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Abstract

Ignition or thermal explosion in an oxidizing porous body of material can be described
by a dimensionless reaction–diffusion equation of the form ∂t u =∇2u + λe−1/u .
Here such equations will be formulated in symmetrically shaped bounded regions �,
effectively reducing the mathematical formulation to that of one dimension. This
is critically re-examined from a modern perspective using numerical methods. A
computer algorithm is constructed and used to carry out a broad-ranging evaluation of
the watershed critical initial temperature conditions for thermal ignition of nonuniform
assemblies. It is then shown how the resulting mathematical structure for the ignition
threshold curves can be correlated by a hyperbolic conic section with a high degree
of accuracy over the full range of positive ambient temperature values. However, this
sometimes over-predicts (which is bad) and sometimes under-predicts (which is good)
the critical initial condition. The definition of additional dimensionless parameters is
found to generate further simplification, leading to a universal correlating form capable
of collapsing the entire solution space onto a single line in the plane of the new variables.
In addition, this study considers the physically intuitive conjecture that spatial moments
of the initial temperature profile ought to possess a direct mathematical link to the
critical ignition threshold. As such, the mth-order spatial moment of the critical total
energy content integrals is defined, and an empirical result is derived stating that certain
orders of this moment should be insensitive to changes in ambient temperature and
initial shape profile and may be considered functionally dependent on the dimensionless
eigenvalue only, within some quantifiable error band. Spatial moment integrals, based
on computed critical threshold conditions, are found to support this conjecture, with the
best accuracy obtained for the second-order moments.
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1. Introduction

Ignition or thermal explosion of a combustible substance occurs when exothermic
reactions evolve heat so rapidly that it is impossible to preserve a stable balance
between heat production and heat loss to the surroundings. The archetypal example
of self-heating is a porous pile of material in which heat is internally generated
by atmospheric oxidation. If the excess heat in the pile can be transported and
dissipated to the surroundings fast enough, an equilibrium or steady state can be
safely established. Under certain conditions, however, the dissipation mechanism
cannot keep pace with the self-heating rate and spontaneous ignition or explosion
will occur. These critical conditions depend on the size and shape of the pile, the
assembly temperature of the material, and the ambient temperature of the surrounding
environment.

The basic theoretical construct for this problem may be erected in a
rather straightforward manner using conservation principles and well-established
descriptions of the underlying chemical and physical processes. The resulting
mathematical formulation is commonly referred to as the reaction–diffusion equation
(only the energy balance):

ρcp
∂T

∂t
=∇.(k∇T )+ H(T ),

where t is time, T is the absolute temperature, ρ is the density, cp is the specific heat, k
is the thermal conductivity, and H(T ) is the rate of heat production per unit volume
at temperature T . This nonlinear partial differential equation is a localized expression
of the conservation of energy and implies that the rate of change of thermal energy
within a unit volume element is equal to the net conduction heat transfer through the
bounding surface plus the volumetric heat generation rate.

For most ignition problems of practical importance, it is possible to incorporate
certain simplifying assumptions which make the mathematics more tractable. These
include: (1) negligible reactant consumption, diffusion and advection (that is, the so-
called “zero-order” reaction); (2) constant thermal conductivity; and (3) Arrhenius
temperature dependence for exothermic reaction rate.

Use of these assumptions yields the following working form for the nonlinear heat
conduction equation:

α
∂T

∂t
=∇

2T +
ρQ A

k
e−Ea/RT , (1.1)

where α = ρcp/k is the reciprocal of the thermal diffusivity, Q is the heat of reaction
per unit mass (that is, the “exothermicity”), A is the pre-exponential frequency factor in
the Arrhenius reaction rate term, Ea is the activation energy, and R is the universal gas
constant; see Bowes [3]. When applied over a bounded region�, equating the heat flux
on the boundary to that of the net radiation of energy to the surroundings (linearized
by use of the approximation embodied in Newtonian cooling) yields a mixed boundary
condition on the piecewise smooth surface ∂�,

k
∂T

∂n
= h(Ta − Ts), (1.2a)
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where ∂/∂n is the outward normal derivative on ∂�, h is the convective heat transfer
coefficient, Ta is the ambient temperature of the surrounding environment, and Ts is
the material surface temperature. In order to make the full problem well posed, we
need an initial condition

T (x, 0)= T0(x) on ∂� and its boundary. (1.2b)

Given the shape and size of a bounded region, appropriate boundary conditions, and
values for the fundamental material properties, the basic objective is to mathematically
exploit the reaction–diffusion equation and determine the critical parameters and
conditions leading to the onset of ignition or thermal explosion. In particular,
we are concerned with predictions for the critical ambient temperature, which
defines an external environmental constraint for safe “storage”, and the critical initial
temperature, which defines an internal constraint for safe “assembly”.

From a mathematical perspective, there are two fundamental strategies for attacking
the reaction–diffusion equation and determining critical conditions for thermal
ignition. These are the stationary (steady-state) model and the nonstationary (transient)
model.

