
3

Gold and brass: affine algebras and generalisations

This chapter introduces the nontwisted affine algebras – infinite-dimensional Lie algebras
of considerable mathematical and physical interest – and searches for generalisations
that preserve and enhance those special features. The affine algebras supply classic
examples of Moonshine, in that the characters of their integrable modules are vector-
valued Jacobi functions for SL2(Z). They thread through the remainder of the book,
guiding all subsequent mathematical developments. Their Lie groups are discussed in
Section 3.2.6.

Algebraically, the affine algebras naturally generalise to the Kac–Moody algebras
(Section 3.3.1), although that generalisation seems to lose some of their magic. In turn,
the Kac–Moody algebras generalise naturally to the Borcherds–Kac–Moody algebras
(Section 3.3.2), which play a significant role in Borcherds’ proof of Monstrous Moon-
shine through their denominator identities (Section 3.4.2). Two other natural generalisa-
tions of affine algebras are described elsewhere in Section 3.3. In Section 3.4.1 we study
an important special case of what we later call the orbifold construction, and in the final
subsection we touch on a more recent and tangential development.

The Virasoro algebra (Section 3.1.2) plays a prominent structural role in conformal
field theory (Chapter 4) and vertex operator algebras (Chapter 5); its relation to moduli
spaces is a fundamental source of Moonshine itself.

3.1 Modularity from the circle

3.1.1 Central extensions

Let V be any (complex) vector space, and let GL(V ) denote the group of all invertible
linear maps V → V . A projective representation of a group G is a map P : G → GL(V )
such that P(e) = I (the identity), and given any elements g, h ∈ G, there is a nonzero
complex number α(g, h) such that

P(g) P(h) = α(g, h) P(gh). (3.1.1a)

We call P an α-representation. So just as a (true) representation is a group homomor-
phism R : G → GL(V ), a projective representation defines a group homomorphism P
from G into the projective group PGL(V ) := GL(V )/{C× I } (hence the name); con-
versely, given a homomorphism π : G → PGL(V ), arbitrarily choosing a ‘section’, that
is a representative P(g) ∈ GL(V ) in each equivalence class π (g) ∈ PGL(V ), defines a
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projective representation of G. A projective representation P is a true representation iff
α(g, h) = 1 for all g, h ∈ G.

Projective representations are plentiful. For example, the multiplier μ in Defini-
tion 2.2.1 is a projective representation of SL2(Z) whenever the weight k is rational.
Quasi-periodicity (2.3.5a) is a projective representation of the abelian group C2 on the
space of functions f : C → C. In quantum physics (Section 4.2) the state of a system
is completely described by a nonzero vector v in a Hilbert space. However, any nonzero
multiple λv describes a physically identical state. Thus projective representations arise
naturally also in quantum physics, where they are called ‘ray representations’.

Note that associativity

α(h, k)α(g, hk) P(ghk) = P(g) (P(h) P(k)) = (P(g) P(h)) P(k)

= α(g, h)α(gh, k) P(ghk)

tells us that

α(h, k)α(g, hk) = α(gh, k)α(g, h), ∀g, h, k ∈ G. (3.1.1b)

This equation may remind the reader of a two-cocycle condition, hinting of the relevance
of cohomology. Indeed, this function α : G × G → C× is called a 2-cocycle and group
cohomology organises the projective representations.

Two projective representations Pi : G → GL(Vi ) are (linearly) equivalent if there
is a vector space isomorphism ϕ : V1 → V2 such that ϕ−1 ◦ P1 ◦ ϕ = P2. Equivalent
projective representations must have the same 2-cocycle α. For a given α, the number of
inequivalent irreducible α-representations of G equals the number of conjugacy classes
of α-regular elements g ∈ G (g is called α-regular if α(g, h) = α(h, g) for all h ∈
CG(g)). Hence this number is at most the number of inequivalent irreducible true G-
representations.

We call projective representations Pi : G → GL(Vi ) projectively equivalent when
there is a function β : G → C× and a vector space isomorphism ϕ : V1 → V2 such that

ϕ−1(P1(ϕ(g))) = β(g) P2(g), ∀g ∈ G.

The 2-cocycles of projectively equivalent projective representations are related by

α2(g, h) = α1(g, h)β(gh)β−1(g)β−1(h).

β plays the role of a coboundary, so the 2-cocyclesαi of projectively equivalent projective
representations lie in the same cohomology class [α] ∈ H 2(G,C×), and H 2(G,C×) clas-
sifies the projectively inequivalent projective representations. H 2(G,C×) is an abelian
group, called the Schur multiplier, and is finite when G is finite. The point of converting
a problem into algebraic topology is that machinery (and experts!) are available to help
compute these groups. For example, H 2(Zn,C×) = H 2(SL2(Z),C×) = H 2(M,C×) =
{0} while H 2(Co1,C×) ∼= Z2. This implies, for instance, that any projective representa-
tion of the Monster M is projectively equivalent to a true representation of M.
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178 Affine algebras and generalisations

Projective representations of Lie algebras are defined similarly: P : g→ End(V ) is
linear, and equations (3.1.1) become

[P(x), P(y)] = P([x, y])+ c(x, y) I, (3.1.2a)

c(x, y) = −c(y, x), (3.1.2b)

c([xy], z) = c([yz], x)+ c([zx], y) = 0, (3.1.2c)

where the 2-cocycle c is complex-valued and I is the identity endomorphism.
Geometrically, projective representations often arise from the following fundamental

construction. Let L→ M be any line bundle with connection ∇ over some manifold M
(Section 1.2.2). Let ϕ : g→ Vect(M) be a homomorphism from some Lie algebra g to
the Lie algebra of vector fields on M . The map x �→ ∇ϕ(x), sending x ∈ g to the covariant
derivative in the direction ϕ(x), associates with each x ∈ g a differential operator on the
space of sections of L. Since

[∇X ,∇Y ] = ∇[X,Y ] + R(X, Y ) I

for each vector field X, Y , where R is the curvature of the connection, this map defines a
projective representation of g on the space�(L) of sections of L, with cocycle c = R. As
we will see later this chapter, the central extensions of both the Witt and the loop algebras
can be interpreted in this way [13]. This construction is well known in physics, where it
falls under the slogan ‘curvature is a local anomaly’ (by contrast, global anomalies are
monodromy effects like modularity).

A standard trick (central extensions) converts projective representations into true rep-
resentations. Let G be any group, and let A be any abelian group. By a central extension
Ĝ of G by A, we mean that A can be identified with a subgroup of the centre of Ĝ,
and the quotient Ĝ/A is isomorphic to G. For example, the dihedral group D4 is a
central extension (by Z2) of a central extension (by Z2) of a central extension (by Z2)
of {e}.

Let P be a projective representation of a group G, and assume for simplicity that
no operator P(g) is a scalar multiple a I of the identity. Let Ĝ be the group consisting
of all operators a P(g), for a ∈ C× and g ∈ G. Then Ĝ is a central extension of G by
C×, and Ĝ is defined by a faithful representation in V . The projective representation
of G has been transformed into a true representation of the larger group Ĝ. The spe-
cific situation for finite groups and the most common finite-dimensional Lie groups is
simpler:

Theorem 3.1.1 (a) Let G be a finite group. Then there is a central extension G̃ of G by its
Schur multiplier H 2(G,C×), with the following property: any projective representation
P : G → GL(V ) of G lifts to a true representation P̃ : G̃ → GL(V ) of G̃.
(b) Let G be a connected, finite-dimensional semi-simple Lie group over R or C, and
let G̃ be its universal cover group (which is a central extension of G by the fundamental
group π1(G)). Then any continuous finite-dimensional projective representation P :
G → GL(V ) of G lifts to a true representation P̃ : G̃ → GL(V ) of G̃.
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Conversely, a true representation of G̃ restricts to a projective representation of G. The
central extension G̃ in Theorem 3.1.1(a) is a finite group (e.g. for C̃o1 take the Conway
group Co0), and in (b) is a Lie group of the same dimension as G (see Theorem 1.4.3). For
Lie groups there is a topological (π1) as well as cohomological (H 2) obstacle to the trivi-
alisation of projective representations. The assumption in (b) that G be semi-simple was
made only to guarantee that the Schur multiplier of G would be trivial. The conclusion to
Theorem 3.1.1(b) also holds for certain non-semi-simple Lie groups, such as the Poincaré
group important to relativistic physics. On the other hand, the Galilei group, which plays
the same role in pre-relativistic physics, has nontrivial Schur multiplier. In this case, the
relevant cover will be a Lie group of higher dimension. The simplest example of this
phenomenon is the additive group C2, and its central extension the three-dimensional
Heisenberg group (see Question 3.1.3). It is through projective representations of C2

that the Heisenberg group and algebra arise in both theta functions (Section 2.4.2) and
quantum physics (Section 4.2). Similarly, the Galilei group must act on nonrelativis-
tic wave-functions (i.e. solutions to the Schrödinger equation (4.2.1)) projectively –
this is a consequence of the nontriviality of the Schur multiplier of the Galilei group
(Question 4.2.1).

Incidentally, the Schur multiplier H 2(G,C×) of a finite group G appears in another
context. Consider any presentation of G, with say m generators and n relations. The
finiteness of G requires that m ≤ n. The Schur multiplier of G is a finite abelian group,
so let h be its number of generators as in Theorem 1.1.1. Then n − m ≥ h.

