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High-dimensional dynamical systems projected onto a lower-dimensional manifold
cease to be deterministic and are best described by probability distributions in the
projected state space. Their equations of motion map onto an evolution operator with
a deterministic component, describing the projected dynamics, and a stochastic one
representing the neglected dimensions. This is illustrated with data-driven models for a
moderate-Reynolds-number turbulent channel. It is shown that, for projections in which
the deterministic component is dominant, relatively ‘physics-free’ stochastic Markovian
models can be constructed that mimic many of the statistics of the real flow, even for fairly
crude operator approximations, and this is related to general properties of Markov chains.
Deterministic models converge to steady states, but the simplified stochastic models can
be used to suggest what is essential to the flow and what is not.

Key words: big data, chaos, turbulent boundary layers

1. Introduction

The recent proliferation of language models that mimic human conversation based on the
statistical analysis of largely syntax-free unlabelled data (Brown et al. 2020) naturally
raises the question of whether something similar can be done in physics. In both cases,
the underlying dynamics is known: grammar in the former and the equations of motion
in the latter, and the goal is not so much to reproduce the system in detail as to construct
statistical analogues that either simplify simulations or isolate aspects of the problem to
be further studied by other means. Rather than attacking the abstract question, we proceed
to construct such a model in the restricted domain of wall-bounded turbulence: a physical
system for which the equations are understood, and where the problem is how to interpret
the observations from numerical simulations and experiments. A basic statistical analysis
of such a system was performed in Jiménez (2023), and will not be repeated here. Our
goal is to construct simple models in a controlled environment in which the right answers
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Case Reτ uτ τ/h nT Grid Deg. of freedom

C350 350 0.022 2.5 × 104 64 × 193 × 64 1.6 × 106

C550 535 0.020 2.5 × 104 96 × 257 × 96 4.7 × 106

C950 949 0.025 5.1 × 104 128 × 385 × 128 11.7 × 106

Table 1. Parameters of the DNS data bases. The number of flow snapshots is nT , spaced in time by τ . Since
the two walls are treated as independent, the effective number of data points is 2nT . The grid is expressed in
terms of real Fourier or Chebychev (x, y, z) modes, and the number of degrees of freedom is twice the number
of grid points.

are essentially known, and learn what can be reproduced from the observation of the data.
This will also allow us to deal with interpretable statistics, rather than with more obscure
complex algorithms, and learn something both about the flow and about what data-driven
models can do in general.

Turbulence is a dynamical system whose temporal evolution follows the deterministic
Navier–Stokes equations. However, when the state of the flow, X , is parametrised, for
example, by the velocity components at all points of the flow field, its dimensionality
is formally infinite and, even when numerically discretised, the number of degrees of
freedom is typically in the millions (see table 1). Its direct numerical simulation (DNS) is
a well-developed technique, but high-dimensional systems are generically chaotic, and the
trajectories thus obtained are only relevant in the sense of being statistically representative
of many possible such trajectories. Interpreting DNS data usually implies projecting
them onto a lower-dimensional manifold of observables, whose evolution is no longer
deterministic because each projected point represents many different states along the
neglected dimensions. It was argued in Jiménez (2023) that these reduced-order systems
are best studied by replacing the equations of motion with transition probabilities between
ensembles of projected states at different times.

The statistical view of turbulence physics has a long history, although computers
have only recently been able to deal with the required data sets. Early work treated
the flow either as a large but finite collection of coherent structures (Onsager 1949),
or as the evolution of ensembles in functional space (Hopf 1952). More recent
analyses have centred on the probability distributions over finite-dimensional partitions
of the state space, for which the evolution reduces to a map between temporally
equispaced snapshots. However, while the classical statistical analysis applies to dynamical
systems in which the probabilistic description is a choice, we will be interested in
the intrinsically non-deterministic projected dynamics. Related operator methods in
turbulence are discussed by Froyland & Padberg (2009), Kaiser et al. (2014), Schmid,
García-Gutiérrez & Jiménez (2018), Brunton, Noack & Koumoutsakos (2020), Fernex,
Noack & Semaan (2021), Taira & Nair (2022) and Souza (2023), among others. This
paper explores how much of the behaviour of a turbulent system can be approximated by
a time series generated by the transition operator that links consecutive time steps in a
‘training’ experiment. In essence, which part of the long-term behaviour of the system is
contained in its otherwise ‘physics-free’ short-term statistics. This will lead to Markovian
reduced-order models (ROMs), and we will be interested in three questions. The first
is whether the Markov process converges in the projected subspace to a probability
distribution similar to that of the original system. The second is whether the projection
conserves enough information of the neglected dimensions to say something about them.
The third is whether further approximations destroy its usefulness.
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Fake turbulence

