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1. Introduction. Von Neumann’s definition of the continuous sum of Hilbert spaces led
Segal [3] to define the continuous sum of measures on a measurable space. In this note we
employ Segal’s definition to investigate the measure structures associated with a self-adjoint
transformation of pure point spectrum and a self-adjoint transformation of pure continuous
spectrum. While these transformations, as operators on separable Hilbert spaces, are the
antithesis of each other we show that in their measure structure one is a particular case of the
other.

In Theorem 2 we show that to every self-adjoint transformation T there corresponds a
simple self-adjoint transformation A4 such that T has pure point (resp. pure continuous)
spectrum if and only if 4 has pure point (resp. pure continuous) spectrum. This shows that
it is enough to consider simple self-adjoint transformations in the proof of the Main Theorem.
This theorem asserts that, if T is a self-adjoint transformation defined in a Hilbert space H,
and E(A) the resolution of the identity corresponding to T, then there exists an element zin H
such that a necessary and sufficient condition for T to have pure point (resp. pure continuous)
spectrum is that the measure u defined by the function | E(1)z ||* is the discrete (resp. con-
tinuous) sum of mutually disjoint measures of point mass.

In this paper, the term * Hilbert space *’ stands for * complex separable Hilbert space ™*;
if S is a set of everywhere defined operators in a Hilbert space H, and w € H, the closed linear
manifold generated by the set (A4w: A € S) is denoted by [Aw: 4 € S]. If pand v are measures
on a measure space, we write u > v (or v < u) to denote that v is absolutely continuous with
respect to u.

2. Preliminaries.

DerFINITION 1. Let X be a locally compact Hausdorff space, and B be the g-ring generated
by the open subsets of X. The members of B are called the Borel sets of X, and the pair
(X, B) is called a Borel space. A non-negative function u of the Borel sets of X is called a
measure of the Borel space if u has the property u (U B,) = ), u(B,), where B,nB, =@ if

n#m. (X, B, p) is called a Borel measure space.

Let (X, B) be a Borel space, and (Y, D, v) a Borel measure space. Lety,(n=1,2,...)
and p, (y € Y) be measures of (X, B).

DerINITION 2. A measure u of (X, B) is said.to be the discrete sum of the measures y,, if,

for each Be B, u(B) =) u,(B). The measure y is said to be the continuous sum of the measures
u, if "
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(i) for each B e B, the function b(y) = p,(B) is integrable with respect to v, and

(i) 1(B) = f 1y (B) ().
Y

(See [3], Definition 8.1.)
Let H be a complex separable Hilbert space.

DEerINITION 3. A mapping P of the Borel sets of a Borel space (X, B) into the set of
projections of H is called a projection-valued measure if

(i) P, =0, Py =1, where I is the identity operator of H,
(ii) Ppnp, = PthBz’
(iii) Pyy =Y. Pp,, where B,nB, =0if n#m.
n n

If P is a projection-valued measure of a Borel space (X, B), then to each element of H
there corresponds a measure of (X, B); for, if ze€ H, then p,, where y (B) = || Pz |f?, is a
measure of (X, B).

Let T be a self-adjoint transformation defined in H, and let E(4) be the resolution of the
identity corresponding to T.

DEeriNiTION 4. T is said to have pure point spectrum if H contains a complete ortho-
normal set of characteristic elements of T. T is said to have pure continuous spectrum if H
contains no non-zero characteristic element of 7. T is said to be simple if there exists an
element z in H such that [E(4)z: —0 £ 1< 0] =H.

THEOREM 1. Let P be a projection-valued measure of a Borel space (X, B) to a Hilbert space
H. There exists an element z in H with the property that u,(B) = 0 if and only if Py = 0, where
p:(B) = || Pz ||*.

Proof. Let U be the von Neumann algebra (i.c., weakly closed self-adjoint algebra)
generated by the set S = (Pg: B e B) of projections in H. It follows from (ii) of Definition 3
that the members of S commute with each other, and therefore the members of Il commute
with each other. We recall the definition of ordered additive decomposition [2] of H relative
to the Abelian von Neumann algebra U:

@@ H =H;+H,+ ... +H,+ ...,
where

(i) H, =[4z,: Ael]
and

(i) pp, Z Py 2 o Z P, = e

Let z = z,. Assume that u,(B) =0. It follows from (iii) that || Pz, ||* = ,,(B) = 0 for
n=2,3,.... Hence Pydz, = APgz, =0 for each n and all Aell. That is, Pzw =0 when
w = Az,. Theset(w= Az,: Ael)isdensein H,. Hence P;H, = 0. It follows from (i) that
PB = 0.
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Conversely, Py = 0 implies that u,(B) =|| Ppz ||* = 0.
This proves the theorem.