We are primarily interested in one-dimensional central extensions ĝ of Lie algebras
g, that is a vector space ĝ = g⊕ CC together with the brackets

[ab]new = [ab]old + c(a, b) C, (3.1.3a)

[aC] = 0. (3.1.3b)

The element C is called the central term. Equivalently, we have

0 → C → ĝ→ g→ 0, (3.1.3c)

together with the requirement that the image CC of C in ĝ is in the centre of ĝ. The short
exact sequence (3.1.3c) says that there is an ideal in ĝ (namely the image of the second
arrow) isomorphic as a Lie algebra to C, and that when this ideal is projected out (by the
third arrow) we recover g.

The exact sequence (3.1.3c) has the charm of not requiring an explicit splitting of
ĝ into a g-part g (namely, a lift of the Lie algebra g onto a subspace g) and a C-part
C C . The point is that there are many possible splittings: for example, given any such
splitting ĝ = g⊕ C C , choose a linear map f : g→ C; then a new splitting is obtained
by replacing the subspace g with the span of the a + f (a) C , as a runs through g. Modern
mathematics abhors arbitrary choices, and so would encourage us to delay the choice of
such a splitting as long as Good Fortune permits. Of course this is merely the current
century-long fad, and there are advantages and disadvantages to it, and indeed physics
prefers the opposite choice.
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ĝ will be a Lie algebra iff the function c : g× g→ C obeys (3.1.2b), (3.1.2c); as
before, c is called the 2-cocycle associated with the extension (3.1.3). The trivial 2-
cocycle c ≡ 0 always works, in which case ĝ is merely the Lie algebra direct sum g⊕ C.

We regard two extensions ĝ1, ĝ2 as equivalent if there is a Lie algebra isomorphism
ϕ : ĝ1 → ĝ2 that sends the ideal CC1 of ĝ1 onto CC2 ⊂ ĝ2. One way (but not the only
way) to get equivalent extensions is to change the splitting ĝ = g⊕ CC , as mentioned
before. In the language of Lie algebra cohomology (see e.g. [183] for a mathematical
treatment, or [27] for a physically motivated one), f : g→ C is a 2-coboundary, and the
resulting 2-cocycles c1, c2 define the same class in the cohomology space H 2(g). There
are other ways though to obtain equivalent extensions – for example, the central term
can be rescaled – so H 2(g) is in general too fine to serve as a ‘moduli space’ of one-
dimensional central extensions of g, but it gives a very useful partial answer. For example,
H 2(g) is trivial for any finite-dimensional semi-simple Lie algebra g, which means any
such g has only trivial central extensions (see Question 3.1.4).

For a concrete example, consider the n-dimensional abelian Lie algebra h = Cn , with
basis {e1, . . . , en}. A one-dimensional central extension ĥ of h is uniquely determined
by n2 numbers αi j ∈ C defined by [ei e j ] = αi j C , where C ∈ ĥ is central (all other
brackets of ĥ are determined by bilinearity and [ei C] = 0). Anti-commutativity requires
αi j = −α j i , and anti-associativity is automatically satisfied. Thus each choice of an anti-
symmetric n × n matrix A = (αi j ) defines a one-dimensional central extension ĥA of
h = Cn , and conversely. The dependence of this argument on an arbitrary choice of basis
ei means there is redundancy here: in particular, two such central extensions ĥA and ĥB ′

define isomorphic Lie algebras iff there is an invertible matrix B such that A′ = B ABt .
The reader can verify that any anti-symmetric matrix A is equivalent in this sense to

the direct sum of k copies of

(
0 1
−1 0

)
, and � = n − 2k copies of (0), where 2k is the

rank of A. Thus we get a different one-dimensional central extension of Cn , for each
k = 0, 1, . . . , 'n/2(. When A is invertible (i.e. k = n/2), we call ĥ a Heisenberg algebra;
as simple a (non-simple!) Lie algebra as it is, it’s one of the most important.

3.1.2 The Virasoro algebra

Recall the Witt algebra Witt in (1.4.9). For each choice of α, β ∈ C, we get a module
Vα,β , with basis vk , k ∈ Z, given by

�n.vk = −(k + α + β + βn) vk+n. (3.1.4a)

This can be obtained from the derived module (Section 1.5.5) coming from the natural
action of a subgroup of the diffeomorphism group Diff(S1) on the space of differential
‘forms’ p(z) zα (dz)β , where p(z) ∈ C[z±1] are Laurent polynomials. Clearly, Vα+m,β

∼=
Vα,β for any m ∈ Z.

As usual, we are interested in unitary modules (Section 1.5.1), and for this we need
an anti-homomorphism ω of Witt. Up to an automorphism of Witt, the unique choice
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is ω�n = �−n . Then for this choice, Vα,β is unitary iff both Re(β) = 1/2 and α + β ∈ R
[334]. These modules are also irreducible.

The element �0 ∈Witt is obviously special and plays the role of energy operator
(Hamiltonian) in the application to physics. The most interesting Witt-modules are
unitary ones with diagonalisable �0. In this case the eigenvalues of �0 will necessarily
be real, and should have the physical interpretation of energy. Unfortunately, the only
nontrivial unitary irreducible Witt-modules with �0 diagonalisable are those Vαβ . This is
unfortunate because the eigenvalues of �0 in any Vαβ have no upper or lower bound. For
reasons of stability, physics wants energy to be bounded below. The space Vαβ is infinite-
dimensional, but �0 defines on it a natural grading into finite-dimensional subspaces, and
so we are led to formally define its graded-dimension to be

trVαβq�0 =
∑
k∈Z

qk+α+β. (3.1.4b)

Unfortunately this never converges.
Central extensions are a common theme in infinite-dimensional Lie theory.1 Their

raison d’être is always the same: a richer supply of representations. The Virasoro algebra
Vir is the one-dimensional central extension Vir =Witt⊕ C C with brackets

[Lm Ln] = (m − n)Lm+n + δn,−m
m (m2 − 1)

12
C, (3.1.5a)

[LmC] = 0. (3.1.5b)

As always, we avoid convergence issues by defining Vir to consist of only finite linear
combinations of these basis vectors. Incidentally, a common mistake in the physics liter-
ature is to regard C as a number: it is in fact a vector, though in most modules of interest
to, for example, mathematical physics it is mapped to a scalar multiple cI of the identity.

The reason for the strange-looking (3.1.5a) is that we have little choice: Vir is the
unique nontrivial one-dimensional central extension of Witt (Question 3.1.5). The factor
1
12 there is conventional, but arises naturally in the realisations of Vir by normal-ordered
operators in Fock spaces (see (3.2.13), (3.2.14) for such a calculation). In fact, the normal-
ordering prescription is somewhat arbitrary and actually we are much more interested
in a slightly different basis of Vir, with L0 replaced by L0 − C/24. This is the com-
bination appearing in almost every expression for characters from this point on. Where
does this −C/24 come from? With this modified L0, the brackets (3.1.5a) simplify
(Question 3.1.8). According to conformal field theory or vertex operator algebras, this
new basis corresponds to a change in topology (see Section 5.3.4), which can be calcu-
lated using the Atiyah–Singer Index Theorem [8], so physically the ‘conformal anomaly’
term−c/24 is a Casimir effect. But the best algebraic explanation for this−c/24 is given
Section 3.2.3.

As before, L0 ∈ Vir is the energy operator, and so we want irreducible Vir-modules
where L0 is diagonalisable and its eigenvalues are bounded below. Let v be any eigenvec-
tor of L0 in such a module, say L0v = Ev, and suppose Lnv �= 0 for some n > 0. Then

1 On the other hand, the finite-dimensional simple Lie algebras do not have nontrivial central extensions.
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L0(Lnv) = −nLnv + Ln L0v = (E − n)Lnv and thus (Ln)�v will be an eigenvector of
L0 whose eigenvalue E − n� has real part going to −∞ as �→∞. Thus any Vir-
module whose L0-eigenvalues have real part bounded below must be a highest-weight
module.

More precisely, because Vir has a triangular decomposition (recall (1.5.5d))

Vir− ⊕Vir0 ⊕Vir+ = span{Ln}n<0 ⊕ span{L0,C} ⊕ span{Ln}n>0,

we can mimic the construction of highest-weight modules in Section 1.5.3. In particular,
for any h, c ∈ C, the Verma module M(c, h) is the universal Vir-module generated by a
vector v �= 0 obeying

L0v = hv, Cv = cv, Lnv = 0, ∀n > 0.

The pair (c, h) is the highest weight; c is the central charge and h the conformal weight.
As before, it can be more explicitly defined using the universal enveloping algebra, or
equivalently by inducing the module from Vir0 ⊕Vir+ to all of Vir. By the Poincaré–
Birkhoff–Witt Theorem 1.5.2, M(c, h) has a basis given by all vectors

L−i1 L−i2 · · · L−inv,

for all integers i1 ≥ i2 ≥ · · · ≥ in ≥ 1. Any other Vir-module with highest weight (c, h)
is a homomorphic image of M(c, h), or equivalently the quotient of M(c, h) by some
ideal.

Each Verma module M(c, h) is indecomposable, but may not be irreducible. However,
they all have a unique nontrivial irreducible quotient V (c, h), which is then the unique
irreducible Vir-module with highest weight (c, h).