In the stationary model, the time-dependent term in Equation (1.1) is neglected and
steady-state solutions are sought for which heat losses exactly balance heat production.
This approach assumes unlimited reactants and implies that either a small steady-
state excess temperature will become established in the body or conversely that the
temperature will increase rapidly to a much higher temperature (the upper steady-
state) well above that which is sustainable in practical situations. The principal
attraction of the stationary modelling approach is a reduction of the problem to a more
amenable ordinary differential equation form, which has facilitated the development
and refinement of standard mathematical methods capable of accounting for internal
spatial temperature distributions and producing reliable estimates for the critical
ambient temperature. Because the stationary model cannot account for time evolution,
however, it has only limited effectiveness in the prediction of critical initial conditions.
It is well known, for instance, that many fires have resulted from the assembly of
reactive material at too high an initial temperature even though the storage conditions
were subcritical on the basis of steady-state theory; see, for example, Bowes [3] (who
refers to this as thermal explosion of the second kind), Rivers et al. [7], and Smedley
and Wake [8].

The nonstationary model, on the other hand, retains the complete time-dependent
form of the reaction–diffusion equation and evolves the full temperature history of
the self-heating body. The drawback of this approach is the general need to resort to
numerical analysis and the fact that a full development history must be computed for
each initial/boundary condition of potential interest. The distinct advantage, however,
is that it can fully account for the initial assembly conditions and is therefore able
to provide accurate estimates for the critical initial temperature. Weber et al. [9],
for instance, recently conducted a limited computational study of the nonstationary
model which clearly demonstrated that the practical critical assembly temperature
may, under certain circumstances, be 5–10% lower than the critical temperature
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obtained from steady-state theory. This has profound industrial implications in the
assessment of fire hazards and the definition of fire safety standards where a clear
distinction must be drawn between the classic “storage” problem, where only steady-
state temperatures are important, and the less recognized “assembly” problem, where
the initial temperature threshold for self-ignition is of vital concern.

The central objective of this research is the development and use of numerical
techniques to investigate the nonstationary solution sets of the full time-dependent
nonlinear heat conduction equation subject to a general convective boundary
condition, and to determine the critical threshold which distinguishes between initial
conditions that evolve to a low-temperature steady-state and those that evolve to a
high-temperature steady-state attractor (that is, thermally ignite). This numerical
methodology is then used as the basis for a broad-ranging numerical study of the
“assembly” problem using a generalized one-parameter power law for the initial
temperature profile. It is then shown how these results may be effectively reduced
using a simple hyperbolic correlation. Lastly, we demonstrate that certain spatial
moment integrals of the critical initial temperature distribution are functionally
independent of the ambient temperature and the assembly temperature profile.

2. Numerical models

2.1. Dimensionless form in modern variables Despite its predominance in the
literature, the traditional Frank–Kamenetskii grouping of dimensionless variables has
the effect of confusing the role of the ambient temperature when, in fact, it is the most
practically significant control parameter in the problem definition. To circumvent this
difficulty, Burnell et al. have suggested an alternative dimensionless grouping with
temperature rescaled independently of the ambient temperature [4].

The major distinction in the new grouping is the definition of a dimensionless
reactant temperature and a dimensionless ambient temperature that are completely
decoupled,

u =
RT

Ea
and U =

RTa

Ea
.

As in the classical Frank–Kamenetskii formulation (see [3]), we rescale and
normalize the spatial and time coordinates using the previously defined dimensionless
variables ξ = x/L and τ = t/αL2. Then substitution of the dimensionless
parameters into the reaction–diffusion equations (1.1), (1.2a) and (1.2b) yields the
Burnell–Graham-Eagle–Gray–Wake (see [4]) formulation in the modern compact
form

∂u

∂τ
=∇

2
ξ u + λe−1/u in �,

∂u

∂n
+ Bi(u −U )= 0 on ∂�.

Here, λ is a new dimensionless “eigenvalue-like parameter” given by

λ=
L2ρQ AR

k Ea
.
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In contrast with the eigenvalue δ of the Frank–Kamenetskii formulation, λ is decoupled
from the ambient temperature. Thus, U is the only parameter dependent on Ta . This
makes the reconciliation with experimental data, where Ta is the most common control
variable, considerably easier.