The paper is organised as follows. The methods and data used in the analysis are
described in § 2. Results are discussed in § 3, including how well physics is approximated
by the model time series, the reasons why it does or does not, and what measures can be
taken to alleviate hallucinations and overfitting. Conclusions are summarised in § 4.

2. Methods and data

We analyse an extended version of the computational data set used in Jiménez (2023).
The number of snapshots in that simulation (C950, see table 1) has been extended to
improve statistics, and two simulations (C350 and C550) have been added to explore
the effect of the Reynolds number. A pressure-driven spatially periodic turbulent channel
flow is established between parallel plates separated by 2h. The streamwise, wall-normal
and spanwise coordinates are x, y and z, respectively, and the corresponding velocity
components are u, v and w. Capital letters denote y-dependent ensemble averages, 〈〉,
as in U( y), and lower-case ones are fluctuations with respect to them. Primes are
root-mean-squared intensities, and the ‘+’ superscript denotes normalisation with the
kinematic viscosity, ν, and with the friction velocity uτ = √

ν∂yU|y=0. The code is
standard dealiased Fourier–Chebychev spectral (Kim, Moin & Moser 1987), with constant
mass flux. Time expressed in eddy turnovers is denoted as t∗ = uτ t/h, and the friction
Reynolds number is Reτ = huτ /ν. Further details can be found in Jiménez (2013). We
mostly describe results for the highest-Reynolds-number case C950, but they vary little
within the limited range of Reτ available, and some comparisons are included.

The wall-parallel periods of the computational box, Lx = πh/2 and Lz = πh/4, are
chosen small enough for the flow to be minimal in a band of wall distances y/h ≈ 0.2–0.6
(Flores & Jiménez 2010), in the sense that a non-negligible fraction of the kinetic energy
is contained in a single large structure that bursts irregularly at typical intervals t∗ ≈ 2–3.
The present simulations contain several hundreds of bursts per wall, and approximately
100 samples per burst. Moreover, since the small box allows little interaction between the
two walls, they are treated as independent, doubling the number of effective snapshots. The
numerical time step, 80 to 500 times shorter than the time between snapshots, depending
on Reτ , varies by approximately ±15 % within the run, and data are interpolated to a
uniform interval τ before their use.

We compile statistics over partitions in which each coordinate of the D-dimensional
state space is discretised in O(m) bins, so that the dimension of the probability distribution,
q = {qj}, j = 1 · · · ND, is ND = O(mD). Snapshots separated in time by �t are related by
a Perron–Frobenius transition operator, Q�t (PFO, Beck & Schlögl 1993), Qt, shortened
from now on to PFO (Beck & Schlögl 1993), defined by

q(t +�t) = Q�tq(t), (2.1)

which is an ND × ND stochastic matrix with O(m2D) elements. Each of its columns is the
probability distribution of the descendants at t +�t of the points in one cell at time t
(Lancaster 1969). We will assume Q to depend on the data interval �t, typically chosen
as a multiple of the sampling interval, but not explicitly on time. It is constructed as the
joint histogram of the indices of the cells occupied by snapshots separated by �t during
a training run (Ulam 1964). Since the number of data needed to populate Q is at least a
multiple of the number of its elements, even a modest choice, m ∼ 10, limits the dimension
of a model trained on 105 data to D ≤ 3. We use D = 2 in the paper.