The anti-linear anti-homomorphism (‘adjoint’) of Vir sends Ln to L−n , and fixes
C . The only unitary irreducible Vir-modules where L0 is diagonalisable and all its
eigenspaces are finite-dimensional are certain Vα,β in (3.1.4a) (these are Vir-modules
with C acting trivially), as well as certain highest-weight modules V (c, h) and their
duals, the lowest-weight modules V (c, h)�. In fact, V (c, h) (and V (c, h)�) are unitary
iff either: (i) both c ≥ 1 and h ≥ 0; or (ii) c and h fall into the discrete series, i.e. for
m, r, s ∈ N with 1 ≤ s ≤ r ≤ m + 1,

c = cm := 1− 6

(m + 2)(m + 3)
, h = hm;rs := ((m + 3)r − (m + 2)s)2 − 1

4(m + 2)(m + 3)
. (3.1.6)

These V (c, h) are called positive-energy representations since the spectrum of L0 is
positive. Thus the only unitary irreducible Vir-modules with L0 diagonalisable, with
finite-dimensional L0-eigenspaces, and with the L0-spectrum bounded below, are the
V (c, h) in (i) and (ii). They are the building blocks of the most interesting affine algebra
representations, vertex operator algebra modules and conformal field theories.

For unitary V (c, h), we have V (c, h) = M(c, h) when both c > 1 and h > 0, or
when c = 1 and 2

√
h �∈ Z. In these cases, by analogy with (3.1.4b), V (c, h) has
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graded-dimension

dimV (c,h)(q) := trV (c,h)q
L0 = qh

∞∏
n=1

(1− qn)−1, (3.1.7a)

as the infinite product gives the generating function for the partition numbers:

∞∏
n=1

(1− qn)−1 =
∞∑

m=1

p(m)qm (3.1.7b)

where p(m) is the number of ways to write m as a sum m = a1 + a2 + · · · + ak for posi-
tive integers 1 ≤ a1 ≤ a2 ≤ · · · ≤ ak . Unlike (3.1.4b), this converges whenever |q| < 1.
In fact, we recognise (3.1.7b) as (up to a factor of q1/24) the reciprocal of the Dedekind
eta η(τ ) (2.2.6b), once we change variables by q = e2π iτ – we saw last chapter that η(τ )
is a modular form for SL2(Z). In fact we obtain

dimV (c,h)
(
e2π i (τ+1)

) = e2π i (h− 1
24 )dimV (c,h)(e

2π iτ ), (3.1.7c)

dimV (c,h)e
−2π i/τ =

√
i

τ

∫ ∞

−∞
exp[2π ihh′] dimV (c,h)e

2π iτ dh′. (3.1.7d)

This is our first glimpse of modularity from a graded dimension, though it certainly won’t
be our last. But η(τ ) arises here through elementary combinatorics, so it is tempting to
dismiss this modularity as accidental. This however would be an error.

What should be the characters of these Vir-modules? For simple Lie algebras, we
define the character as a trace over formal exponentials of elements of the Cartan subal-
gebra. The analogue of the Cartan subalgebra here is Vir0 = CL0 ⊕ C C , so the character
of V (c, h) should be

chc,h(zL , zC ) := trV (c,h)e
2π izL L0+2π izC C , (3.1.8)

which equals e2π iczC times the graded-dimension of V (c, h) (with q = e2π izL ).
The characters of the discrete series (3.1.6) are calculated in [477], and again converge

for |e2π izL | < 1. Moreover, they obey a much more interesting modularity than do the

graded-dimensions in (3.1.7): let

(
a b
f d

)
∈ SL2(Z) act on Vir0 by

(zL , zC ) �→
(

azL + b

f zL + d
, zC + f z2

L + (d − a)zL − b

24 ( f zL + d)

)
; (3.1.9)

then chcm ,hm;rs (zL , zC ) is fixed by some �(N ) (recall (2.2.4a)), and for each fixed m
(i.e. fixed central charge c), the span over all 1 ≤ s ≤ r ≤ m + 1 of the characters
chcm ,hm,rs is invariant under SL2(Z). They furnish a good example of modular data
(Definition 6.1.6). This SL2(Z) action (3.1.9) is a little complicated; if instead we spe-
cialise to the variables zL = τ and zC = −τ/24, then each

chcm ;hm;rs (τ ) := chcm ;hm;rs (τ,−τ/24) = e−2π i c/24 trV (c,h)e
2π izL L0 (3.1.10)

is a modular function for some�(N ) for τ ∈ H, and for fixed m the characters chcm ;hm;rs (τ )
form a vector-valued modular function for SL2(Z) (Definition 2.2.2).
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The best explanation for the mysterious-looking discrete series (3.1.6) will probably
come from the orbit method [563], but the analysis is still incomplete. At least part of
the discrete series of the Virasoro algebra has been related to (co)homology theory of
the universal cover of SL2(R), given a discrete topology [164]. This should be explored
further.

The characters of the non-unitary V (c, h), for c, h ∈ R, have most of the properties
of those of the unitary ones, and it is unfair to completely ignore them. For example,
for c, h ∈ R the modules V (c, h) have a contravariant nondegenerate Hermitian form
〈�, �〉, apart from the positive-definiteness condition. Lie algebras typically have too
many representations and some criterion is needed that isolates the interesting ones, but
unitarity is too restrictive here.

As we know, the Lie algebra Vect(S1) of vector fields on the circle contains the real Witt
algebra WittR (i.e. the span over R of the generators �n in (1.4.9)) as a dense ‘Laurent
polynomial’ subalgebra. The connected real Lie group naturally associated with Vect(S1)
is the group Diff+(S1) of orientation-preserving diffeomorphisms S1 → S1 of the circle.
As a group, Diff+(S1) is simple [286] but as a manifold it is not simply connected: its
universal cover D̃iff(S1) is the group of all diffeomorphisms φ : R → R of the real line
satisfying the periodicity condition φ(x + 2π ) = φ(x)+ 2π . The centre of the universal
cover is Z (namely φn(x) = x + 2πn) and D̃iff(S1)/Z ∼= Diff+(S1).

Nontrivial central extensions of Diff+(S1) by a circle are explicitly constructed in, for
example, section 6.8 of [465] and appendix D.5 of [295]; these all have a Lie algebra
isomorphic to the real Virasoro algebra VirR (i.e. the R-span of the generators Lm,C of
(3.1.5)).

Lie theory for the Virasoro and Witt algebras (and more generally the Lie algebra
Vect(M) of vector fields on any manifold M) is much more complicated than the finite-
dimensional semi-simple theory described in Chapter 1. For example, although the ‘expo-
nential’ map exp: Vect(S1) → Diff+(S1) is defined here (by first integrating the vector
field to its flow), it is neither locally one-to-one nor locally onto (proposition 3.3.1 of
[465]). By comparison, the exponential map of compact Lie groups is locally one-to-one
and globally onto. Moreover, the complex Lie algebra C⊗ Vect(S1) does not have a
corresponding Lie group. After all, although a vector field on S1 corresponds to a path
in the space of maps (in fact diffeomorphisms) S1 → S1, and these form a group by
composition, a complex vector field on S1 corresponds to a path in the space of maps
S1 → C and these won’t form a group. Segal [502] suggests that the complex Lie semi-
group C0,2 defined in Section 4.4.1 is the closest we can come to the complexification
of Diff+(S1).

We have two fairly general frameworks in which to understand Lie group representa-
tions: Borel–Weil and the orbit method (a.k.a. geometric quantisation). There is, as we
recall from Section 1.5.5, a general philosophy that says the representations of a group
G (here Diff(S1)) are in one-to-one correspondence with certain orbits of the coadjoint
action of G on the Lie algebra g of G (here Witt). As mentioned earlier, Witten [563]
explored this possible relation for the Virasoro algebra. For example, the homogeneous
space Diff(S1)/S1 appears as an orbit, and can be associated with ghosts in string theory.
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The main motivation would be to find a new interpretation for the discrete series (3.1.6),
which is a little mysterious from the algebraic point of view. Witten identified the orbits
to which these should correspond, but couldn’t quantise those orbits (this is a common
curse of the orbit method).

The space Diff(S1)/PSL2(R) is also a coadjoint orbit. Something special happens
here when we replace Diff(S1) with the larger group QS(S1) of quasi-symmetric home-
omorphisms of S1: then QS(S1)/PSL2(R) is called the universal Teichmüller space T.
Every Teichmüller space Tg,n (recall Section 2.1.4) is naturally contained in T. Like-
wise, Diff(S1)/PSL2(R) naturally embeds in T (every diffeomorphism of S1 is quasi-
symmetric), and intersects each Tg,n transversely. See the reviews [460], [168] for def-
initions and references. Given this, an intriguing answer to the challenge suggested
by Manin in Section 5.4.1 is to consider the reparametrisations of strings using quasi-
symmetric homeomorphisms rather than diffeomorphisms; see [460] for some physical
speculations.

Pursuing an analogue of Borel–Weil is at least as interesting. Recall that for G compact,
we get an action of G on line bundles on the flag manifold GC/B, and this accounts
for the special (i.e. finite-dimensional) representations of G. Manin [402] suggested that
something similar happens to Vir, with now the moduli spaces of curves playing the
role of the flag manifold. This thought was made much more precise in [357], [49], [13].
Consider the enhanced moduli space M̂g,n of Section 2.1.4, where each of the n marked
points on the genus-g surface is given a local coordinate zi . A copy of Witt for each
marked point acts naturally on M̂g,n: the vector field z�i ∂/∂zi , for � ≥ 1, changes the
coordinate zi ; ∂/∂zi moves the i th point; and finally z�i ∂/∂zi for � ≤ −1 can change the
conformal structure of the surface. This action fills out the tangent space to any point on
M̂g,n , i.e. we get a surjective Lie algebra homomorphism from Witt to the tangent space
at any point on M̂g,n , and from this we can derive the central extension geometrically
by considering determinant line bundles (a nice introduction to this important object is
[192]) over M̂g,n .