The new formulation may also be put in a generalized form applicable to all three
principal centrosymmetric solids. We expand the Laplacian operator in Cartesian,
cylindrical, and spherical coordinates and observe that these can all be represented in
the parameterized form

∇
2
ξ u =

∂2u

∂ξ2 +
n

ξ

∂u

∂ξ
,

where n is a geometrically defined parameter. That is, n = 0, 1 or 2 for the slab,
infinite circular cylinder, and sphere, respectively. Hence, the final working form of
the reaction–diffusion equation for class A shapes may be written as

∂u

∂τ
=
∂2u

∂ξ2 +
n

ξ

∂u

∂ξ
+ λe−1/u in �,

∂u

∂ξ
+ Bi(u −U )= 0 on ∂�. (2.1)

This arrangement of the reaction–diffusion equation contains no simplifying
approximations beyond those previously contained in Equations (1.1), (1.2a)
and (1.2b) and is a mathematically equivalent framework for the analysis of stationary
and nonstationary models of thermal ignition. Indeed, for numerical analyses, there
is no distinct advantage in using the Frank–Kamenetskii variables and it is indeed
preferable to utilize the Burnell–Graham-Eagle–Gray–Wake formulation, which
provides a more direct link to the physical domain. Thus, all formal developments
in this work are based on the latter formulation.

2.2. Stationary model Before embarking on the development of the stationary
model and a computational study of the oft neglected but practically important
assembly problem, it is first necessary to construct stationary model solutions to
provide a frame of reference for proper interpretation of the computed critical initial
threshold solutions. The stationary model follows directly from the full reaction–
diffusion equation in the limit of infinite time in the form

∇
2
ξ + λe−1/u

= 0 in �

where the boundary condition defined by Equation (2.1) still applies.
Balakrishnan, in one of the first attempts to utilize the Burnell–Graham-Eagle–

Gray–Wake variables, revisited the classic stationary model and carried out extensive
numerical analyses of the eigenvalue problem using path-following techniques [1].
This work illuminated the characteristic branch structure in the (u,U ) plane, including
accurate identification of the critical conditions for the steady “storage problem”,
which is given in terms of the dimensionless ambient temperature Ucr , which is defined
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as the first value at which the steady state exhibits “gross parametric sensitivity” to
small changes in the control parameter U (that is, at the first transcritical bifurcation
on the lower branch). This convincingly demonstrates that these alternative variables
provide improved physical clarity and gives a more straightforward interpretation
in terms of the ambient temperature control parameter, which is usually easily
determined.

Here, rather than following the sophisticated path-following solution methodology
outlined by Balakrishnan, we use an alternative simple method whereby the
conventional two-point boundary value problem is reformulated as an equivalent initial
value problem, seen more correctly as a shooting method, as conceived and described
by Billingham [2]. This simplification permits the direct construction of accurate
solution branches in the (u(0),U ) plane, with U as the bifurcation parameter. A
complete description of the methodology and validation of the results is given in
Luo [5].

2.3. Nonstationary model A standard numerical solution methodology for the
transient reaction–diffusion equation, which is parabolic in time and elliptic in
space, was constructed on the basis of second-order central differencing of the
spatial derivatives and Crank–Nicholson time integration. The resulting discretization
equations were applied at each grid point over the computational domain, and closure
was achieved through specification of boundary conditions at the symmetry axis and
at the external surface ∂�. In this way, time evolution of the full reaction–diffusion
equation reduces to the solution of a system of linear algebraic equations over a
sequence of discrete time steps. Here, it is advantageous to adopt a linear vector
space notation, which allows the system of equations to be compactly expressed by
the matrix equation

KU m+1
+ LU m

+ M = 0, (2.2)

where K , L and M are N × N square matrices containing numerical coefficients
and U is an N -element column vector containing the dependent variable values at
the grid points. The superscripts denote temporal indices indicative of evolving time.
The general solution of Equation (2.2) at time-step m + 1 follows immediately and
has the basic form

U m+1
= K−1

bLU m
− Mc (2.3)

where K−1 is the matrix inverse of K (being nonsingular). It is noted that this
simplified approach has linearized the nonlinear Arrhenius term. This is mitigated
by the fact that e−1/u has gradient no greater than 4e−2

= 0.54, and the routine has an
in-built adaptive step-size feature which is exercised according to the rate at which the
solution is changing. Furthermore, the solution was checked against more complicated
algorithms in Luo [5] and found to be in agreement.

Equation (2.3) may be solved by a number of algorithms, but the simplest and
most convenient follows from the standard Gaussian elimination procedure. Because
the nonzero elements of K align themselves along the central three diagonals of the
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matrix, the elimination process turns into particularly simple recurrence sequence.
This method is commonly referred to as the TDMA (Tri-Diagonal Matrix Algorithm),
a formal derivation of which may be found in standard numerical textbooks (see
Patankar [6], for instance).

The numerical methodology for nonstationary thermal ignition was implemented
in FORTRAN programming language to enable automated machine processing
on a digital computer platform. As a validation measure, comparative baseline
calculations were then performed with respect to published solutions in the peer-
reviewed literature. For a complete description of the numerical solution methodology
and supporting validation calculations, see Luo [5].