The first task is to reduce the dimensionality of the space from the DNS resolution to the
much smaller ROM without losing too much dynamics. This was done in Jiménez (2023)
by a combination of physical reasoning and computational testing. Briefly, we retain nine
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Figure 1. Probability distribution and flux vectors for two pairs of projection variables. The arrows link the
centre of each partition cell with the mean location of the flow after a time iteration. The red contours enclose
0.3 and 0.95 of the probability mass. (a) A typical disorganised variable pair (Case I). (b) The well-organised
Orr burst described in the text (Case II). Here�t∗ = 0.075; 21 × 20 cells; C950 (adapted from Jiménez 2023).

Fourier modes along the x and z directions, integrated over the band of y in which the flow
is minimal. The result is a list of modal amplitudes, I∗ij, and inclinations, ψ∗ij, where the
subindices refer to the velocity component (∗), and to the Fourier modes (i, j) involved.
The reader is referred to Jiménez (2023) for a more detailed discussion. We simply treat
them here as 44 physically interpretable summary variables that describe the evolution of
bursting in our data base (Orr 1907; Jiménez 2013; Encinar & Jiménez 2020).

Choosing a variable pair that retains as much deterministic dynamics as possible
involves testing 946 possible combinations of two variables. Two examples of the raw
material for these tests are shown in figure 1. In each case, the coloured background
is the long-time joint probability distribution of the two variables, compiled over a
regular partition of either m1 × m2 = 15 × 13 or 21 × 20 cells along the first and second
variable. Results are relatively insensitive to this choice. The finer partition increases the
resolution of the results, but decreases their statistical convergence and, to avoid noisy
low-probability cells, we always restrict ourselves to the interior of the probability contour
containing 95 % of the data. Each cell along the edge of this region approximately contains
300 data points for the coarser partition and 150 for the finer one. The temporal probability
flux is represented by vectors joining the centre of each cell with the average location of
the points in the cell after one time step, and how much dynamics is left in the projected
plane can be estimated from how organised these vectors are (Jiménez 2023). Most cases
are as in figure 1(a), where the state migrates towards the high-probability core of the
distribution, essentially driven by entropy. We will denote this variable combination as
Case I. A few variable pairs are more organised, as Case II in figure 1(b), whose upper
edge is the burst described above. The inclination angle in the abscissae evolves from a
backward to a forward tilt, while the intensity in the ordinates first grows and then decays.

The probability maps in figure 1 include a deterministic component, and a disorganised
one that represents the effect of the discarded variables. The latter typically increases
with the time increment and dominates for �t∗ ≥ 0.2, but we will see below that short
time increments have problems linked with resolution, and that the limit �t → 0 implies
infinitesimally small partition cells. The latter are limited by the amount of training data,
and our models are necessarily discrete both in state space and in time.
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Figure 2. (a) A deterministic reduced-order model for the Case II variables. Several initial conditions are
marked by solid symbols, and the model transitions from a cell at t to the mean expected position of the system
at t +�t. After some iterations, all trajectories settle to the cells marked by open symbols. Here �t∗ = 0.075;
C950; 15 × 13 cells. (b) Cell classification for the model in (a). White cells are not visited during training.
Yellow cells are absorbers. Blue are regular cells. (c) Fraction of absorbing cells for different deterministic
models: ◦, 21 × 20 cells; �, 15 × 13. Black, C950; red, C550.

3. Results

We now describe Markovian models that approximate the order in which the flow visits
the partition cells by iterating (2.1). None of them can fully represent the coarse-grained
dynamical system, which is generally not Markovian (Beck & Schlögl 1993), but we will
be interested in how far the approximation can be expected to hold, as explained at the end
of the introduction.

The simplest model based on the transition operator is to substitute time stepping by
the transition from each partition cell at time t to the cell containing the average position
of its descendants at t +�t. Figure 2(a) shows that this is not effective. Although the
model follows at first the trend of the probability flow, it drifts towards the dense core of
the probability distribution. Some of the core cells are absorbers, i.e. they can be entered
but not exited, and the model eventually settles into one of them. Substituting the average
position by another deterministic rule, such as the most probable location, leads to similar
results.