Pushing this much further would force us into the complexities (and riches) of alge-
braic geometry and D-modules (see [116] for a gentle introduction to the simplest D-
modules). A far-reaching generalisation of the Borel–Weil Theorem is the equivalence
of categories established by Beilinson–Bernstein and Brylinski–Kashiwara: given a Lie
group G with semi-simple Lie algebra g, their ‘localisation functor’ relates an algebraic
category, whose objects include the Verma modules of g, with a topological category of
D-modules (i.e. sheaves of modules over a ring of differential operators over the flag
manifold GC/B). Describing this would take us far afield (see [80], [417] for reviews
and references). In conformal field theory, the Virasoro algebra, moduli spaces Mg,n ,
and mapping class groups �g,n take the place of g, GC/B and the Weyl group [402],
[530]. [49] relates Virasoro modules to D-modules on the enhanced moduli space M̂g,n .

In any case, this deep relation between moduli spaces of curves and Vir is significant
to Moonshine, because of its relation to the analogues of the Knizhnik–Zamolodchikov
(KZ) equations in any conformal field theory at any genus. We elaborate on this elsewhere
(starting in Section 3.2.4), but for now let us say that ‘chiral blocks’ are sections over
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the moduli spaces M̂g,n , and satisfy a system of partial differential equations saying
roughly that they respect this Vir action. The monodromy of those equations gives
rise to projective actions of the mapping class groups on the spaces of chiral blocks.
Now, the chiral blocks of the space M1,1 (or rather M̂1,1) are vertex operator algebra
characters (including for instance (3.1.10)), and �1,1

∼= SL2(Z) (or rather its central
extension �̂1,1

∼= B3) acts on them. This is conformal field theory’s explanation for the
modularity of these characters. Thus the Virasoro algebra, through its action on the M̂g,n ,
lies at the heart of Moonshine.

Question 3.1.1. (a) Let G = Z2 × Z2. Define a map P : G → GL2(C) by

P(0, 0) =
(

1 0
0 1

)
, P(1, 0) =

(
0 1
−1 0

)
,

P(0, 1) =
(

i 0
0 −i

)
, P(1, 1) =

(
0 −i
−i 0

)
Verify that P is a projective representation of G.
(b) Let Q be the order 8 ‘quaternion group’, given by the following relations:

Q = {±1,±i,±j,±k | − 1 = (±i)2 = (±j)2 = (±k)2, ij = k = −ji, −1 is in centre}.
Show that there is a homomorphism ϕ : Q → G with kernel {±1}.
(c) Show that there is a true representation R of Q such that

P(x) = δ(x) R(r (x)), ∀x ∈ G,

where r (x) ∈ ϕ−1(x), and where δ : G → C×.

Question 3.1.2. Identify G = S1 with R/Z, and for any class [x] ∈ R/Z, choose the
unique representative 0 ≤ x < 1. Verify that for any complex number α, the map [x] �→
αx defines a one-dimensional projective representation of S1. Find the corresponding
true representation on the universal cover G̃ of S1.

Question 3.1.3. For this question, let G be the additive group C2. Define the function
α : G × G → C× by α(z, w) = exp[z2w1 − z1w2]. Verify that α obeys the 2-cocycle
condition (3.1.1b), and construct the corresponding central extension.

Question 3.1.4. Find all one-dimensional central extensions of the Lie algebra A1.

Question 3.1.5. Show that there are only two one-dimensional central extensions of the
Witt algebra, up to isomorphism. (Hint: first show, changing basis if necessary, that
[L0, Ln] = −nLn . Then consider anti-associativity of [L0[Lm Ln]].)

Question 3.1.6. (a) The group PSL2(R) acts naturally on the unit disc |z| < 1 by Möbius
transformations. Use this to embed PSL2(R) naturally in Diff+(S1), and find the corre-
sponding Lie subalgebra of Vect(S1).
(b) The group SL2(R) naturally acts on the space of semi-infinite rays R≥(x, y) in R2 with
endpoint at the origin (0, 0). Find this action, and use it to embed SL2(R) in Diff+(S1).
Find the corresponding Lie subalgebra of Vect(S1).
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Question 3.1.7. Prove that the Lie algebra of derivations of the algebra C[x±1] of Laurent
polynomials is Vect(S1).

Question 3.1.8. Find the constant α ∈ C for which the new basis L ′n = Ln + α δn,0C of
Vir has especially simple brackets [L ′m, L ′n].

3.2 Affine algebras and their representations

The theory of nontwisted affine Kac–Moody algebras (usually called affine algebras) is
very analogous to that of the finite-dimensional simple Lie algebras. Nothing infinite-
dimensional tries harder to be finite-dimensional than affine algebras. Their construction
is so trivial that it seems surprising anything interesting and new can happen here. But
a certain ‘miracle’ happens. . .

Standard references for the theory of affine algebras are [328], [337], [214], [551].
We will ignore here an interesting part of the story: the KP hierarchy [423].

3.2.1 Motivation

Generalisations are too easy; they should be justified before they are endured. Here we
describe the original justifications for the study of Kac–Moody algebras.

Each simple finite-dimensional Lie algebra has, as we know, a Weyl group, which is
a symmetry of most of the data of the algebra (e.g. the weight multiplicities of finite-
dimensional modules) and which encodes much (but not all) of the structure of the
algebra. These Weyl groups are a very special sort of group: they are generated by
reflections (namely those through the simple roots).

Associated with any vector α ∈ Rn , the reflection rα through α, sending α to −α and
fixing the hyperplane perpendicular to α is given by (1.5.5c). More abstractly, a reflection
r is simply an involution (i.e. order 2: r2 = e). A finite reflection group is a finite group
generated by reflections. Coxeter studied these as symmetries of a regular solids.

For example, the dihedral group Dn (the group of symmetries of a regular n-gon) is
a finite reflection group, consisting of n reflections and n rotations, and is generated by
any two neighbouring reflections. The symmetric group Sn is a finite reflection group: it
acts on an orthonormal basis ei of Rn by permuting the subscripts, and is generated by
the transpositions (i, i + 1), which are reflections rαi through the vector ei − ei+1.

Finite reflection groups have remarkably simple presentations.

Definition 3.2.1 A Coxeter group G is a group with a set R of generators, whose
complete list of relations is

(rr ′)m(r,r ′) = e, ∀r, r ′ ∈ R,

where m(r, r ) = 1 and the other m(r, r ′) all lie in {2, 3, . . . ,∞}. (The value m(r, r ′) = ∞
means that rr ′ has infinite order.)

The geometry of Coxeter groups is quite pretty – see, for example, [301], [84]. In Sec-
tion 7.1.1 we describe a generalisation due to Conway, and its relation to the Monster M.
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Fig. 3.1 The indecomposable finite Coxeter groups.

The list of finite Coxeter groups and finite reflection groups coincide. They are most
easily described by the associated Coxeter graph: put a node for each generator r ∈ R,
and connect two nodes with an edge labelled m(r, r ′). To increase readability, erase the
edge and label if m(r, r ′) = 2, and erase the label (but keep the edge) if m(r, r ′) = 3. The
complete list of finite Coxeter groups (Coxeter, 1935) is given by arbitrary disjoint unions
of the graphs of Figure 3.1. The group given by An is the symmetric group Sn+1, and
I2(n) is the dihedral group Dn . The group H3 is the symmetry group of the icosahedron,
and is isomorphic to Z2 ×A5.

Figure 3.1 should remind us of Figure 1.17. Indeed, Figure 3.1 includes the Weyl
groups of all simple finite-dimensional Lie algebras. More precisely, the Weyl groups
consist of all finite Coxeter groups that obey the crystallographic condition: for all
distinct r, r ′ ∈ R, m(r, r ′) ∈ {1, 2, 3, 4, 6}. Geometrically, the crystallographic condition
says that the Coxeter group stabilises a lattice in Rn (see also Question 1.7.6). As we
recall, the Weyl groups stabilise the corresponding root lattice.

Most Coxeter groups are infinite. As a graduate student, Robert Moody asked that,
since the finite-dimensional semi-simple Lie algebras correspond to finite crystallo-
graphic Coxeter groups, what is the class of Lie algebras that correspond more generally
to any Coxeter group? Presumably they should have a theory very similar to that of
the semi-simple ones. The partial answer to Moody’s beautiful question is that the Lie
algebras corresponding to the (possibly infinite) crystallographic Coxeter groups are
the Kac–Moody algebras! In fact, much of the interest in the affine algebras is due ulti-
mately to their Weyl groups. We still don’t know the Lie algebras corresponding to the
noncrystallographic groups.

Victor Kac’s road to these algebras was quite different. Let g be a complex Lie algebra.
By a Z-grading we mean that we can write the vector space g as g = ⊕∞n=−∞gn , such
that [gm, gn] ⊆ gm+n for all m, n ∈ Z. We call g a simple Z-graded Lie algebra if, in
addition, g does not contain any nontrivial Z-graded ideal.

It is probably hopeless to classify all simple Z-graded Lie algebras – there are too many
of them. However, decades earlier, Cartan had studied vector fields (i.e. derivations) on
polynomial algebras, and found four infinite families that were simple Z-graded, with
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the dimension dim(gn) bounded above by some polynomial in n. We say that these Z-
graded algebras have polynomial growth. Kac conjectured, and Olivier Mathieu proved,
the complete list of such algebras.

Theorem 3.2.2 [409] The simple Z-graded Lie algebras of polynomial growth are:
(a) the finite-dimensional simple Lie algebras;
(b) the loop algebras (possibly twisted);
(c) Cartan’s four families; and
(d) the Witt algebra Witt.

The proof is long and complicated. We’ve already met the finite-dimensional g and
the Witt algebra. Cartan’s algebras are defined explicitly in, for example, [409]. The
‘loop algebras’ are constructed next subsection (there are six infinite families and seven
exceptionals).