3. Critical initial conditions in nonuniform assemblies

Using the nonstationary numerical model, it is possible to undertake a judicious
examination of the thermally nonuniform assembly problem, in which the fate of
a self-heating material can be strongly dependent on initial conditions. Relevant
physical examples include the safety of processed reactive materials when placed into
piles or bins while hot and the initiation of explosives by localized hot spots (see
below). The central issue at hand is whether the initial temperature excess in the
assembly will continue to rise indefinitely or dissipate through conductive transport
and Newtonian cooling to the surroundings. Of particular interest to this study
is the critical demarcation boundary between those initial conditions serving as an
onset to ignition/explosion and those which ultimately decay to a self-extinguishing
quench state. For the general case of a nonuniform assembly, the transient solution
for the evolved state may be expected to display a marked sensitivity to the spatial
concentration of thermal energy at the outset, and criticality will depend on the
initial temperature distribution. In this section, we examine such subtle mathematical
issues in detail by incorporating a generalized self-consistent treatment of the initial
temperature distribution for the nonstationary model, which permits direct comparison
of criticality predictions against the stationary model. The use of the formulation
here gives rise to practical parameter values which are large for λ (= 104–1012), and
small for u,U (= 0.01–0.03). When translated back to the dimensional variables,
thermal runaway (a rapid but finite temperature increase) occurs in two to three days
for materials like milk powder, coal and so on. In the case of wet wool it was often
one to two weeks. Obviously this is dependent on Ta .

3.1. Generalized initial shape profile For clarity, we parameterize the solution
space for the computational study by adopting a generalized nonuniform initial
temperature distribution having the form

u(ξ, 0)=U + Cg(ξ),

where U is the dimensionless ambient temperature and C is an arbitrary constant
representing the initial perturbative displacement from ambient conditions. The
principal objective, given values for U , λ and Bi , is determination of the critical value
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for C , denoted by Ccr , which defines the watershed threshold between those initial
conditions that evolve to an upper steady-state (that is, ignition/explosion) and those
that evolve to a self-extinguishing steady-state quench. Every shape function g will
have a different value of Ccr , reflecting the high dimensionality of the set of critical
initial conditions.

The initial shape profile is defined by the one-parameter function

g(ξ)= Aε(1− ξ ε), ε ≥ 0,
g(ξ)→ 1, ε→∞

(3.1)

where ε is the initial profile shape factor and Aε is a normalization factor for preserving
total heat content irrespective of profile shape. With this definition, we anticipate the
existence of a family of critical initial condition profiles for each value of the initial
shape factor, ε. These profiles are reasonably general, since any real data for the initial
condition (which is typically very sparse) can be fitted by regression to the best fit
using ε, with its single degree of freedom. Of course, this is indicative only.

Normalization is achieved through a constraint on the spatial integral of g(ξ) such
that it is invariant with ε . The value of this integral is taken to be unity for convenience:

I =
∫ 1

0
g(ξ) dξ = 1.

Thus, substitution of Equation (3.1) and execution of elementary integration steps
yields the following expression for the normalization factor:

Aε =
ε + 1
ε

which clearly demonstrates that Aε must decrease as ε increases in order to preserve
energy content in the distribution. Normalized initial shape profiles for representative
values of the shape factor are shown in Figure 1. These include linear (ε = 1),
parabolic (ε = 2), and uniform (ε =∞) initial temperature distributions for the three
principal centrosymmetric solids of interest to this study. The singular case is a point
source (ε = 0), which gives g(ξ)= δ(ξ), the Dirac delta function centred on the origin.
The corresponding normalization factors are summarized in Table 1.

3.2. Parametric survey The general objective of the analysis is to determine the
variation in Ccr with U , provided fixed values of λ and Bi , using ε as an independent
parameter for initial heat concentration. We may reasonably anticipate from physical
intuition the following functional dependence: (i) Ccr will decrease as U increases;
(ii) Ccr will decrease as λ increases; and, (iii) Ccr will decrease as Bi decreases. It
is intuitively obvious, however, that AεCcr would better serve as the parameter of
choice in defining the critical threshold since Aε exhibits a strong dependence on the
value of ε. Previous cursory numerical investigation has supported the basic preceding
conclusions [9], and the intent here is to buttress this argument with additional
computational results. Specifically, we construct critical threshold curves for all three
principal centrosymmetric solids over a wide range of values for λ and ε.
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FIGURE 1. Normalized initial shape profiles for representative values of ε.

TABLE 1. Summary of profile shape factors and normalization factors.

Profile shape factor (ε) Normalization factor (Aε)