COROLLARY 1. For every element we H, u,, < u..
For y.(B) = 0 implies that Py = 0; hence p,,(B) =|| Psw |* =0.

THEOREM 2. Let T be a self-adjoint transformation in H and E(J) the resolution of the identity
corresponding to T. There exists an element z in H such that the transformation A = TE, is
simple and has pure point (resp. pure continuous) spectrum if and only if T has pure point (resp.
pure continuous) spectrum, where E; is the projection of H on [E(2)z: —o0 £ 1 £ 0]

Proof. Let X be the extended real line (x: —o0 < x < c0) with the usual topology and
B the set of all Borel subsets of X. B is the o-ring generated by the bounded semi-closed
intervals [a, b)) = (x: a < x <b). (See [1], § 15, Theorem B).

It is an easy consequence of the spectral theorem that every self-adjoint transformation
defines a projection-valued measure on the Borel space (X, B); for, if B=(x: a £ x < b),
let E(B) = E(b)— E(a). From the last paragraph it is obvious that the mapping B— E(B)
can be extended to all members of B, and that the extended mapping B E(B) is a projection-
valued measure.

We can find an element z in H with the property that u,(B) = || E(B)z ||* = 0 if and only
if E(B)=0. Let

H, =[E(B)z: BeB] =[E(})z: —0 S 1S5 ],

and let E, be the projection of H onto H,. Since E, E(A) = E()E,, forall A (— o0 £ A £ o),
it follows that TE, = E|T. Hence the transformation

A=TE, (=E,T=ETE,)

is self-adjoint in H; and its resolution of the identity F(2) is E(A)E,. The transformation 4
is simple; for F(A)z = E(A)E,z = E(A)z (z being an element of H,) implies that

[F(A)z: —o0 AL 0] =[EX)z: —0 SA< 0] =H,.

Now assume that 4 has pure point spectrum and that B ={4,, 4,, ...} are the points of
the point spectrum of A. If Aw, = A,w,, with w, # 0, it follows from

T(Elwn) = TElwn = Awn = )‘nwn = }‘n(Elwn)

that ,, is a point of the point spectrum of . Let M,, be the characteristic manifold of T for the
characteristic value 4,. We shall show that )’ @ M, =H, which would prove that T has pure

point spectrum. Choose we HO ). @ M,. Since

u(X=B) = || E(X-B)z |* = || E(X—B)E,z||* = | FX—B)z|* =0,

it follows from Corollary 1 that p,,(X—B) =0. Since w is orthogonal to M, and E({4,}) is
the projection of H on M,, it follows that

m({A) = | EQAdw ] =0 @=1,2,..., N).
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Hence p,,(B) =0, and therefore
[ wl? = Ew |* = p,(X) = p1,,(B)+ p,,(X— B) = 0.

It is easy to verify that, if T has pure point spectrum, then 4 = TE,; has pure point
spectrum.

Finally, we observed earlier that p,(B) = || F(B)z||>. Now, 4 being a simple self-adjoint
transformation, a point A is in the point spectrum of A (resp. T) if and only if u,({1})
(resp. E({A}))# 0. But from the choice of z we know that u_({A}) # 0 if and only if E({4})
# 0. Hence A is in the point spectrum of A if and only if 4 is in the point spectrum of T.
Equivalently, A4 has pure continuous spectrum if and only if T has pure continuous spectrum.

This proves the theorem.

COROLLARY 2. The self-adjoint transformation A of Theorem 2 is unique up to unitary
equivalence.
For, let A,, A, be two simple self-adjoint transformations satisfying the condition of

Theorem 2; let z,, z, be the elements which define 4,, A, respectively. It is easy to show that
Hz,(B) = 0 if and only if pu,,(B) =0. Hence 4, and A4, are unitarily equivalent.

3. MAIN THEOREM. Let T be a self-adjoint transformation defined in a Hilbert space H,
E(A) the resolution of the identity corresponding to T, and z an element in H possessing the
properties of Theorem 2. Then a necessary and sufficient condition for T to have pure point
(resp. pure continuous) spectrum is that the measure y defined by the function || E(A)z ||* is the
discrete (resp. continuous) sum of mutually disjoint measures of point mass.

Proof. As we pointed out in the introduction, there is no loss of generality in assuming
that T is a simple self-adjoint transformation and that [E(1)z: —0 £A< 0] =H. The
proof depends on certain known results concerning simple self-adjoint transformations, which
we list here.