What we call the affine algebras – our main interest this chapter – are the central
extensions of these loop algebras. Of course, such algebras cannot be simple because
of their centres, and for this reason aren’t in Mathieu’s list. In any case, the affine
algebras (together with the Virasoro algebra) answer a technical but natural algebraic
question.

A couple of years after their mathematical introduction [325, 430], the nontwisted
affine algebras were discovered independently in string theory [42], under the name
current algebras.

The Lie algebras (a)–(d) in Mathieu’s list are truly extraordinary, especially regarding
their representation theory. The simplest of Cartan’s families are the Weyl algebras, which
are the differential operators on the algebra C[x1, . . . , xn] of polynomials, generated
by multiplication operators x1, . . . , xn and partial derivatives ∂/∂x1, . . . , ∂/∂xn . Their
modules are the simplestD-modules and have deep connections throughout mathematics
and physics (see [116], [80] for an introduction).

3.2.2 Construction and structure

Let g be any simple finite-dimensional Lie algebra. The affine algebra g = g(1) is
essentially the (polynomial) loop algebra Lpolyg = C[t±1]⊗ g, defined to be all pos-
sible ‘Laurent polynomials’

∑
n∈Z antn where each an ∈ g and all but finitely many

an = 0. Treat t here as a formal variable. The bracket in Lpolyg is the obvious one: e.g.
[atn, btm] = [ab]tn+m . Geometrically, Lpolyg is the Lie algebra of polynomial maps
S1 → g (to see this realisation, think of t = e2π iθ ). This explains the name, and also sug-
gests several generalisations (e.g. take any manifold in place of S1). But the loop algebra
is simplest and best understood of these geometric Lie algebras, and the only one we
consider in any depth (but see Section 3.3). Note that Lpolyg is infinite-dimensional.
Its Lie groups are the loop groups, consisting of all maps of S1 to a Lie group for g

(Section 3.2.6).
We saw S1 before, in the discussion of the Witt algebra, so we may expect the Virasoro

and affine algebras to be related. In fact, the Witt algebra acts on the affine algebras
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as derivations. By definition, a derivation D is a linear map that obeys the product
rule for derivatives: D([xy]) = [(Dx)y]+ [x(Dy)]. The easiest examples are the ‘inner
derivations’: D = ad(x). All derivations of g are inner, but the loop algebra Lpolyg has
several non-inner ones. In particular, because Lpolyg consists of all (polynomial) maps
S1 → g, the vector fields Vectpoly(S1), and hence the Witt algebra Witt, act on it. More
precisely, using the realisation � j = −t j+1d/dt of the basis vectors of (1.4.9), we get
the action

� j .(atn) = −t j+1 d

dt
(atn) = −nat j+n. (3.2.1)

This relation between Witt and Lpolyḡ plays an important role in the whole theory.

The loop algebra has a unique nontrivial one-dimensional central extension L̂polyg =
Lpolyg⊕ CC , defined by

[tm x, tn y] = tm+n[x, y]+ mδm,−n κ(x |y) C (3.2.2a)

for all x, y ∈ g and m, n ∈ Z, where κ(x |y) is the invariant bilinear form (Killing form)
of g. Thus L̂polyg has the same relation to Lpolyg that Vir has to Witt. Incidentally,
[344] relates the central extensions (3.2.2a) and (3.1.5) to logarithms of differential
operators.

In addition, for a technical reason (namely, to make the simple roots linearly indepen-
dent, so weight spaces can be finite-dimensional), a further noncentral one-dimensional
extension is usually made. The result: by the affine algebra g = g(1) we mean the exten-
sion of L̂polyg by the derivation �0 := t d

dt . The Witt algebra also acts naturally on g

(Question 3.2.3). The superscript ‘(1)’ denotes the fact that the loop algebra was twisted
by an order-1 automorphism, in other words that it is nontwisted. It is called ‘affine’
because of its Weyl group, as we shall see.

For example, elements in A1
(1) are triples (a(t), w, x) where w, x ∈ C and a(t) =∑

n∈Z antn , for all an ∈ sl2(C) and only finitely many an �=
(

0 0
0 0

)
. The Lie bracket

is

[(a(t), w, x), (a′(t), w′, x ′)] =(∑
m,n

tm+n[am, a′n]+ x
∑

n

na′ntn − x ′
∑

m

mamtm,
∑

m

m tr(ama′−m), 0

)
. (3.2.2b)

Each object associated with g has an analogue here: Coxeter–Dynkin diagram, Weyl
group, weights, . . . For instance, the affine Coxeter–Dynkin diagram (Figure 3.2) is
obtained from that of g (Figure 1.17) by adding one node, labelled with an ‘x’. We have
included the labels ai and (where different from ai ) colabels a∨i , whose significance is
given next subsection.

The Cartan subalgebrahplays the same role here that it does in Chapter 1: decomposing
modules into weight spaces. It can be chosen to be h⊕ CC ⊕ C�0, where h is a Cartan
subalgebra of the semi-simple algebra g. In fact, g has a triangular decomposition g =
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Fig. 3.2 The nontwisted affine Coxeter–Dynkin diagrams.

g+ ⊕ h⊕ g− (recall (1.5.5d)) where

g± =
(
t±1C[t±1]⊗ (g∓ ⊕ h)

)⊕ C[t±1]⊗ g± (3.2.3a)

and g = g+ ⊕ h⊕ g− is a triangular decomposition of g. Given h, we obtain the root-
space decomposition of g, as in (1.5.5a):

g = h⊕
⊕
n∈Z

⊕
α∈�

tngα ⊕
⊕

n∈Z\0
tnh (3.2.3b)

where g = h⊕⊕αgα . We return to (3.2.3) when we study g-modules next subsection,
but for now note that if g has rank r , then the root spaces tnh of g have dimension r
while all tngα have dimension 1. The latter, which act like root spaces in g, are called
real, while the former are called imaginary.

This loop algebra construction can be twisted. Let g again be any simple and finite-
dimensional Lie algebra and let g be the corresponding affine algebra. Choose any
symmetry α of the Coxeter–Dynkin diagram of g, of order N say, and extend this into
an automorphism of g as in Section 1.5.4. We can further extend α to an automorphism
of g, by requiring α to fix C and �0, and send atn to α(a)ξ−n

N tn . Then the fixed-point
subalgebra g0 of g is

g0 =
{∑

n

antn + wC + x�0

∣∣ an ∈ gn mod N

}
, (3.2.4)

where gi are the eigenspaces of α in g (recall (1.5.12)). This Lie algebra g0 is called
a twisted affine algebra and is denoted g(N ). All twisted affine algebras are listed in
Figure 3.3, with their colabels. Twisted affine algebras behave very analogously to the
nontwisted ones, and also have a significant role in the theory (Section 3.4.1).
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Fig. 3.3 The twisted affine Coxeter–Dynkin diagrams.

3.2.3 Representations

The loop algebra Lpolyg has no interesting modules, which is why we centrally extend it
and introduce the affine algebras g = g(1). No interesting g-module is finite-dimensional.
However, g has a triangular decomposition (3.2.3a), so highest-weight modules exist.
Weights λ ∈ h∗ here are triples (λ, k, u) ∈ h

∗ × C2; a weight vector v obeys

h.v = λ(h) v, C.v = kv, �0.v = uv.

Define the Verma module M(λ, k, u) and the irreducible highest-weight module
L(λ, k, u) – our greatest interest – as in Section 1.5.3. Given any highest-weight module
M , the central term C acts as a multiple k I of the identity; this constant k is a funda-
mental invariant of the representation called the level of M . On the other hand, the value
of u is irrelevant (at least when the level is not 0) – see Question 3.2.4.

A highest-weight module M is infinite-dimensional but comes with a grading M =
⊕∞n=0 Mu+n into eigenspaces of �0. Because �0 commutes with g, these spaces Mu+n are
all g-modules, and the lowest, namely Mu , has highest weight λ. Using this we can define
the graded-dimension as in (3.1.4b). However, the �0-spaces of Verma modules will be
infinite-dimensional, as will those of L(λ, k, u) unless λ ∈ P+(g). There are two ways
to proceed: either find a more suitable grading, or (more important) consider instead the
character.

Defining these characters requires decomposing our modules into weight-spaces, and
for this we should fix a basis for h∗. A basis for h is h1, . . . , hr (the usual basis for
h) together with h0 := C −∑r

i=1 a∨i hi and −�0 (a∨i are the colabels of Figure 3.2).
The reason for introducing h0 will be clearer in Section 3.3.1. The dual basis for h∗,
corresponding to h0, . . . , hr ,−�0, is written ω0, . . . , ωr , δ. Recall from Sections 1.4.3
and 1.5.2 the Killing form κ(h|h′) and (λ|μ) for g; its analogue for affine algebras
(Question 3.2.5) obeys

κ(z + a�0 + uC |z′ + a′�0 + u′C) = κ(z|z′)− au′ − ua′, (3.2.5a)(
r∑

i=0

λiωi + bδ |
r∑

j=0

μ jω j + dδ

)
=
(

r∑
i=1

λiωi |
r∑

j=1

μ jω j

)
+

r∑
i=0

(dλi + bμi ) .