0 (hot spot) 1
1/2 3

1 (linear) 2
2 (parabolic) 3/2
∞ (uniform) 1

To implement the numerical study, it was first necessary to construct an automated
search procedure by which the nonstationary model could be used to determine Ccr
for arbitrary values of U given fixed values for λ, Bi and ε. This was accomplished in
practice by assuming a very small value for C and computing a fully evolved temporal
solution for a selected value of U . If the long-term solution is found to evolve to the
lower steady-state solution, the results are recorded, C is given a small incremental
increase, and the calculation is automatically repeated again and again. The value
of Ccr is ultimately resolved when a fully evolved solution to the upper steady-state
attractor is obtained. By starting with a very small value for U and repeating the above
procedure with incrementally increasing values, it is possible to fully construct the
critical initial threshold curve out to the bifurcation point, Ucr .
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The above automated search procedure was implemented in computer code, and
calculations were then carried out for the three principal centrosymmetric solids given
λ= 104, 106, 108 assuming Bi→∞, which, as mentioned before, are the values
found in previous practical investigations: milk powder at the lower end and coal at the
higher end. Although this crude search procedure proved effective and accurate for the
purpose at hand, it is obviously inefficient and computationally expensive, the exact
computing time being dependent, of course, on the size of the step increments and
the speed of the microprocessor. In practice, it was necessary to balance the need for
fidelity and resolution against the time required to construct a solution. Construction
of a single threshold curve of satisfactory accuracy, for instance, would normally take
several days of continuous runtime on a dedicated personal computer.

Representative computational results for the nonuniform assembly problem are
shown in Figures 2–4, which summarize criticality characteristics for the planar slab,
infinite cylinder, and sphere using linear (ε = 1), parabolic (ε = 2), and uniform
(ε =∞) initial temperature distributions. For each value of λ and geometry
shape, the critical threshold curves of u(0)=U + Ccr g(0) versus U as well as the
quench-state curve u(0) versus U are given for each of the three simple geometric
configurations under consideration. For purposes of comparison, stable lower and
unstable intermediate branch solutions of the stationary model are also displayed on
these graphs, the stable lower solution as a continuous line and the unstable ones as
dashed lines. The corresponding curves for AεCcr versus U are also displayed since
they will prove to be important in the analysis to follow. The stable upper steady-state
curve is not shown since it is several orders of magnitude larger than the criticality and
lower steady-state branches and is of no physical consequence other than serving as a
mathematical attractor for ignition.

The mathematical feature of essential importance and interest to be extracted
from these results is the fact that the exact criticality threshold, as predicted by the
nonstationary model, is significantly different from the unstable intermediate steady
state, as predicted by the stationary model. The latter is of course a very weak
threshold in the spatially distributed situation discussed here, since upper and lower
solutions theory requires the initial condition to be either always above or below this
in order to be sure that it will tend asymptotically to the upper or lower stable steady
states, respectively. With initial conditions which are neither, the threshold needs to
be determined more precisely, as we have shown. Although the models yield identical
predictions for the bifurcation point critical ambient temperature, Ucr , the ignition
threshold for assembly of initially hot materials is found to be considerably lower
than that deduced from the stationary model, which of course presumes the initial
condition to be always above or below the intermediate steady state(s). This has
serious implications, since in the well-stirred reactor the unstable intermediate steady-
state solution provides an adequate estimate for safe assembly of potentially hazardous
self-heating materials. It is clear from these results, however, that this is severely
flawed and its careless use could have grave practical consequences. Interestingly, the
intermediate steady state shows that it can both underestimate and overestimate the
actual critical threshold, depending on the shape of the initial profile.
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FIGURE 2. Criticality thresholds for nonuniform planar slab assemblies (λ= 104, Bi =∞).
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FIGURE 3. Criticality thresholds for nonuniform infinite cylinder assemblies (λ= 106, Bi =∞).
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FIGURE 4. Criticality thresholds for nonuniform infinite spherical assemblies (λ= 108, Bi =∞).
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4. Correlation and reduction of the critical assembly conditions

The extensive numerical parametric study above was undertaken to identify the
critical threshold separating those initial conditions which lead to ignition/explosion
and those which ultimately decay to a self-extinguishing quench state. The outcome, a
broad set of numerically constructed ignition thresholds over a wide range of values for
the dimensionless eigenvalue, provides a reliable database for precisely determining
ignition hazards given very specific physical conditions. From a deeper theoretical
perspective, however, there is a natural desire to seek further means of reducing,
ordering and correlating these results such that the underlying mathematical structure
may be revealed and expressed in the most compact and economical form possible.

4.1. Hyperbolic correlation At this stage, we are confronted with a large parametric
database for which there are no obvious means of ordering and reducing the results
in a straightforward deductive way. What we are seeking, of course, is a means of
discovering and revealing hidden mathematical structure through an indirect process
of intuitive reasoning. Under these circumstances, it is natural to examine the data
in search of basic mathematical forms that can organize the results and provide
improved insight. Of the numerous correlating forms that could be considered, conic
sections offer one of the simplest and most widely useful constructs available. Here,
we examine in detail the application of a second-degree conic section correlation to
the critical initial condition thresholds, and demonstrate effective compaction of the
solution space’s mathematical structure.

Close examination of the threshold curves in the ACcr ,U plane reveals structural
features which tend to be associated with a hyperbolic conic section. For instance, a
hyperbola has a pair of slant asymptotes which approximate the asymptotic behaviour
of the critical threshold curves as U decreases towards zero.

