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Abstract. We show that in several cases preservation of cones leads to non-vanishing
of (some) Lyapunov exponents. It gives simple and effective criteria for non-
vanishing of the exponents, which is demonstrated on the example of the billiards
studied by Bunimovich. It is also shown that geodesic flows on manifolds of
non-positive sectional curvature can be treated from this point of view.

0. Introduction
Consider a compact manifold M" with a Riemann metric and a diffeomorphism
<j>:M"^>M" preserving probability measure ft. According to the multiplicative
ergodic theorem of Oseledec (see [10], [11] and [13]) for almost all x e M" there is
a basis {eu...,en} in TXM" and real numbers called Lyapunov characteristic

exponents

* , ( * ) < • • •<*„(*)

such that

lim ^ log ||Dxtf>
fc(e,.)||=±*,.(*), i=l,...,n.

If the measure p is equivalent to Lebesgue measure then fi almost everywhere

(see [3]).
Presence of non-zero exponents implies positivity of the metric entropy of </>. If

all Lyapunov exponents are non-zero almost everywhere then ergodic components
of </> have positive measure and under additional assumptions <f> is Bernoulli (see

[11]).
Lyapunov exponents can be put in a more general framework. Consider a

probability space (X, fi) and a measure-preserving transformation T : X - » X . Let
A: X -> GL (n, R) be a measurable mapping to n x n matrices such that log+ || A( •) \\ e
L\X,n). Then for /n-almost all xeX there are subspaces {0} =
V°c V'xc- - - c Vn

x = W and numbers ^ i (x )< - - - ^ ^ ( x ) such that

lim ]-\og\\A(rk-[x) • • • A(rx)A(x)v\\= Xi(x)

ifveV'x\V-\i=\,...,n.
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146 M. Wojtkowski

The classical Alexeev's method ([1]) of establishing non-vanishing of Lyapunov
exponents can be described in the following way.

Let U" =W xUs and for a given a > 0 consider a cone

Ca = {(u, t)eUrxns\\\u\\>a\\t\\}.

If, for almost all x e X,
(i) A{x)Ca^Ca;

(ii) there is 17 > 1 such that if ve Ca then ||A(x)t;||> TJ||U||;

then

This approach, although very simple, is quite efficient in the study of particular
dynamical systems. It can be formulated in the setting of a diffeomorphism of a
manifold. In this paper we will establish that in several cases the condition (i) alone
leads to non-vanishing of (some) Lyapunov exponents. This idea initially appeared
in [6].

The plan of the paper is as follows: In § 1 we study non-negative matrices and
establish uniform exponential growth of the spectral radius of the product of
non-negative matrices from a large family. This section may be of independent
interest.

In § 2 we study formal properties of Lyapunov exponents and establish a criterion
for positivity of the maximal Lyapunov exponent using the results of § 1.

In § 3 this criterion is applied to billiards studied by Bunimovich [4] which gives
a particularly simple proof that for these billiards Lyapunov exponents are non-zero
almost everywhere.

In § 4 and § 5 we show that the non-negative matrices of § 1 can be replaced by
other families of matrices preserving some cone. In § 5 we study symplectic matrices
and establish a criterion applicable to geodesic flows on manifolds of non-positive
sectional curvature.

I wish to thank Prof. Anatole Katok for valuable discussion which led to the
appearance of § 3.

1. Non-negative matrices
(1) Notation. By 0,11 we will denote the vectors in R" or the nxn matrices with all

entries equal to 0 and 1 respectively. / denotes the identity matrix. For two nxn

matrices (or vectors in R") A, B, A > B, A> B means respectively that every entry

of A is > , > than the corresponding entry of B. If A > B we say that A dominates

B. Let

0n={t>eR>>0}, 0+

Further, let

9 = {A e GL (n, R)| A > 0}, 0>+ = {A e GL (n, R)| A > 0},

https://doi.org/10.1017/S0143385700002807 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700002807


Invariant families of cones 147

For Ae@, A = (aij)]^jjsn let A = (aij),^ijsn be a zero-one matrix defined by

ifflgX)

if a,7 = 0.