(3.2.5b)
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The level k is recovered from the weight λ by the formula

k = (δ|λ) =
r∑

i=0

a∨i λi . (3.2.5c)

A useful formula gives the evaluation λ(h):(
r∑

i=0

λiωi + bδ

)
(z + τ�0 + uC) =

(
r∑

i=1

λiωi

)
(z)+ ku − τb. (3.2.5d)

In this notation, the roots of g are α − (θ |α)ω0 + nδ for any root α of g (these are
the real roots, and have multiplicity 1), as well as nδ (the imaginary roots, with multi-
plicity equal to the rank r of g). The root θ =∑r

i=1 aiαi is called the highest root of g,
where ai are the labels of g (Figure 3.2). The positive roots are any of these with n > 0,
together with α − (θ |α)ω0 for positive roots α. The simple roots are αi := αi − (θ |αi )ω0

for 1 ≤ i ≤ r , together with α0 := δ −∑r
i=1 aiαi . Note that the adjoint representation

of an affine algebra is not a highest-weight representation (why?). Many of these com-
ments will make more sense when we associate a Coxeter–Dynkin diagram to g in
Section 3.3.1.

The weight-spaces for the Verma modules, and hence any highest-weight module M ,
are always finite-dimensional and so we can define their character chM as in (1.5.9a).
For an easy example, the Verma module M(λ, k, 0) = M(λ) has character

chM(λ)(h) = eλ(h)
∏
α>0

(
1− e−α(h)

)−multα
, (3.2.6)

where ‘multα’ denotes the dimension of the root-space gα (which now may be> 1). We
can obtain convergent graded dimensions by specialising this in any number of ways;
the most obvious (called the principal gradation) chooses h ∈ h so that eαi (h) = x for all
simple roots αi (0 ≤ i ≤ r ), and eω0(h) = 1 (x is a formal variable). In other words, the
principal grading of a vector with weight λ−∑r

i=0 niαi is
∑

i ni less than the grading
of λ – this gradation keeps track of how many ‘creation operators’ fi (using notation
introduced in Section 3.3.1) are applied to the ‘vacuum’ v in order to create the given state.

For example, the affine algebra A1
(1) has positive roots 2ω1 − 2ω0 + nδ (for n ≥ 0)

as well as mδ and −2ω1 + 2ω0 + mδ (for m > 0). All root multiplicities are 1. The
simple roots areα1 = 2ω1 − 2ω0 andα0 = δ − α1. A highest-weightλ looks likeλ0ω0 +
λ1ω1, with level λ0 + λ1. Applying the principal gradation to the A(1)

1 -Verma module,
its character (3.2.6) specialises to the principally-graded dimension

dimpg
M(λ)(x) = xλ1/2

∞∏
n=0

(
1− x−(1+2n)

)−1
∞∏

m=1

(1− x−2m)−1
∞∏

m=1

(
1− x−(−1+2m)

)−1

= e−π iλ1τ η(2τ )/η(τ )−2, (3.2.7)

where we write x = e−2π iτ and recall the Dedekind eta function from (2.2.6b). Thus
once again we find the remarkable fact that graded dimensions of Verma modules have
something to do with the modular group SL2(Z) (compare (3.1.7)). Something similar
happens for the highest-weight representations of any affine algebra!
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194 Affine algebras and generalisations

Nothing particularly deep is happening here. The modularity of dimpg arises here
for free, simply from the combinatorics. Indeed, for any affine algebra, the specialised
product of (3.2.6) is the generating function for some partition-like function as in (3.1.7b),
and these have nice modular behaviour (by arguments like those used in Section 2.2.2).

More precisely, in the Verma module we get a free action of the creation operators of
a Heisenberg subalgebra, coming from the central extension of the loop algebra of the
Cartan subalgebra h. Thus the modular group arises in affine algebra characters because
of a Heisenberg algebra action. However, much as the discrete series (3.1.6) of Vir-
modules behaves simpler than the other unitary Vir-modules, discretising the integral
in (3.1.7d), certain families of g-modules have especially nice modular properties. What
makes this work is the Weyl group. It is this conjunction of the Heisenberg subalgebra
with the affine Weyl group that makes affine algebras so special.

The analogue for g of the finite-dimensional modules of g are called the integrable
highest-weight modules. Technically speaking, an integrable representation π is one
where all x ∈ g± are locally nilpotent, that is, for each v ∈ V there is a number nx (v) such
that π (x)nx (v)v = 0. In particular, this means eπ (x) is well-defined as an operator on the
module by its Taylor series – in infinite dimensions most operators can’t be exponentiated.
These modules are called integrable because they are precisely those highest-weight
modules that can be ‘integrated’ to a projective module of the corresponding loop group
(Section 3.2.6). The integrable modules are precisely the unitary ones.

The highest weight λ =∑r
i=0 λiωi is integrable iff each λi ∈ N. Hence the set of all

integrable level k highest weights is

Pk
+(g) :=

{
r∑

i=0

λiωi | λi ∈ N, k =
r∑

i=0

a∨i λi

}
. (3.2.8)

Simple formulae for the cardinality ‖Pk
+(g)‖ exist for all algebras (Question 3.2.6) –

for example, for Ar
(1) it is ‖Pk

+‖ =
( k+r

r

)
. The most important weight in Pk

+(g) is kω0,
often denoted ‘0’ in the literature. The module L(kω0) has a vertex operator algebra
structure (Section 5.2.2) and corresponds to the vacuum sector in conformal field theory
(Section 6.1.1).

The �0-eigenspaces of an integrable representation L(λ) are all finite-dimensional
representations of g, and thus we can define its character chL(λ) as in (1.5.9a), although
just as for the Virasoro algebra in (3.1.10) it proves to be more convenient to ‘normalise’
it:

χλ(h) := e−(hλ−cλ/24) δ(h)
∑

β∈�(L(λ))

dim L(λ)β eβ(h), (3.2.9a)

where L(λ) = ⊕L(λ)β is the weight-space decomposition of L(λ), h ∈ h, and

hλ := (λ|λ+ 2ρ)

2 (k + h∨)
, (3.2.9b)

cλ := k

k + h∨
dim g (3.2.9c)
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Fig. 3.4 The Weyl group of A2
(1) acting on level-2 weights.

are called the conformal weight and central charge, respectively, of L(λ). The quantity
h∨ =∑r

i=0 a∨i is called the dual Coxeter number and ρ =∑r
i=0 ωi the Weyl vector.

The algebraic meaning of hλ and cλ involves the Virasoro algebra and is given shortly;
δ(h) plucks out the coefficient 2π iτ of �0 (recall (3.2.5d)). We are assuming in (3.2.9b)
that the highest-weight component u has been set to 0 (Question 3.2.4). We discuss
the normalisation (the exponential involving hλ − cλ/24) later in this subsection. As in
(1.5.11), the character χλ can be written as an alternating sum over the Weyl group W ,
over a ‘nice’ denominator (namely the product in (3.2.6)). The difference is that W is
now infinite.

See Figure 3.4 for the Weyl group of A2
(1) (projected to h

∗
), and Question 3.2.7 for

some simple calculations. Much of the interest in affine algebras can be traced to the
‘miracle’ that their Weyl groups are a semi-direct product Q∨×W of translations in a
lattice Q∨ (the r -dimensional ‘co-root lattice’ of g) with the (finite) Weyl group W of
g. More precisely, for any root α of g define the co-root α∨ by α∨ = 2α/(α|α); by the
co-root lattice Q∨ ⊂ h

∗ ⊂ h∗ of g we mean the Z-span of these co-roots. For any vector
β ∈ Q∨, define the map

tβ(μ) = μ+ (μ|δ)β − ((μ|β)+ (β|β) (μ|δ)/2) δ, (3.2.10a)

∀μ ∈ h∗. It is straightforward to verify tβ tγ = tβ+γ , and thus these deserve the name
‘translations’. Any element of the Weyl group W of g can be written uniquely as a pair
(tβ, w) for some β ∈ Q∨ and some w ∈ W , and

(tβ, w) ◦ (tβ ′ , w
′) = (

tβ tw(β ′), ww
′). (3.2.10b)

As in (1.5.6d), weights μ ∈ �(L(λ)) in the same Weyl orbit of an integrable module
have the same multiplicities. One thing this implies is that χλ will be of the form ‘theta
series’/denominator. In particular, the lattice is Q∨, and the ‘(β|β)δ’ term in (3.2.10a)
provides the quadratic form in the lattice theta series. As we know from (2.3.10), theta
series are modular forms, and this is the second complementary reason the modular
group SL2(Z) makes an appearance (the first was the combinatorics of the free action of
the Heisenberg subalgebra of creation operators). To make this more precise, consider

https://doi.org/10.1017/9781009401548.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401548.004


196 Affine algebras and generalisations

the highest weight λ = λ0ω0 + λ1ω1 ∈ Pk
+(A(1)

1 ). Then

χλ(2π i (z + τ�0 + uC)) = 

(k+2)
λ1+1 (τ, z, u)−


(k+2)
−λ1−1(τ, z, u)



(2)
1 (τ, z, u)−


(2)
−1(τ, z, u)

, (3.2.11a)


(n)
m (τ, z, u) := e−2π inu

∑
�∈Z+ m

2n

exp[2π inτ�2 − 2
√

2π in�z]. (3.2.11b)

Any g has an analogue of (3.2.11), the Weyl–Kac character formula

χλ(2π i (z + τ�0 + uC)) =
∑

w∈W ε(w)
(k+h∨)
w(λ1+ρ)(τ, z, u)∑

w∈W ε(w)
(h∨)
w(ρ)(τ, z, u)

, (3.2.11c)

where both the numerator and denominator involve an alternating sum over the finite
Weyl group W of g, and where the theta series in (3.2.11c) involves a sum over the
lattice Q∨ shifted by some weight and appropriately rescaled. For example, the Weyl
group of A1 is S2 and its co-root lattice Q∨ is

√
2Z. The key variable in (3.2.11) is the

modular one τ – the main role of the other variables is to ensure linear independence.
The character χλ converges for any choice of τ ∈ H, z ∈ Cr and u ∈ C.