In order to develop the desired hyperbolic correlation for the threshold curves in
the ACcr ,U plane, we begin by noting that a point (x, y) is on the hyperbola with
centre (h, k), horizontal vertices (h, k ± a), and foci (h, k ± c) if and only if it satisfies
the equation

(x − h)2

a2 −
(y − k)2

b2 = 1,

where b2
= c2
− a2. In this particular case, we identify the transverse and conjugate

coordinates in the AεCcr ,U plane as x =U and y = AεCcr and define a new
parameter 0 = AεCcr to arrive at the relation

(U − h)2

a2 −
(0 − k)2

b2 = 1.

At this point, we impose the obvious constraints h =Ucr + a and k = 0 and deduce
our essential correlation equation

(U −Ucr − a)2

a2 −
02

b2 = 1. (4.1)
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Utilization of this correlation equation requires the introduction of certain additional
assumptions in order to fully define values for the vertices and the foci. As a basis for
the first assumption, we note that the slope of the critical threshold curve 0 = AεCcr
away from the critical ambient temperature, Ucr , is approximately unity. Since this
slope should match the slope of the slant asymptotes for the hyperbola, which by
definition must take the value ±b/a, we immediately deduce the constraint b ≈ a. In
which case, Equation (4.1) takes the simpler form

02 = (U −Ucr − a)2 − a2. (4.2)

The final remaining issue concerns definition of the vertex, a. From casual
inspection of the critical threshold curves, we clearly anticipate that the value of
a must decrease as ε increases. As such, we introduce the two-parameter correlating
expression

a = α + β

(
2
ε

)
, (4.3)

where α and β are fitting parameters and a is assumed to vary inversely with ε. Note
that a multiplicative factor of 2 was introduced into Equation (4.3) as a means of
scaling β such that a = α + β when ε = 2.

The objective now is to deduce the best parameter values for fitting Equation (4.2)
to the precise critical threshold curves in the 0,U plane based on the complete data
set from the preceding parametric study. This exercise yields an array of optimal
fitting parameters having a one-to-one correspondence with the array of (n, λ) values
from the parametric study. These fitting parameters are summarized in Table 2. Some
representative plots of the hyperbolic correlation curves are shown with the precise
computational threshold curves in Figure 5 for each value of ε. Shown are results for
the slab geometry (n = 0) with λ= 104, the cylindrical geometry (n = 1) with λ= 106

and the spherical geometry (n = 2) with λ= 108.
Inspection of these figures clearly demonstrates that the hyperbolic correlation

provides an excellent fit to the precise computational results over the full range
of ε and λ values under consideration. Thus, we conclude that the mathematical
structure of the complete solution space is accurately captured by a simple hyperbolic
conic section, as defined by Equation (4.2), when using a two-parameter correlating
expression for the vertex, as given by Equation (4.3). Variations in the fitting
parameters appear to be smooth and well behaved, and it is clear that α and β could
further be expressed as analytical functions of n and λ, as well. Here, however, we are
content to leave them in tabulated form only.

4.2. Reduction to compact universal form Application of the hyperbolic
correlation to the complete parametric solution space provides pleasing results and
encourages further examination of the mathematical implications. For example, an
immediate follow-on question arises as to whether it is possible to achieve additional
reduction through the deduction of a compact universal correlating form. To pursue
this question in detail, we revisit our hyperbolic correlation in the simplified form of
Equation (4.2).
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FIGURE 5. AεCcr versus U for different assemblies: (top) nonuniform slab assemblies (λ= 104);
(middle) nonuniform infinite cylinder assemblies (λ= 106); and (bottom) nonuniform spherical
assemblies (λ= 108). Precise computational value – symbols. Hyperbolic correlation – curves.
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TABLE 2. Optimal fitting parameters for hyperbolic correlation.

λ= 104 λ= 106 λ= 108

Slab (n = 0)
α 0.0200 0.0100 0.0060
β 0.0170 0.0080 0.0052

Cylinder (n = 1)
α 0.0200 0.0097 0.0056
β 0.0250 0.0110 0.0065

Sphere (n = 2)
α 0.0200 0.0090 0.0050
β 0.0300 0.0130 0.0075

Our first course of action is to define a new dimensionless temperature 1U =
Ucr −U so that Equation (4.2) may be written as

02
= (−1U − a)2 − a2.

Then we expand the bracketed square in order to find

02
=1U 2

+ 2a1U or 1U 2
+ 2a1U − 02

= 0.

Noting that this equation is quadratic in1U , we may immediately write an expression
defining 1U explicitly in terms of 0:

1U =
√
02 + a2 − a. (4.4)

We now have a convenient explicit correlating form that completely captures the
essential mathematical structure of the parametric solution space, and it is strikingly
simple. An even simpler form can now be had by defining the right-hand side of (4.4)
as a new dimensionless criticality parameter, 0̂ =

√
02 + a2 − a. We therefore arrive

at the universal linear correlating form

0̂ =1U.