General theory requires that, if a model is to approximate the statistics of its training
run, it should not contain absorbing cells (Feller 1971). This depends on the ratio between
the time step and the coarseness of the partition. Intuitively, if the ‘state-space velocity’ of
a model is VX and the ‘cell dimension’ is�X, any process with�t < �X/VX never leaves
its cell.

If we assume that the model explores the mp cells along the diameter of a partition with a
characteristic time Ts, the relevant normalisation of the ratio between temporal and spatial
resolution is mp�t/Ts. Figure 2(b) shows the cell classification for the model in figure 2(a).
The four yellow cells contain the mean position of their next iteration, and are absorbers.
Figure 2(c) shows the fraction of cells that are absorbers, Nfix, with respect to the Ntot
active cells (i.e. those visited during training) for different Reynolds numbers and partition
resolutions. A dimensionless time based on the resolution along the two coordinate axes,
�t† = �t∗√m1m2, collapses the data reasonably well and the figure shows that the model
in figure 2(a) contains at least one absorbing cell even when �t 
 τ , in which limit there
is essentially no dynamics left in the operator. The distance between markers along the
trajectories in figure 2(a) (�t† ≈ 1.5) gives an idea of how far the system moves in one
modelling step.
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Figure 3. (a) As in figure 2(a), for nT = 100 time steps evolved using for each iteration a randomly selected
cell from the PFO probability cloud. (b) Typical probability distribution of the one-step iterations of the cell
marked by a solid circle: ——, full PFO model; - - - -, using a Gaussian approximation to the true PFO; · · · · · ·,
Gaussian approximation with fitted parameters. Here nT = 105. Contours contain 0.3, 0.95 of the probability
mass. (c) Invariant probability densities for the three models in (b). Contours contain 0.3, 0.95 and 0.995 of the
probability mass. In the three panels, �t∗ = 0.075; 15 × 13 cells; C950.

Ergodicity can be restored by including the full probability distribution of the iterates
in the transition operator (2.1) instead of deterministic values. The path in figure 3(a) is a
random walk over the cell indices, created by choosing at t +�t a random cell from the
probability distribution in the column of Q�t that contains the descendants of the cell at t.
In addition, and mostly for cosmetic purposes, the cell selected as q(t +�t) is mapped to
a random state within it, X (t +�t). As the path explores state space, it creates a one-step
probability map that mimics Q�t, and counteracts the entropic drive towards the core of the
distribution by adding temperature. The Perron–Frobenius theorem (Lancaster 1969; Feller
1971) guarantees that the one-step transition operator determines the invariant probability
density (IPD) of the Markov chain. Under mild conditions that essentially require that
the attractor cannot be separated into unconnected subsets, stochastic matrices have a
unique dominant right eigenvector that can be scaled to a probability distribution, with unit
eigenvalue. Any initial set of cells from a non-zero column converges to this distribution
at long times. Each iteration scheme creates its own PFO and IPD. The invariant density
of the deterministic model in figure 2(a) is the set of absorbing cells, which attract all the
initial conditions. The long-term distribution of the ‘pretrained’ (PPF) chain in figure 3(a)
is indistinguishable from the data used to train it.

Even if the PPF model is a good representation of the flow statistics, the full transition
operator is a large matrix that has to be compiled anew for each set of flow parameters.
Moreover, figure 3(b) shows that, although the full operator is a complex structure, at
least some of the conditional transition probabilities can be approximated by simpler
distributions. The black contour in this figure is the true distribution of the one-step
iterations from the cell marked by a solid symbol. The dashed contours are a Gaussian
approximation to that probability, with the same first- and second-order moments. The
parameters of the Gaussian are smooth functions of the projection variables, at least within
the 95 % core of the IPD, and the dotted contours are also Gaussian, but using parameters
that have been fitted over the whole IPD with a second-order least-square fit. The three
approximations are very similar, and figure 3(c) shows that their IPDs also agree to fairly
low probability levels. We will mostly present results for the PPF from now on, although
keeping in mind that the simpler approximations may be useful in some cases.
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Figure 4. (a) Distribution of the velocity gradient at the wall, ∂yU, conditioned to individual cells. (b) As
in (a), for the maximum of v′ of the retained Fourier modes. (c) The thicker lines are fluctuation profiles of
the wall-normal velocity for the Markovian models in figure 3, and for the training data. Light grey lines are
mean profiles compiled over individual cells of the two-dimensional invariant distribution. Here nT = 105;
�t∗ = 0.075; 21 × 20 cells; Case II of C950.