Thus the denominator of the character of an irreducible integrable g-module L(λ) is
a modular form, by virtue of the combinatorics of Verma modules. The numerator is a
modular form, by virtue of the structure and action of the affine Weyl group. Together
they give a modular function.

Theorem 3.2.3 [333] Let g be finite-dimensional and simple, and let g = g(1) be
the corresponding affine algebra. Define χλ(τ, z, u) = χλ(2π i (z + τ�0 + uC)). Fix any
level k ∈ N. Then for any integrable weight λ ∈ Pk

+(g), χλ(τ, 0, 0) is a modular function
for some congruence subgroup �(N ). Moreover, define a column vector !χ (τ, z, u) with
entries χλ(τ, z, u) for each λ ∈ Pk

+(g). Then there is a unitary representation ρ of SL2(Z)
such that

!χ
(

aτ + b

f τ + d
,

z

f τ + d
, u − f (z|z)

2( f τ + d)

)
= ρ

(
a b
f d

)
!χ (τ, z, u),

for any

(
a b
f d

)
∈ SL2(Z).

We say that the characters χλ define a vector-valued Jacobi form for SL2(Z), with multi-
plierρ (recall Definition 2.2.2). This modularity of affine characters is fundamental to this
book, and a prototypical example of much of what follows. The complex matrices ρ(A)
here are examples of modular data (Sections 6.1.2 and 6.2.1). A �(N ) that uniformly
works in Theorem 3.2.3 is to let N be the least common multiple of all denominators of
hλ − c/24 (these will always be rational), as λ runs through the finite set Pk

+(g).

We can now explain McKay’s observation (0.5.1) that the coefficients of j(τ )
1
3

are related to the E8 Lie group. j
1
3 (τ ) equals the character χω0 (τ, 0, 0) of the inte-

grable E (1)
8 -module. The q-coefficients (q = e2π iτ ) of j

1
3 (τ ) are thus dimensions of the
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�0-eigenspaces of L(ω0), which are automatically E8-modules. Because P1
+(E (1)

8 ) =
{ω0}, all modularity properties of the character j

1
3 are a direct consequence of Theorem

3.2.3.
All of this assumes the underlying finite-dimensional Lie algebra g is semi-simple.

When it is merely reductive (i.e. the direct sum of copies of the one-dimensional abelian
algebra u1, with a number of simple Lie algebras), something different happens. For
example, consider the affinisation of u1 (the oscillator algebra). It has basis C, an (n ∈ Z)
and obeys relations

[C, an] = 0, [am, an] = mδm,−nC. (3.2.12a)

Its irreducible unitary modules are parametrised by a highest weight λ ∈ R, and are
Verma modules M(λ). In particular, any λ ∈ R defines a different irreducible unitary
module. They can be realised in the space of polynomials C[x1, x2, . . .] by the operators
C.p(x) = p(x), a0.p(x) = λ p(x), and for all n ≥ 1

an p(x) = ∂

∂xn
p(x), a−n p(x) = nxn p(x). (3.2.12b)

Note that the level k here is 1 (why can we demand k = 1?). The reader can verify that
this representation has (normalised) character

χλ(τ ) = qλ
2/2/η(τ ). (3.2.12c)

These characters aren’t linearly independent (since χ−λ = χλ), but the reader can work
out the usual remedy. Their modularity is discussed in Section 6.2.2. In the language
of conformal field theory, the unitary modules of the oscillator algebra u1

(1) are quasi-
rational while the integrable modules of affine algebras are rational. Nevertheless, the
oscillator algebra (studied in detail in [334]) is a convenient toy model for the affine
algebras.

Last subsection we saw that Witt acts naturally on loop algebras by derivations. Does
Witt act on affine modules? Consider the oscillator algebra for simplicity. We will have
a universal Witt action on u1

(1)-modules M if we can construct the basis �n of (1.4.9) out
of the operators am of (3.2.12a), that is realise the �n in the universal enveloping algebra
U (u1

(1)) (or some completion thereof). We are led to consider quadratic combinations
in the am , since that is the simplest after linear ones (which won’t work), and also
since �0 has the interpretation of a Hamiltonian, which always contains a quadratic part.
Define

tm =
∑
i∈Z

a−i am+i . (3.2.13a)

Being an infinite sum, convergence won’t be automatic, but let’s ignore that for now.
Then

[tm, an] =
∑
i∈Z

a−i [am+i , an]+ [a−i , an]am+i = −nam+nC − nCam+n = −2nam+nC.

(3.2.13b)
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In, for example, a highest-weight module, C acts as a scalar k, and so (at least for k �= 0)
�m := 1

2k tm mimics the action of the standard Witt action �m = −tm+1d/dt on the loop
algebra Lpolyu1. This looks promising. We compute from (3.2.13b)

[�m, �n] = (2k)−2
∑
i∈Z

[tm, a−i ]an+i + (2k)−2
∑
j∈Z

a− j [tm, an− j ]

= (2k)−1
∑
i∈Z

iam−i an+i + (2k)−1
∑
j∈Z

(−n − j)a− j am+n+ j = (m − n)�m+n,

establishing that indeed the �m form a realisation of Witt in U (u1
(1)).

Unfortunately, the sum in (3.2.13a) doesn’t converge. Take M to have highest-weight
vector v with highest weight (λ, k). Then

t0.v =
∑
i≤−1

(ai a−i − iC).v + a0a0.v +
∑
j≥1

a− j a j .v = k2v + k

(∑
j≥1

j

)
v, (3.2.13c)

which diverges. This means (3.2.13a) must be modified. The simplest correction can
be written Tm :=∑

i∈Z : a−i am+i :, where the normal-ordering : aman : is defined to
equal either aman or aman , depending on whether or not m ≤ n. For m �= 0, Tm = tm ,
but T0.v = k2v. Indeed, each operator Tm will be defined on any Fock space. We find
that

Lm := (2k)−1
∞∑

i=−∞
: a−i am+i : (3.2.14a)

satisfies both

[Lm, an] = −nam+n, (3.2.14b)

[Lm, Ln] = (m − n)Lm+n + m3 − m

12
δm,−n. (3.2.14c)

Thus any highest-weight u1
(1)-module is simultaneously a Vir-module with central

charge c = 1. Thus this nonzero central charge arises as an analytic effect.
Using (3.2.12a), this normal-ordering (3.2.14) doesn’t change Ln = �n , for n �= 0, but

shifts the divergent �0 by the infinite multiple
(∑∞

i=1 i
)

of C . There is nothing particularly
special about this normal-ordering; for example, for any fixed � we could have replaced
the condition ‘m ≤ n’ with ‘m ≤ n + �’, and nothing would have changed except L0

would have been shifted by some other multiple of C . This is a clue to understanding what
is so special about the−c/24 shifts in, for example, (3.1.10) or (3.2.9a). The arbitrariness
of the normal-ordering can be removed by reinterpreting (‘regularising’) the divergent
term in (3.2.13c) as kζ (−1) (recall (2.3.1)). Equivalently, this amounts to replacing the
normal-ordered L0 with L0 − C/24. This is the algebraic ‘explanation’ for the naturality
of the shift, and hence the pervasive appearance of −c/24: simply put, algebra prefers
L0 − C/24 over all other combinations L0 + αC (recall Question 3.1.8). It should thus
not come as a complete surprise that so too does SL2(Z). Incidentally, this ‘24’, ζ (−1),
the special dimensions 8+ 2 and 24+ 2 in string theory and the 24 of Section 2.5.1 are
all directly related.
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More generally, Bloch [63] considered other algebras of differential operators on S1.
In particular, in place of �n = −tn+1d/dt he considers

�(r )
n = (−1)r+1(td/dt)r tn(td/dt)r+1.

He obtains a (projective) realisation of these �(r )
n by normal-ordering operators in a Fock

(or highest-weight) module, exactly as we do here. The analogue of (m3 − m)/12 in
the bracket [L (r )

m , L (s)
n ] is a polynomial of degree 2r + 2s + 3 in m. As before, we want

to remove this arbitrary choice of normal-ordering. Naively dropping it introduces the
divergence 12r+1 + 22r+1 + · · · , so as before replace it with the Riemann zeta value
ζ (−1− 2r ), i.e. replace L (r )

0 with L (r )
0 + (−1)rζ (−1− 2r )C/2. Then the polynomial

in m becomes the monomial (r + s + 1)!(r + s + 1)!m2r+2s+3/(2(2r + 2s + 3)!). This
appearance of ‘zeta function regularisation’ in algebra has been interpreted and gener-
alised in the vertex operator algebra framework (see [375] for a review).

Identical comments hold for affine algebras. Choose a basis xa of g, orthonormal with
respect to the Killing form: κ(xa|xb) = δab. Then for λ ∈ Pk

+(g), (3.2.14) become

Lm := 1

2(k + h∨)

∑
j∈Z

∑
a

: (t− j xa)(tm+ j xa) :, (3.2.15a)

[Lm, xtn] = −nxtm+n, ∀x ∈ g, (3.2.15b)

[Lm, Ln] = (m − n)Lm+n + cλ
m3 − m

12
δm,−n. (3.2.15c)

Thus the g-module L(λ) is also automatically a completely reducible Vir-module. Each
irreducible Vir-submodule has central charge cλ and conformal weight h ∈ hλ + N
(see (3.2.9)). In L(λ), the Virasoro generator L0 and the derivation �0 of g are related
by L0 = hλ I d + �0. Equation (3.2.15a), known as the Sugawara construction, should
remind us of the quadratic Casimir � := 1

2

∑
a xa xa of g, that is, the simplest nontrivial

element in the centre of U (g); it acts on the irreducible g-module L(λ) as multiplication
by the scalar (λ|λ+ 2ρ) (recall (3.2.9b)). The shift by the dual Coxeter number h∨ in
(3.2.15a) arises algebraically as the eigenvalue of � in the adjoint representation of g;
its physical significance is discussed in Section 6.2.1.