This result is utterly simple and, in a sense, mathematically beautiful since it
collapses the entire solution space onto a single line in the 0̂, 1U plane. The results
of this exercise are summarized in Figure 6 for the slab, cylinder and sphere. Although
all of the data collapses to the same universal line, the results are depicted separately
by geometry in order to avoid excess clutter. We concede that the small errors implicit
in this reduction do not give rigorous bounds to the actual threshold, but do give a
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way of approximating it. A detailed computation such as outlined earlier is needed if
serious doubt remained in any practical instance.

The fit to the universal line is generally good except for some slight deviation in
the low ambient temperature region where U �Ucr . This deviation arises from the
fact that the actual threshold curve begins to inflect as it nears and passes through the
U = 0 axis, whereas the hyperbolic correlation requires a continuous merging with the
slant asymptote. Even there, the deviation is not extremely large. In general, the fit is
better at large values and slightly degrades as the value becomes smaller and the initial
thermal distribution has a higher degree of nonuniformity.

4.3. Spatial moments of energy content integral Intuitively, we expect that the
ultimate fate of a combustible assembly should have a direct mathematical coupling
to its initial energy distribution. We further anticipate that the predisposition for this
assembly to either ignite or quench may be conveniently and compactly expressed as
an integral over this initial energy distribution. Our purpose, then, is to rigorously
define the initial energy content integral and precisely state a mathematical conjecture
relating spatial moments of this integral to the fate of thermally nonuniform assemblies
of combustible substances. The results of the previous computational parametric study
may then used as a basis for thoroughly testing the conjecture and establishing a
provisional basis for its acceptance and application to industrial fire problems of great
practical interest.

From physical reasoning, we assert that the critical condition for ignition of a
thermally nonuniform combustible assembly depends largely upon the initial energy
concentration or density, particularly within a centralized hot region as represented by
the one-parameter shape profile of Figure 1. Here, the hot spot has been centred on
the axis of symmetry as a worst-case representation since the dispersion and removal
of excess heat is most impeded under these circumstances.

We begin by noting that the total initial energy content within the material
assembly may be expressed succinctly and conveniently as the volume integral of the
dimensionless reactant temperature over the complete assembly volume:

Ê =
*

ê dV =
*

u dV .

With more specificity, we apply the energy content integral to the principal
centrosymmetric solids and obtain the simplified expression

Ê =
∫ 1

0
ê(ξ, t) dξ =

∫ 1

0
u(ξ, t) dξ

which is to be evaluated at time t = 0. As a point of clarification, it should be noted
that certain geometrical multiplication factors have been neglected here in order to
achieve commonality of form.
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Let us proceed further by considering spatial moments of our dimensionless energy
content integral. The conventional approach for defining a spatial moment is to weight
the kernel of the integral by the distance from the origin (that is, the moment arm)
raised to some arbitrary power, which defines the order of the moment. Naturally, this
places less weight on contributions to the integral that are closer to the origin than on
those that are farther away. Because our hot spot is located on the axis of symmetry,
however, we wish to place more weight on integral contributions that are closest to
the origin. Thus, we henceforth define our moment arm using the factor (1− ξ ) and
define the mth-order spatial moment for the nth class geometry as

ψm,n =

∫ 1

0
(1− ξ)mu(ξ, 0) dξ.

Recalling the generalized one-parameter initial shape profile, we deduce the practical
working form

ψm,n =

∫ 1

0
(1− ξ)m[U + Ccr g(ξ)] dξ =

∫ 1

0
(1− ξ)m[U + Ccr Aε(1− ξ ε)] dξ.

(4.5)
It should be clear that this expression is explicitly dependent on the geometrical index n
and that the influence of geometry on the spatial moment is carried entirely within the
critical constant, Ccr .

We now state, based principally on intuitive reasoning, the following mathematical
conjecture. Given any thermally nonuniform assembly in the form of a principal
centrosymmetric solid, there exist nonstationary solutions to the Burnell–Graham-
Eagle–Gray–Wake reaction–diffusion equation, under the constraint Bi→∞,
for which certain order-m spatial moments of the critical total energy content
integral,ψm,n , are insensitive to changes in the dimensionless ambient temperature, U,
and the initial shape profile parameter, ε, and may be considered functionally
dependent on the dimensionless eigenvalue, λ, only.

As a means of generating reliable quantitative evidence for the previously stated
conjecture, we now consider the first- and second-order spatial moments (m = 1, 2)
of the critical total energy content integrals over the full parameter space of the
computational study. Evaluation of these integrals was effected by numerically
integrating (4.5) using a cubic spline interpolation procedure to define Ccr Aε between
available data points. The results of these evaluations are summarized in Figures 8–10
which display the variation in ψm,n with U/Ucr over the entire parameter range of
the study.