3.1. Fake physics
Figure 3(c) should not be interpreted to mean that the Markovian trajectories are the same
as in turbulence. All models quickly diverge from their training trajectory, and, even if this
is also true for turbulence trajectories starting from the same cell, the model and turbulence
trajectories do not shadow each other. However, the agreement of the probability densities
in figure 3(c) suggest that some statistical properties of turbulence may be well predicted
by the models. This is true for most of the mean velocity and fluctuation profiles, in
which it is hard to distinguish the models from the data. In some cases, such as the mean
velocity and the intensity of the fluctuations of the wall-parallel velocity components,
this is because the flow statistics are relatively insensitive to the position in the projected
subspace. An example is the distribution of the wall shear in figure 4(a). In others, such as
the wall-normal velocity fluctuation intensities in figure 4(b), the agreement depends on
the convergence of the probability density. Note the different range of the colour bars in
figures 4(a) and 4(b). Figure 4(c) shows that even in the case of v′, the fluctuation profile
is well represented by the stochastic models. The light grey lines in this figure are intensity
profiles for states that project onto individual cells of the IPD. The darker lines, which are
compiled for the training data and for the three stochastic Markov models, are long-time
averages. They are indistinguishable from each other, even if the profiles belonging to
individual cells are quite scattered, and the mean values only agree because the Markov
chain converges to the correct probability distribution.

More interesting are the temporal aspects of the flow. Most complex dynamical systems
have a range of temporal scales, from slow ones that describe long-term dynamics, to fast
local-in-time events. In the case of wall-bounded turbulence, a representative slow scale
is the bursting period, O(h/uτ ) (Flores & Jiménez 2010). The PFO, which encodes the
transition between closely spaced snapshots, describes the fast time.

Figure 5(a) displays the temporal autocorrelation function, 〈X (t)X (t + T)〉t/X′2, of
one of the model variables, computed independently for the turbulence data and for
the Markov chain of the PPF model. They approximately agree up to T∗ ≈ 0.3. The
correlation of a particular variable depends on how it is distributed over the IPD, but
is bounded by the decorrelation of the probability distribution itself, which approaches
the IPD with the number, n, of iterations as |λ�t|n, where λ�t is the eigenvalue of
Q�t with the second highest modulus (Brémaud 1999). It is intuitively clear that, if the
distribution of q approaches the IPD after a given time interval, independently of the
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Figure 5. Temporal behaviour of turbulence and of the Markovian model. In (a–d), Case II. (a) Temporal
autocorrelation function of Iv01. The grey solid line is obtained from turbulence. Other solid lines are from the
PPF model, and the dashed ones are from the subdominant eigenvalue of the PFO. From blue to red: �t∗ =
0.025, 0.075, 0.125. (b) Root-mean-squared divergence among trajectories starting from the same partition cell,
normalised with the standard deviation of the variable in question. The solid black line is from the training data;
those with symbols are the PPF model, with colours as in (a). (c) Probability distribution of the time of first
return to individual cells, averaged within the 95 % probability contour. The continuous blue line is computed
from the PPF; the red one is from the training data, and the dashed one is from a series of cells randomly
chosen from the data IPD. For the PPF and random models, �t∗ = 0.025 and nT = 5 × 105. (d) Mean return
time of the training data for individual cells in (c). (e) As in (a), for the disorganised Case I. ( f ) As in (c) for
Case I. In all figures, the partition is 15 × 13 cells, and C950.

initial conditions, its correlation with those initial conditions also vanishes. Figure 5(a)
shows that the Markovian models approximately describe turbulence over times of the
order of the probability decorrelation time, which is given by the dashed lines. This decay
of the correlation corresponds to the exponential divergence of nearby initial conditions.
Figure 5(b) shows how the variable in figure 5(a) diverges among trajectories initially
within the same partition cell, averaged over the IPD, and shows that the divergence
is complete by the time the correlation has decayed. The PPF model and its Gaussian
approximations reproduce this behaviour reasonably well.