Let u be the measure on the Borel subsets of the real line defined by the monotone in-
creasing function || E(1)z ||%.

(1) ([4], Definition 7.2 and Theorem 7.9.) If 4, is a point of the point spectrum of T,
then there exists an & > 0 such that the range of E(A) is a one-dimensional manifold in H,
where A = (Ag—¢, Ao+8).

(2) ([4], Theorem 7.16.) A non-zero closed linear manifold M is an invariant subspace
for T if and only if M is isometric to a subspace M’ of L? (1) consisting of the functions which
vanish outside a Borel set B of positive measure; in particular, if M is the characteristic
manifold corresponding to a characteristic value 1o, then B ={4,}.

(3) T has pure continuous spectrum if and only if u is absolutely continuous with respect
to Lebesgue measure. For, if T has a point A, in the point spectrum, then u({4,}) > 0. Since .
the Lebesgue measure of {4,} is zero, it follows that u is not absolutely continuous with re-
spect to Lebesgue measure. Conversely, if T has pure continous spectrum, then the monotone
increasing function f(1) = || E(2)z||? is continuous. It follows from Lemma 7.1 of [4] that
jtis the Lebesgue measureon 0 Sy Sr=| z ||
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Pure point case.

The condition is necessary. Assume that (w,) is a complete orthonormal set of charac-
teristic elements; let w, correspond to the characteristic value 4,. We know from (1) that it
is possible to choose &, > 0, such that the range of E(4A,) is generated by w,, where

An = ()'n_sm 11,,+B,,).

We may assume that A,n A,, =@ for n# m. If u(B) > 0, where B< A,—{4,}, then it follows
from (2) that T has a non-zero invariant subspace contained in the range of E(A,)
and orthogonal to w,, which is impossible. Hence u(A,) = u({4,}). Now suppose that

Ac[— o0, 0]— U A, is a Borel set. Then E(A)E(A,) =0 for every n.  Since (w,) is com-
plete, it follows that E(A) =0, and therefore p(A) = 0. Hence, for every Borel set B, we have

u(B) = u(( 0 An)n8> - #( 0 (A,.nB))
n=1 n=1

= ¥ udnB) = ¥ w(B).

=1 n=

8

It is clear that the p, have point mass, and are mutually disjoint.

The condition is sufficient. Assume that y = p,, where g, has its mass at 4,. Since
#({2,}) # 0, by a known theorem (see [1], pp. 178—182), the points 4, are points of discon-
tinuity for the function || E(1)z, ||*. Hence ([4], p. 184) the points A, are in the point spectrum
of T. Let A={4,,4,,...} and let N=HO M, M being the characteristic manifold of T.
Since N is an invariant subspace for 7, there is, by (2), a Borel set B which corresponds
to it. Since N is orthogonal to M, B is contained in [—o0, 0]—A, and consequently
u(B) =Y p,(B)=0. Hence N=0. Thatis, M = H, and T has pure point spectrum.

Pure continuous case.

The condition is necessary. Let the spectrum of T be purely continuous. Since z is then
absolutely continuous with respect to Lebesgue measure, we have, by the Radon-Nikodym

theorem,
u(B) = f 10 dy,
B

where f(y) is a non-negative Lebesgue integrable function. For each real number y, define a
function g, on the Borel subsets of the real line as follows:

#y(B) = f(y)XB ()’),

where B is an arbitrary Borel subset of the real line, and

_ {1 if yeB,
10) {o if y¢B.
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It is easy to verify that, for each y, u, is a measure on the Borel subsets of the real line, and that
the mass of g, is at y. Finally,

]

u(B) = j 50 dy=j°° FOM0) dy=j 1, (B) dy,

haall <}

and this shows that yu is the continuous sum of the measures u,.

The condition is sufficient. Let u be the continuous sum, with respect to Lebesgue measure,
of the measures u,, y being real. Assume that u, has its mass at y. Since the measures u, are
mutually disjoint, the measures u, and p,, for y # s, do not have their mass at the same point.
Consequently, the function f(y) = u,(X), where X is the real line, is well defined. From
property (i) of Definition 2, it follows that f(») is integrable with respect to Lebesgue measure.
Finally, observing that

Hy(X) = p,({y}) = py(B) if yeB,

we see that

W®) = j " @) dy = j 1y (X) dy = f 10 dy.

Hence p is absolutely continuous with respect to Lebesgue measure; it follows from (3) that
T has pure continuous spectrum.
This completes the proof.
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