Inspection of the resulting first- and second-order spatial moments provides
provisional confirmation of our conjecture and indicates that the second-order
moment, which has a narrower error band, may serve as a more accurate basis of
prediction. It should also be noted that the error band exhibits a tendency to narrow
as the value of λ increases. Results for the third-order spatial moments, which were
also computed but not displayed, showed a rewidening of the error band. Apparently,
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FIGURE 8. Order-m spatial moments of energy content integrals (n = 0; m = 1, 2). The legend of Figure 6
applies here.

the second-order spatial moment satisfies our conjecture with the least variance and
the smallest realizable error band. Spatial moments of noninteger order were not
considered.

If we accept these results as provisional validation for the conjecture, we now
have at hand a simple method for rapidly calculating fire hazard risks for thermally
nonuniform assemblies of self-heating materials. Assuming that the assembly
temperature profile u(ξ, 0) is known with a reasonable degree of confidence and that
the physical characteristics of the substance are well enough defined to compute λ to
good accuracy, one may simply evaluate the spatial moment from (4.5) and compare
this result with the mean value of the moments determined by this study. If the
computed spatial moment is near or greater than the mean reference value, at the
specified value of λ, then the risk of spontaneous ignition should be considered high.
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If the computed spatial moment is less than that mean reference value, one may safely
assume that the risk is low or negligible, depending on the magnitude of the difference.
Arithmetically averaged values for the spatial moment integrals 9m,n are summarized
in Table 3 for convenient utilization and are also plotted as a function of λ in Figure 7.

5. Conclusions

Prior to this work, a number of practically important questions remained
unanswered concerning the critical threshold for thermal ignition in reactive
assemblies with nonuniform initial temperature distributions. To seek answers to
such questions, the reaction–diffusion equation in the dimensionless form ∂t u =
∇

2u + λe−1/u over the bounded region � of the principal centrosymmetric solids
was critically re-examined from the perspective of modern numerical methodologies.

https://doi.org/10.1017/S1446181109000224 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181109000224


[21] Numerical determination of critical conditions for thermal ignition 303

0.01

0.00

0.02

0.03

0.04

0 0.25 0.5 0.75 1

0.00

0.01

0.02

0.03

0.04

0.05

0 0.25 0.5 0.75 1

Ψ

Ψ

λ

λ

λ

λ

λ

λ

FIGURE 10. Order-m spatial moments of energy content integrals (n = 2; m = 1, 2). The legend of
Figure 6 applies here.

The purpose was to broadly and deeply penetrate the solution space in order to reveal
a more detailed description of the underlying mathematical structure, which could be
further used to establish conjectural and correlating principles of general predictive
utility.

A numerical procedure was then implemented for solving the full time-dependent
form of the reaction–diffusion equation. This procedure combined second-order
central differencing for the spatial derivative with a Crank–Nicholson time integration
scheme, including a time-dependent convective boundary condition, to produce an
efficient and accurate solver routine. A judicious examination of the assembly problem
was then undertaken to expose how the fate of a self-heating material is dependent
on the internal spatial concentration of thermal energy at the time of assembly.
By introducing a normalized shape profile for the initial temperature distribution,
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TABLE 3. Arithmetically averaged values of spatial moment integrals.

λ= 104 λ= 106 λ= 108

Slab (n = 0)
m = 1 0.041 0.028 0.022
m = 2 0.028 0.019 0.015

Cylinder (n = 1)
m = 1 0.045 0.030 0.022
m = 2 0.031 0.021 0.015

Sphere (n = 2)
m = 1 0.047 0.031 0.023
m = 2 0.033 0.021 0.016

as defined by a single geometric parameter, it was then possible to compute criticality
threshold characteristics over a broad range of practical values for the dimensionless
eigenvalue parameter.

It was shown how the resulting mathematical structure for the ignition threshold
curves could be correlated by a hyperbolic conic section with a high degree of accuracy
over the full range of positive ambient temperature values. Moreover, the clever
introduction of new dimensionless parameters within this hyperbolic correlating form
was found to generate further simplification, leading to a universal correlating form
capable of collapsing the entire solution space onto a single line in the plane of the
new variables. This result was found to hold over a wide range of shape parameters
and is therefore believed to be of general significance.

In addition, this study addressed the physically realistic conjecture that spatial
moments of the initial temperature profile ought to possess a direct mathematical link
to the critical ignition threshold. As such, the mth-order spatial moment of the critical
total energy content integrals was defined, and a conjecture was formulated stating
that certain orders of this moment would remain invariant with changes in ambient
temperature and initial shape profile and would therefore be functionally dependent on
the dimensionless eigenvalue only, within some quantifiable error band. Evaluations
of the spatial moment integrals demonstrated this conjecture to be provisionally valid,
with the best accuracy obtained for second-order moments. The invariance property
for the spatial moment turns out to be quite powerful and yields a simple but fairly
accurate method for estimating fire hazard risks for thermally nonuniform assemblies
of self-heating materials. We remark that this was investigated only for profiles of
the type given in (3.1). The framing and verification of this conjecture represents a
significant accomplishment and greatly expands our mathematical understanding of
this practically important problem.
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