Let &>E={AeGL(n, R)||A>e1}. Clearly we have 9>+ = {Jc>0&E. Let &<=• 9 consist
of all matrices A such that there are no permutation matrices Pu P2 for which PXAP2

is a triangular matrix. Obviously ^r=>$)+. Finally, 2Fe ={Ae ^\As:eA}. Hence
&=Ue>0 &e- S® = {Ae ^| |det A| = 1} and S^E = S2Fn 2Fe. By r(A) we denote the
spectral norm of A. || • || denotes the standard euclidean norm in R" and the
corresponding matrix norm. We will assume throughout this section that n > 2.

(2) Consider the function F:0n^>U denned by F(v) = t>, • . . . • vn where v =
(v\,..., vn). (F(v))l/n is a homogeneous function of degree 1 and we will use it to
measure the length of a vector in 0^.

LEMMA 1.1. IfveOn then \\v\\ >Vn(F(t>))1/n.

LEMMA 1.2. Let P e 9 be a permutation matrix. Then for every veOm F(Pv) = F(v).

LEMMA 1.3. LetDe 9 be a diagonal matrix. Then for every v e 0m F{Dv) = det DF(v).

For Ae 9 we introduce the 'norm' p(A) defined by

(A\ • f(F{Av)\'"

LEMMA 1.4. IfA,Be& then p(AB)>p(A)p(B).

Proof.

( F{ABv)\ IF(Bv)\
if I I I 1 & p(A)p{B). CH

LEMMA 1.5. If Ae & then ||A||s:p(A).

Proof. By lemma 1.1,

•

Combining lemmas 1.4 and 1.5 we get

PROPOSITION 1.1. IfAeP then r(A)zP(A).

Proof. \\Ak\\>P(Ak)^(p(A))\ Hence

r(A)= lim \\Ak\\'/k>p(A). •
fc-*+OO

From lemmas 1.2 and 1.3 we get

LEMMA 1.6. IfPt and P2 are permutation matrices and Ae§>, then p(PiAP2) = p(A).

LEMMA 1.7. IfAet? and DeSP is a diagonal matrix then

p(DA) = p(AD) = (det D)[/np(A).
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148 M. Wojtkowski

We will now formulate a series of propositions giving estimates of p(A) for different
families of matrices.

PROPOSITION 1.2. IfAe& then p(A)>|det A\l/n.

PROPOSITION 1.3. IfAeSPe then p(A) >(|det A\ + n"eny/n.

PROPOSITION 1.4. IfAe&e then p(A) >(|det A|+4e") ' / n .

Proof of propositions 1.2, 1.3 and 1.4. Let A e 9. In view of lemma 1.6, without loss
of generality we can assume that det A > 0 . If A = (a i ; / ) i s U s n and ueO^,

F(Av) = f X alh(l)a2h(2) • • • anh(n)jF(v) + the; other terms

where the summation is over all permutations h and 'the other terms' are non-
negative. This proves proposition 1.2.

Further, if A e ^E,

F(Av) = det AF(v) + 2[ £ alh(l) ••• anMn) ]F(u) + the other terms
\ h odd /

sdet AF(v) + s"(F{Av)~ det AF{v)).

The inequality was obtained by estimating all non-zero entries of A by e.
For A e f e we have A = H and det A = 0. Moreover, by straight-forward calculation,

p(l) = «. Hence F(Hu)> n"F(v) and we get proposition 1.3.
To prove proposition 1.4 it is sufficient to prove that for A e &

/o(A)>(|detA|+4)'/".

This will be done in lemmas 1.8 and 1.9. •

LEMMA 1.8. If Z is a zero-one matrix such that Z dominates I (i.e. Z>I) and it does
not dominate any other permutation matrix, then there is a permutation matrix P such
that P~lZP is triangular.

Proof. By induction on the dimension of Z. For n = 2 there is nothing to prove. To
obtain an inductive step we must prove that under the assumption above there is a
column of Z with exactly one 1 (placed obviously on the main diagonal).

The characteristic polynomial of Z is

det(Z-A/) = ( l-A)n .

Hence the only eigenvalue of Z is equal to 1. But because Z^O, then there must
be an eigenvector v > 0, v ̂  0. We have thus (Z - /) v = 0. So if, for instance, u, > 0,
then the first column of Z — / is zero. •

LEMMA 1.9. / / A e 9 then p(A")>(|det A| + 4)'/n.