More surprising is that this agreement extends to times of the order of the bursting
period, T∗ = O(1). The property of time series that more closely corresponds to
periodicity is the first-recurrence time, T1, after which the system returns to a particular
cell. Its probability distribution is also a property of the PFO (Feller 1971), but can be
measured from the time series. Figure 5(c) shows the averaged distribution computed by
accumulating for each partition cell the probability of recurring after T1. The red line is
turbulence data and the blue one is from the PPF model. They agree for very short times,
as expected from figure 5(a,b), and for times longer than a few eddy turnovers. The dashed
black line is a time series in which the order of the cells is randomly selected from the
IPD. The exponential tails of the three distributions suggest that the long-time behaviour
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of turbulence and of the PPF is essentially random and memoryless. The discrepancy
between the red and blue lines at T∗

1 ≈ 0.5 is the same as in the correlations in figure 5(a),
and is characteristic of deterministic projections. More significant is the probability deficit
between both solid lines and the randomised dashed line for T∗

1 � 2, which is a feature
of most variable combinations. That both turbulence and the PPF preserve this difference
shows that the PPF encodes enough information to approximately reproduce the bursting
period, and that bursting, which is responsible for the longer return periods, is a feature
of both turbulence and its PPF approximation. Figure 5(d) shows the mean return time for
individual cells and reveals that long-term bursting is a property of the periphery of the
IPD.

Figure 5(e, f ) repeats the analysis in figures 5(a) and 5(c) for the disorganised Case
I. The conclusions from the organised variables also apply to the disorganised ones, but
there are some differences. The dashed lines in figure 5(a) are the exponential decay due
to the subdominant eigenvalue of the PFO. That they depend on the time interval used in
the PFO shows that λn

�t /= λn�t, and the difference between the two quantities measures
the ‘memory’ of the system, which is missing for the Markovian model. On the other
hand, the dashed lines for the three �t in figure 5(e) essentially collapse, and they also
collapse with the decay of the correlation of the model variable, or with the turbulence
data. This suggests that none of these processes keeps memory of previous time steps. In
fact, while the return plot in figure 5( f ) shows the same probability deficit compared to a
random process for short return times as the well-organised case in figure 5(c), the effect is
weaker, and so is the excess probability in the long tail. This suggests that the time series
in Case I are effectively random, in agreement with figure 1(a).

Hallucinations in large foundation models refer to the generation of plausible but
factually incorrect answers (Rawte, Sheth & Das 2023). In the context of our experiments,
in which data are described rather than predicted, they happen when the model drifts
into a cell not visited during training. These unseen but accessible cells are part of the
absorbing set of the Markovian model and, to avoid being permanently absorbed by one
of them after a first ‘admission of ignorance’, the model is directed to continue from a
cell randomly selected from the data IPD. The two middle lines in figure 6(a) show the
fraction of restarts required for the two Gaussian approximations of the PPF. It grows as
the stochastic component of the PFO increases with the time increment, and is always
higher for the globally fitted approximation than for the locally fitted one.

