, the function $f(y) = \mu_y(X)$, where X is the real line, is well defined. From property (i) of Definition 2, it follows that f(y) is integrable with respect to Lebesgue measure. Finally, observing that

$$\mu_{y}(X) = \mu_{y}(\{y\}) = \mu_{y}(B)$$
 if $y \in B$,

we see that

$$\mu(B) = \int_{-\infty}^{\infty} \mu_{y}(B) \, dy = \int_{B} \mu_{y}(X) \, dy = \int_{B} f(y) \, dy.$$

Hence μ is absolutely continuous with respect to Lebesgue measure; it follows from (3) that T has pure continuous spectrum.

This completes the proof.

REFERENCES

1. P. R. Halmos, Measure theory (New York, 1951).

2. S. Sankaran, Ordered decomposition of Hilbert spaces, J. London Math. Soc. 36 (1961), 97-107.

3. I. E. Segal, Decomposition of operator algebras I, Mem. Amer. Math. Soc., No. 9 (1951).

4. M. H. Stone, *Linear transformations in Hilbert space* (American Mathematical Society Colloquium Publications, Vol. 15, 1932).

QUEEN ELIZABETH COLLEGE LONDON