Proof. Since det A ^ 0 then there is a permutation matrix P, such that A>P,, i.e.

Since A € 9 then in view of lemma 1.8, Z dominates at least one more permutation
matrix. By lemma 1.6, p(A) = p(Z). We will get the desired estimate for p(Z) by
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Invariant families of cones 149

induction on the dimension n of Z, n > 2. For n = 2,

and the estimate is obvious (it is also a special case of proposition 1.3). To obtain
the inductive step, consider matrices Z,, i=l,...,n obtained from Z by changing
all entries in the first row into zeros except the ith entry which we preserve (some
Z, may thus have zero first row). We have, for v e 0n,

F(Zv) = £ F(ZiV),

and

det Z = £ det Zf.
i=l

If some Z^ dominates at least two permutation matrices then by inductive assumption
and proposition 1.2,

F(Zu)>(|detZj+4)F(i>)+ I |detZ,|F(i;)

Hence we are left with the case when all Z, dominate at most one permutation
matrix. Without loss of generality we can assume then that Zx and Z2 dominate
exactly one permutation matrix and Z, dominates /. Then it is clear that Z2 can
dominate only a cycle. If the length of the cycle is equal to c > 2 then by a
straightforward computation,

and

fO if c is even
det(Z, + Z2) = {

[2 if cis odd.

Hence also in this case,

F(Zv)=F(Z^+Z2v)+ £ F(Z,v)
i = 3

>(|detZTfZ2f+4)F(t;)+£ |detZf|F(«)

s=(|detZ| + 4)F(»). D

Propositions 1.1 and 1.4 together with lemma 1.4 yield:

COROLLARY 1.1. IfAlt...,AkeS&e then r{Ax • • • Af c)>(l+4en)k / n .

We are also able to derive from the results above another characterization of the
family of matrices 9 (and S3F):

COROLLARY 1.2. A € 9ifand only if A € 9> andp(A) > |det A\l/n. In particular,
if and only ifAeSP and p{A)>\.
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150 M. Wojtkowski

Proof. In view of proposition 1.4 and lemmas 1.6 and 1.7, we have only to prove
that if Te Sf is a triangular matrix with l's on the main diagonal, then p(T) = 1.

To this end let v = (l, a,..., a), a>0. Then ueO+ and lima^0 F(Tv)/F(v) = I.

•
From corollary 1.2 and lemma 1.4 we get immediately:

COROLLARY 1.3. If Ae 9 and B s f then AB and BA belong to 9. In particular, if
AeSP and BBS& then AB and BA belong to S&.

Remark The privileged role played by the function F in the study of non-negative
matrices is no accident. Consider the n - 1 -dimensional projective space PR""1 and
its subset P0n of lines in ()„. Diagonal matrices act freely and transitively in P0*
and they preserve the measure given by the (n - l)-form

" + | Vj dvx A • • • A (JVj A • • • A dvn

•=i F(v)

where ^ means that we omit the corresponding 1 -form. A non-negative matrix takes
P0^ into itself and proposition 1.2 says that it contracts the measure.

2. Lyapunov exponents
Let T : X -* X be a measurable transformation preserving a probability measure n
and let A:X-»GL(n, R) be a measurable map such that log+ \\A(-)\\e L](X, /A).
We will call the pair (T, A) a measurable cocycle.

For natural n, let A" : X -» GL (M, U) be denned by

A"(X) = A(T-1X) • • • A(TX)A(X).

Thus for any natural n we have a measurable cocycle (T", A") which we call the
nth power of the cocycle (T, A). For any Y c X , /u,( Y)>0, we have the derived
transformation r y : Y-» Y. It is denned in the following way: for xe Y, let kY(x) =
min{n>l|Tnxe Y}. Then

T y X = T
kY^x.

We have kYe L\Y, p) and the function is called the return time. Let AY: Y-*
GL(«, R) be denned by

AY(x) = Akv(x\x).