The lower black line requires some explanation. The results discussed above are fairly
resilient to changes in the training process. All of them were tested with a training
set containing half as many data as the present one, and with different combinations
of y-filtering and Reynolds number. In no case did the straightforward PPF produce
hallucinations in the sense above. This is because the conditional probability distributions
are compiled from a continuous data path in which every cell entered is also exited. This
is an artificial feature amounting to overfitting. To prevent it, the PFOs used in this paper
are compiled by first breaking the training set into segments of Nchop = 20 snapshots. The
last snapshot of each segment is entered but not exited during training, and the resulting
probabilities are a fairer estimation of the likelihood of hallucinations. It is approximately
constant for Nchop ∈ 5–20, and the lowest line in figure 6(a) is the average miss ratio in this
range. None of the lower three lines in the figure is large enough to influence the overall
statistics, but it is easy to create models in which hallucinations matter. The simplest one
is to modify the local Gaussian approximation by multiplying its second-order moments
by a factor γ 2. The optimum approximation is at γ ≈ 1, as expected, but the restarts
become more frequent as larger values of γ allow the model to wander into unseen regions.
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Figure 6. (a) Fraction of required restarts for the three models in figure 3, averaged over 500 experiments:
�, PPF; ◦, Gaussian approximation to the true PFO, γ = 1; �, γ = 2; �, Gaussian approximation with fitted
parameters. Bars are one standard deviation. Here nT = 105 per experiment; 15 × 13 cells; Case II of C950.
(b) Comparison of the IPDs of Case II for the three Reynolds numbers in table 1. The vertical coordinate is
scaled by a factor α. ——, C950 and α = 1; — · —, C550 and α = 0.86; - - - -, C350 and α = 0.81. The first
and last stretching factors are manually adjusted for optimum fit. The middle one is linearly interpolated from
the other two.

The uppermost line in figure 6(a) is a modified Gaussian model with γ = 2, and the restart
fraction reaches almost 10 %.

4. Conclusions

We have shown that, at least for quasideterministic variable pairs, the one-step PFO acts
as a surrogate for the differential equations of motion and that, in the same way as the
latter generate all the temporal scales of turbulence, the Markov chain induced by the PFO
retains substantial physics over all those scales. We have traced the agreement at very short
and very long times to general properties of Markov chains, but the agreement for periods
of the order of an eddy turnover shows that some non-trivial physics is also retained.

Neither the PFO nor its Markov chains can provide information that was not in the
original dynamical system, but they do it more simply. The full PFO is an N2

D matrix, where
ND ∼ O(200) is the number of cells in the partition. This is already a large reduction from
the original number of degrees of freedom, O(106), but the Gaussian approximation is a
much shorter list of 5ND numbers, and the quadratic fit to the Gaussian parameters only
requires 25 numbers, 5 for each Gaussian moment. This economy, besides simplifying
calculations, becomes important when interpolating models among cases, such as different
Reynolds numbers. Although we have mostly described results for the highest Reynolds
number, C950, most also apply to the two lower Reynolds numbers in table 1. An example
is figure 6(b), which compares the invariant densities of the three Reynolds numbers, and
shows that they mostly differ by a rescaling of the intensity axis. This figure also serves as
a test for model interpolation. The highest and lowest Reynolds numbers in the figure are
fitted by hand, but the intermediate one is linearly interpolated from them as a function
of Reτ . We have finally shown that the PFO can be substantially modified without much
degradation, probably because it is already an approximation.
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In essence, the PFO can be understood as a statistical counterpart to the equations
of motion, in the sense that both encode the response of the system at every point in
a low-dimensional projection of state space. In the case of the PFO, this is obtained
from observation and given in terms of probabilities, while in the case of the equations
it would be a functional relation if all the variables were known. There are two important
differences. The first is that the PFO works on a submanifold, and cannot make exact
predictions. The second, and perhaps most significant, is that a PFO derived from passive
observations only has information about the system attractor, while the equations of
motion, which have presumably been supplemented by experiments outside the attractor,
work throughout state space. As a consequence, the former permits a much narrower set
of control strategies than what can be analysed by the latter.

Perhaps the most intriguing aspect of the discussion above is how little, beyond the
initial choice of a restricted set of variables, is specific to turbulence. Much of the
agreement or disagreement between the models and the original system can be traced
to generic properties of the transition operator, and should therefore apply to other
high-dimensional dynamical systems, or to Markovian ROMs in general, but it is important
to emphasise the extreme reduction of dimensionality in the ROMs described here.
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