The measurable cocycle (TY, AY) will be called the derived cocycle. Given a measur-
able cocycle (T, A) we define for veU", v^O,

X(X,V)=X(X,V;T,A)= lim —log ||A'(x)u||.
/-•+CO I

By Oseledec's multiplicative ergodic theorem (cf. [10], [13]) the limit above exists
almost everywhere, i.e. \(x, v) is defined for /A almost all xeX. It is called the
Lyapunov exponent. Moreover, \(x, v)< +<x> (the value -oo is not excluded) and
for a given x e X, x(x, v) has at most n distinct values. We have also

A W M = max {x(x, v)\ve W, v * 0} = lim - log || A\x)\\.
/
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LEMMA 2.1. For natural n, xeX, veU", u^O, we have \(X,V,T",A") =

nx(x,v,T,A).

LEMMA 2.2. Let Yc X, fi(Y)>0. Then for v eU", u#0 and almost all x e Y,
X(x, v; TY, AY) = t(x)x(x, v; r, A),

where r(x) = lim/^+co (1//) £.=0 kY{T'Yx), i.e. t(x) is the ergodic mean of the return
time kY with respect to the derived transformation TY.

Proof. Let tl(x)=l'r!okY(Ti
Yx).

X(X,V;TY,AY)= lim 7 log ||(>4y)'o|| = lim 7 log ||A'<(*>t;||

= X(X,V;T,A) lim (t,(x)/l). D
/-

We will need the following classical lemma from ergodic theory.

LEMMA 2.3. Let feLl(X,fj.) be positive almost everywhere. Then f+ =
lim,_,.+0O (1//) Z i = 1 / ° T' is (defined and) positive almost everywhere.
Proof. We have /+>0. Let Y = {xeX\f+(x) = 0}. Let us assume that /J,{Y)>0.

Considering / and T restricted to Y we get by Birkoff's ergodic theorem,
lYf+(x) dfi =lYf(x) d/j.>0, which gives a contradiction. •

THEOREM 2.1. Let (r,A) be a measurable cocycle with values in S&, i.e. A:X-*S!P,
then the maximal Lyapunov exponent is positive almost everywhere.

Proof According to corollary 1.2, for all x, p(A(x))> 1 and so logp(A(x))>0.
Further, by lemmas 1.4 and 1.5,

l-\og ||A'(x)||>ylogp(/l'(x))>ylogp(A(T'-1x)) • • • p{A(rx))p(A(x))

= \ l log p(A(r'x)).

So by lemma 2.3 we get our theorem. •

In many cases it is useful to have the following generalization of theorem 2.1.

THEOREM 2.2. Let (T, A) be a measurable cocycle with values in S2P, (i.e. A: X -> S&)
such that for almost every xeX there is N(x) > 1 such that AN(x)(x) e S&. Then the
maximal Lyapunov exponent is positive almost everyhere.

Proof. For natural n let Xn = {xe X\N(x) = «}. We have U^°, Xn = X mod 0. Take
Xn such that p.(Xn)>0. By corollary 1.3 the measurable cocycle

((T")X.,(A")X.)

(i.e. the derived cocycle of the nth power of (T, A)) has values in SS'. Hence by
theorem 2.1 its maximal Lyapunov exponent is positive almost everywhere. But then
by lemmas 2.1 and 2.2 we get that the maximal Lyapunov exponent of (T, A) is
positive almost everywhere in Xn. •
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Theorems 2.1 and 2.2 can be put in a setting of a diffeomorphism of a surface (with
singularities). Let <j>: M2-» M2 be a diffeomorphism of a two-dimensional manifold
M2 preserving a probability measure /x equivalent to an area element v denned by
some fixed Riemann metric on M2 (i.e. d/j./dv=f where fe V(M2, i>)). Suppose
further that there is a measurable bundle of sectors C(p) <= TPM2, p e M2 such that

Dp4>(C(p))^C(ct>(p)),

(the sectors C(p) are defined and the invariance property holds only for almost
every pe M2). Additionally we require that for almost all points pe M2 there is a
natural number n(p) such that Dp$"<p)(C(/?)) is contained strictly inside
C(<f>"(p)(p)), i.e. the boundary lines of C{p) are mapped inside C{<t>n{p\p)). In
such a situation we can choose a basis £,(/)), e2(p) in almost every tangent plane
TPM2 so that

C(p) = {veTpM
2\v = axel(p) + a2e2(p),ala2>0},

and the area of the parallelogram spanned by e,(p), e2(p) is equal to \/f(p). In
these coordinates all differentials Dp<j> are described by non-negative or non-positive
matrices and theorem 2.2 applies except that we must take care of the relation
between the norm || • || i in TPM2 induced from U2 by our choice of basis and the
norm || • || defined by the Riemann metric. Of course at each point pe M the two
norms are equivalent

but generally a, /? are only measurable functions.
By considering Xd = {pe M2\a(p)<d, /3(/7)>d~'}, and the derived cocycle we

have, in view of lemma 2.2, that its Lyapunov exponents are zero or non-zero
together with those of {<f>, D(j>) and, on the other hand, if we compute them in the
norm || • ||, we get the same result. Hence by theorem 2.2 Lyapunov exponents of
(<f>, D(f>) are non-zero almost everywhere.

Having in mind the application to billiards it is important to note that we can
allow singularities of (/> without affecting the conclusion (non-vanishing of Lyapunov
exponents).

The situation described above appears in several places, among them [8], [12].
We will describe in detail application of these ideas to billiards studied by
Bunimovich [4].

3. Billiards
We start with some elementary differential geometry. Let l(t), \t\ < e, be a smooth
family of directed lines in the plane. We introduce the following infinitesimal
characterization <jf the family along 1(0). We define the curvature of the family at
a point p e 1(0) to be the curvature with sign at p of the orthogonal section of our
family (the orthogonal section is the curve that intersects all the lines of our family
orthogonally). We choose the curvature to be negative if the acceleration vector of
the section points in the direction of the lines and positive in the other case (see
figure 1). If the orthogonal section fails to be a regular curve at p (if it is not defined)
then we put k = oo.
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k>0

FIGURE 1

A<0

Let fc,, k2 be curvatures of the family at points p{, p2e 1(0). Let / be the distance
between px and p2 and the direction of 1(0) be from p2 to p, (figure 2). Then

1-/*:,'
(1)

FIGURE 2

Let us now assume that the family of lines is reflected from some smooth curve.
Then at the point of reflection we have two curvatures: kb, the curvature of the
family before reflection and ka, the curvature of the family after reflection. We have

4
(2)

where \d\is the length of the segment of 1(0) inside the curvature disk of the curve
at a point of reflection; d is positive if the reflection takes place on the side of the
curve on which the curvature disk lies (focusing reflection) and negative in the
opposite case (dispersing reflection) (figure 3). When the reflection takes place at
a point at which the radius of the curvature is infinite (flat point) we have d = °o
and ka = kb.
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reflection *\M disk of curvature

Reflection from
focusing curve

Reflection from
dispersing curve

before
reflection

disk of curvature

F I G U R E 3

All the above statements can be proved by elementary geometrical considerations
and are at least implicit in the literature of the subject (see Bunimovich's paper [4],
which contains an extensive bibliography, or [7]).

Consider now a connected domain Q in the plane with piecewise smooth boundary
dQ. We will distinguish between focusing pieces of 3Q-the curvature disk lies on
the side of Q, and dispersing pieces of 3Q-the curvature disk lies on the other side
or is infinite.

By a billiard in Q we mean a dynamical system resulting from the uniform motion
of a point mass in Q with reflections at the boundary dQ according to the law 'the
angle of incidence equals the angle of reflection'. The dynamics of the billiard can
be reduced to the transformation T of S where S is the set of unit vectors attached
at dQ and pointing outward. T is defined in the following way: For veS draw a
straight line through the point at which v is attached in the direction opposite to
that of v up to the next point of intersection with dQ. Tv is the unit vector attached
at this point and symmetric to our straight line with respect to the boundary dQ
(figure 4). The definition of T follows an established tradition. Clearly S is a
two-dimensional manifold with singularities. T preserves a smooth measure (cf.
[4]). For almost all points in S, T and all its iterates are differentiable so it makes
sense to speak about Lyapunov exponents of (T, DT). A tangent vector to S at v
can be viewed as a parametrized family of directed lines f(t), |* |<e, where / (0)
has the direction of v and passes through the point at which v is attached. Families
with the same curvature describe tangent vectors differing by a scalar factor so that
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focusing piece
ofdQ

FIGURE 4

the curvature turns out to be the projective coordinate in the tangent plane of S.
So, to detect a family of invariant cones for DT we have only to look at the evolution
of curvature of a family of lines as it reflects from dQ for which we have formulae
(1) and (2). Denote projectivization of DVT by Pv From (1) and (2) we get

d(v) 1 - i
(3)

where I(v) is the length of the segment of <f(0) between the point at which v is
attached and the next point of intersection with dQ; \d(v)\ is the length of the
segment of /(0) inside the disk of curvature of dQ at the latter point; the sign of
d(v) is the same as in formula (2) (see figure 4).

We will now assume that Q satisfies Bunimovich conditions:
(a) At every point of a focusing piece of dQ, the disk of curvature lies entirely

in Q (i.e. if d(v) > 0 then l(v) > d(v) in formula (3)).
(b) For almost all v e S there is n(v) > 0 such that d(Tn{v)v)> 0 and l(Tn(v)v) >

d(Tn(v)v)oT d(TnMv)<0.

Remark. The only focusing pieces of dQ that are allowed under condition (a) are
arcs of circles. Indeed if a curve has variable curvature then except for critical points
of the curvature the disk of curvature fails to lie locally on one side of the curve.
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We will now define an invariant bundle of cones. For v e S we define a cone Cv

in the tangent plane to S at v by a condition on the curvature k related to a tangent
vector:

T~7 — k — + 0 0 if v is attached at a focusing piece of dQ

-oo < k < 0 if D is attached at a dispersing piece of d(?.

The bundle of cones Cv is invariant under DT, i.e. D T U C J c CTu. Indeed let us
check it, for example, in the situation when both v and Tv are attached at focusing
pieces of dQ. We get by (3) that if 2//(t>)< fc<+oo then

14 1
< p (Ic) < < +oo

d ( ) / ( )

Hence by theorem 2.2 and the discussion at the end of § 2 we obtain immediately
that the Lyapunov exponents are non-zero almost everywhere. The assumption of
strict inclusion in theorem 2.2 is ensured by condition (b).

Pesin theory ([11]) does not apply formally to our billiards because of singularities
of 5 and T, but the ideas behind it do apply (see [9]). So the properties of the
Bunimovich billiards, such as the positivity of metric entropy, and the Bernoullian
property for some power of T on each of the countably many ergodic components,
can be obtained formally from non-vanishing of Lyapunov exponents. Ergodicity
of such billiards (announced in [4]) lies beyond the scope of our approach.

4. Other types of cones
We will now consider matrices preserving other types of cones than the positive
octant of § 1. Let Q:R"-»R be a non-degenerate quadratic form of the type (1, n- 1).
Without loss of generality we can assume that

<?(u) =i>,-i>| v2
n = (Gv,v)

where

/I 0
- 1

G =

0 " - 1

and (•, •) denotes the standard scalar product. Linear transformations that preserve
Q form the Lorentz group O(l , n - 1).

Consider the cone C = {veW\Q(v)>0}. As in § 1 we introduce the family of
matrices

& = {A e GL (n, U)\ Q(Av) >0forveC,v* 0},

We will measure the length of vectors in C by \/Q(V).

LEMMA 4A. If veC then \\v\\>y/Q(v).
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Again we put for A G &

fA. . . lQ(Av)
p(A)= inf A/

veintC V Q(V)

Clearly the analogues of lemmas 1.4 and 1.5 hold so that we can conclude that

PROPOSITION 4.1. IfAeS@ then p(A)> 1.

Proof. For A e S?F we have to compare the quadratic forms A*Q, (A*Q)(v) = Q(Av),
and Q on C. First we prove that there is a Lorentz transformation Le 0 ( 1 , n - 1 )
which diagonalizes A*Q, i.e. L*A*Q is diagonal. For this purpose consider the
family PC of lines contained in C, PC c: PU"~l. PC is diffeomorphic to a closed
n - 1 -dimensional disk.

For a linear subspace VcR", let Vx denote its orthogonal complement with
respect to the quadratic form Q and VA the orthogonal complement with respect
to A*Q.

LEMMA 4.2. If A e 9 then for I e PC, (/A)x e int PC.

Proof. If A 6 ^ then A(PC) c int PC or equivalently

But Ve(PC)x iff VnintC = 0sothatif Ae^then

A-'((PC)X) c (int PC)X.
Now for /ePC,

(/A)X = (A-' ( (A/) X )) X . n

So the mapping PC 3 / ^ ( / A ) X E int PC has a fixed point /„G int PC, i.e. /A = /x. The
Lorentz group acts transitively on int PC so that there is a Lorentz transformation
Li that maps the t),-axis onto /0 and hence also the subspace v, = 0 onto /A. We
have as a result

where His some symmetric positive definite ( n - 1) x ( n - 1) matrix, t/ = (t>2, • • •, vn).
There is an orthogonal matrix U such that

A2 Ox

0 An/

Clearly L2, defined by L2u = (ui, Uv'), is a Lorentz transformation. For L= L{L2

we get

Since |det A| = 1 we must have A, • . . . • An = 1. But Q(ALv)>0 if Q(Lv) =
so that A, > max {A2, • • •, An}. Thus A, > 1 and there is 77 > 1 such that A, > T] >
max {A2, • • •, An}. Finally,

Q(ALv) - vQ(Lv) = (A, - v)v] + (v - A2)»!+ • • • + (TJ - An)o
2
B a 0 .

It follows immediately that p{A)>Ji}> 1. D
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Remark Proposition 4.1 is false if we start with a quadratic form Q of type (k, n - k),
2<fc<n-2 .

Using proposition 4.1 we can conclude in the way described in § 2 that for a
measurable cocycle with values in S3F the maximal Lyapunov exponent is positive
almost everywhere. For n = 2 we are back in the framework of § 1 and proposition
4.1 follows from corollary 1.2.

5. Symplectic Matrices
Consider the linear symplectic space R" xR" with the standard symplectic form
(o(u, v) = {$u, v) where

Oy

and (•, •) denotes the standard scalar product in R" xR" (or in R").
We take a very special quadratic form Q on R" xR":

Q(v) = (x,y) where v = (x, y), x,yeW.

It is a quadratic form of the type (n, n). Let C = {v eR2n\Q{v) >0}. We will proceed
along the same lines as in § 1 and § 4 but restrict our attention to symplectic matrices
only. So let

& = {SeSp(n,M)\Q(Sv)>0 if v e C, v # 0}.

We have

LEMMA 5.1. IfveCthen \\v\\ >s/2^Q(v).

Again for 5 e 9 we put p(S) = infoeint c <jQ(Sv)/Q(v).

LEMMA 5.2. IfSe & and v = (x,x), xeU" then ||Sw||>p(S)||w||.

Proof. \\Sv\\>J2jQ(Sv)>p(S)J2Q(v) = p(S)\\v\\. D

PROPOSITION 5.1. IfSe& then p(S)> 1.

Proof. Note that for A e GL(n, R),

/ A - 0 \

\ 0 AT)

is a symplectic matrix and it preserves Q. Let

He D.
where A, B, C, D are n x n matrices. We claim that if S e & then A is invertible.
Indeed if there is x e R" such that Ax = 0 then for u = (x, 0), Q(u) = 0 and Q{Su) = 0,
thus contradicting the fact that S takes the cone C strictly into itself. So we can
consider

-(A~l

[~\0 AT
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S, is symplectic, i.e. Sj^S, =# and we get easily that

1 R

I+PR

where P and R are symmetric. S, clearly belongs to & so that for u = (x, 0), x e R",
Q(Slu) = (Px,x)>0 if x 5*0, i.e. P is positive definite. Also R must be positive
definite. Indeed if it is not then there is y e R" such that (Ry, y) < 0, y # 0. But then
for M = (-Ry, y) e C we have S,(M) = (0, z), z e R", so that Q(S, w) = 0 which contra-
dicts the fact that S, e #

For M = (x, y) we have

so that

= Q(Slu)>Q(u),

and if <?(SM) = Q(M) then u = 0. We get that for M # 0, Q(Su) > Q(u). Consider the
ratio JQ(SU)/Q(U) for ne in tC, ||w|| = l. As u approaches the boundary of C,
|| u || = 1, the ratio tends to infinity so that the infimum is attained at a point from
intC, i.e. p (S )> l . D

As a byproduct of the above proof we get the following.

PROPOSITION 5.2. A symplectic matrix

s=(A B)
\C Dj

belongs to3FijfATCand BA7are positive definite (DTB and CDT are positive definite).
Note that ATC and BAT (also DTB and CDT) are symmetric because 5 is symplectic.

THEOREM 5.1. If a measurable cocycle has values in & then all its Lyapunov exponents
are different from zero.

Proof. By lemma 5.2 and proposition 5.2, using the methods of § 2, we have
exponential growth on the whole n-dimensional subspace {(x,y)eU2"\x = y}. So
the cocycle has n positive Lyapunov exponents. But if a cocycle has values in
symplectic matrices then the Lyapunov exponents appear in pairs A, -A ([3]). Hence
we also have n negative exponents. •

There is an infinitesimal version of theorem 5.1. We will formulate it explicitly
because it is related to non-vanishing of Lyapunov exponents for geodesic flows on
manifolds of non-negative sectional curvature satisfying additional property (rank
1) (see [2] and [5]).

Let us consider a continuous flow $ ' : M -* M on a compact manifold M preserving
a probability measure fi and a continuous mapping L:M->o/i(n, R), where a/i(n, U)
is the Lie algebra of Sp (n, U). For pe M consider the linear differential equation

du
— = LW(p))u, ueR2". (*)
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General solutions of (*) have the form u(t) = S'u(0) where S' is the matrix solution
of dS/dt = L(4>'(p))S such that S°=I.

Clearly all matrices S', teU are symplectic. We can define Lyapunov exponents
by

X(p, « )= lim - log ||S'u|| where/>e M, u eU2".

By Oseledec's multiplicative ergodic theorem we know that the limit exists /JL- almost
everywhere and for a given pe M, x(p, f) has at most In different values

A _ n < - • - < A _ , < - • - < A n ,

and because S' are symplectic then A_n = —An (for the last assertion see [3]).
Let us write L{<t>'(p)) in the form

where K and N are symmetric matrices because Leo/i(n,U). We will assume that
both K and N are non-negative definite for all (eK. This condition is equivalent
to S'(Ssy[C c C for all t > s. Indeed if u(t) = (x(t), y(t)) is the solution of (*) then

d _

Hence if ueC then Q ( M ) > 0 and for t>s,

i.e. S ' (Ss )" 'Cc:C Vice versa if S'(Ssy[C^C for all t>s, then for
M = (x, y), Q(u) = 0 we have

Hence taking u = (x, 0) and u = (0, y) we get that both K(s) and N{s) are non-negative
definite. We will say that the pair (</>', L) has 'rank 1' if additionally it satisfies the
following condition:

For almost all peM there are no solutions of (*) u(t) = (x(t),y(t)) such that
K(t)x(t) = 0 and N(t)y(t) = 0 except for the trivial zero solution.
It is not difficult to see that the last condition can be replaced by:

For almost all p e M there is t(p) > 0 such that if Q(u) > 0, u # 0, then Q(S'(l>)u) >
0, i.e. S'<p) takes the cone C strictly into itself.

THEOREM 5.2. If the pair {cj>\ L) as described above has "rank 1' then all Lyapunov
exponents are different from zero.

Proof. The Lyapunov exponents for (</>', L) are the same as for the measurable
cocycle {<f>l,S'). Similarly to the proof of theorem 2.2, let MN ={pe M\t(p)< N}
for natural N. We can apply theorem 5.1 to the derived cocycle ((4>N)M^ (5N)M v)
(note that S' e & if t > t(p)). But then also for (<f>\ L) the Lyapunov exponents are
non-zero almost everywhere. •
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Theorem 5.2 can be used to derive the fact that for geodesic flows on manifolds of
non-negative sectional curvature with the rank 1 Riemann metric the Lyapunov
exponents are non-zero (except for one corresponding to the direction of the flow)
(see [2], [5]). In the case oT the geodesic flow,

L~\-K 0

where —K is non-negative definite. The rank 1 condition for the Riemann metric
implies that for almost all points there are no solutions of (*) u(t) = (x(t), 0) such
that K{t)x(t) = 0.
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