The integrable modules of twisted affine algebras Xr
(N ) (recall Figure 3.3) behave

similarly. As we know from (3.2.4), Xr
(N ) is obtained from the nontwisted affine algebra

g = Xr
(1) and an order-N symmetry α of the Coxeter–Dynkin diagram of Xr . The

integrable highest-weight X (N )
r -modules L(λ) are parametrised by (r + 1)-tuples λ ∈ Pk

+
as in (3.2.8), where the co-labels a∨i are now given in Figure 3.3. These modules also
have weight-space decompositions as in (1.5.6a) and characters χλ as in (3.2.9a). Their
characters are also modular (see theorem 13.9 of [328] for details).

Theorem 3.2.4 [333] The characters χλ, λ ∈ Pk
+(A(2)

2r ) form a vector-valued Jacobi
function for SL2(Z), as in Theorem 3.2.3. For g = A2r−1

(2), Dr+1
(2), E6

(2) and D4
(3),

respectively, define g′ = Dr+1
(2), A2r−1

(2), E6
(2), D4

(3) and N = 2, 2, 2, 3; then the char-
acters χλ, λ ∈ Pk

+(g), form a vector-valued Jacobi function for �0(N ) (recall (2.2.4b)),
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and for each λ ∈ Pk
+(g),

χλ

(−1

τ
,

z

τ
, u − (z|z)

2τ

)
∈ spanμ′∈Pk+(g′) χμ′

( τ
N
,

z

N
, u
)
.

3.2.4 Braided #3: braids and affine algebras

According to conformal field theory, the modularity of, for example, affine algebra
characters arises through the monodromy of a system of partial differential equations (the
Knizhnik–Zamolodchikov equations for a torus with one puncture). In this subsection
we anticipate this important idea by considering the simpler and better-known situation
of a sphere. See also [355], [174]; the basic idea of differential equation monodromy is
nicely described in [363].

Theorem 3.2.5 Consider a simply-connected open region D in C. Consider the dif-
ferential equation

d2w

dz2
+ P(z)

dw

dz
+ Q(z)w = 0, (3.2.16a)

where P(z) and Q(z) are holomorphic in D. For any point z0 ∈ D, and any α, β ∈ C,
there is a unique function w(z), holomorphic in D, satisfying the initial conditions

w(z0) = α, (3.2.16b)
dw

dz
(z0) = β. (3.2.16c)

Hence the solutions w to (3.2.16a) form a two-dimensional space, parametrised by
α, β ∈ C. For a proof of this theorem, see, for example, chapter XII of [307].

What if D is not simply-connected? One way to proceed would be to make D simply-
connected by cutting it. For example, if D is C with n points z1, . . . , zn removed, then
we can cut D along a non-self-intersecting polygonal path connecting z1, . . . , zn and
∞, avoiding the point z0. Call D′ the resulting simply-connected subregion of D. Then
a holomorphic function on D restricts to a holomorphic function on D′; however, most
holomorphic functions on D′ won’t extend continuously to D.

The other way to proceed is to consider the (simply-connected) universal cover π :
D̃ → D (recall Section 2.1.2). We can then identify D with D̃/G for some group G
isomorphic to the fundamental group π1(D); each γ ∈ G is an automorphism of D̃
shuffling the points z̃ ∈ π−1(z) above each z ∈ D. Functions h holomorphic on D lift to
functions h ◦ π holomorphic on D̃, although a typical function h̃ on D̃ won’t correspond
to a well-defined function on D. However, π−1(D′) ⊂ D̃ consists of several connected
open components, one for each γ ∈ π1(D), and through this there is a many-to-one
correspondence between the holomorphic functions on D′ and those on D̃.

Let’s return to the situation of Theorem 3.2.5, except with D now being non-simply-
connected (although still connected). Then there is a unique solution w to (3.2.16) in
D′. Writing P̃ = P ◦ π and Q̃ = Q ◦ π , and choosing any z̃0 ∈ π−1(z0), we can lift the
equations (3.2.16) to D̃ and again we obtain a unique solution w̃, this time holomorphic
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in D̃. The space of solutions w on D′, w̃ on D̃, are both two-dimensional. But we get
more: both spaces carry naturally an action of the fundamental group π1(D), called
the monodromy representation. More precisely, each automorphism γ ∗ ∈ G ∼= π1(D)
carries a solution w̃ of (3.2.16a) to another solution w̃ ◦ γ ∗ – it preserves α, β but
changes the choice z̃0 ∈ π−1(z0). It corresponds to an analytic continuation of w across
the polygonal path cut out from D, along closed paths γ corresponding to γ ∗.

A simple example should make this clear. Consider

d2w

dz2
+ z−1 dw

dz
= 0. (3.2.17a)

Here, D is the punctured plane C \ {0} so we can take D′ to be C with the negative
real axis removed. The fundamental group π1(D) is Z, and the universal cover D̃ is
the infinite spiral staircase. Two solutions to (3.2.17a) in D′ are w = log z and w = 1.
Analytically extend w(z) = log z along the unit circle starting at z0 = 1 and running
counterclockwise: as we cross the negative real axis continuity requires the value ofw to
be shifted by 2π i from its previous ‘principal’ value. More generally, the path γ ∗ = n,
winding n times around the origin, would pick up a monodromy of 2π in. On the other
hand, the constant solutionw(z) = 1 is of course unchanged under analytic continuation.
In terms of our basis {log z, 1}, we thus obtain the monodromy representation

n �→
(

1 2π i n
0 1

)
. (3.2.17b)

We are interested here in a slightly more complicated situation than that of
Theorem 3.2.5. Let g be any finite-dimensional semi-simple Lie algebra and choose
n distinct points z1, . . . , zn in C. Recall the space Cn defined in (1.2.6). Choose a basis
xa of g, orthonormal with respect to the Killing form κ . For each i , choose a finite-
dimensional g-representation Ri , acting on a space Vi . Fix some complex number γ �= 0.
By the Knizhnik–Zamolodchikov (or KZ) equations we mean

∂w

∂zi
= γ

∑
j �=i

∑
a

Ri (xa)⊗ R j (xa)

zi − z j
w, 1 ≤ i ≤ n, (3.2.18a)

wherew : Cn → V1 ⊗ · · · ⊗ Vn , and where Ri (xa), R j (xa) act on the i th, j th components
of the multilinear form w.

We recognise in (3.2.18a) the quadratic Casimir� =∑
a xa xa discussed after (3.2.15).

Physically (i.e. in the context of conformal field theory),w is a chiral block on the sphere
P1(C) with n + 1 distinct marked points (namely z1, . . . , zn and zn+1 = ∞) for a Wess–
Zumino–Witten model (Section 4.3.2). Geometrically (see e.g. [338]),

1

2
d− γ

∑
j,i

i �= j

∑
a

Ri (xa)⊗ R j (xa)
dzi − dz j

zi − z j
(3.2.18b)

defines a connection (Section 1.2.2) on the trivial vector bundle Cn ×W , for W =
V1 ⊗ · · · ⊗ Vn . An easy calculation verifies this connection is flat (i.e. has 0 curvature).
The partial differential equations (3.2.18a) say that w is a horizontal or parallel section.
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In other words, restricting to a simply-connected subregion C′n of Cn , the unique solution
w(z1, . . . , zn) to (3.2.18a) satisfying some initial condition w(z(0)) = w(0) is obtained
geometrically by parallel-transporting the vector w(0) along any path γ in C′n connecting
z(0) to the desired point (z1, . . . , zn).

Our context here is thus analogous to that of Theorem 3.2.5: parallel transport plays
the role of analytic continuation, and the flatness of Cn corresponds to the Monodromy
Theorem of complex analysis (e.g. theorem 16.15 of [481]). The result is that the space
of solutions to (3.2.18a) carries a representation of the fundamental group π1(Cn), i.e.
of the pure braid group Pn . We get an action of the full braid group through ‘half-
monodromies’: a braidβ ∈ Bn will take a solutionw of (3.2.18a) to a solution of (3.2.18a)
with values in Vβ1 ⊗ · · · ⊗ Vβn , where β acts on the indices {1, . . . , n} through the
natural homomorphism φ : Bn → Sn described in Section 1.1.4. In particular, if all Vi

are isomorphic, the space of solutions of (3.2.18a) will carry a representation of the full
group Bn .

The infinitely many irreducible finite-dimensional modules of a simple Lie algebra
naturally span a symmetric monoidal category (recall Section 1.6.2 for definitions); its
character ring is isomorphic to a polynomial ring in r variables, where r is the rank of the
algebra. On the other hand, the finitely-many level-k irreducible integrable modules of a
nontwisted affine algebra span a braided monoidal category (in fact ribbon and modular
categories); the corresponding character ring is called a fusion ring and is described
in Section 6.2.1. The key ingredient in this category – the braiding – comes from this
braid group monodromy. In Section 6.2.2 we see that this braid group monodromy,
and associated braided monoidal category, generalise to the modules of sufficiently nice
vertex operator algebras, and this (or if you prefer, conformal field theories) serves as
the natural context for the modularity in Moonshine.

There are many other occurrences of the braid group in the mathematics and physics
neighbouring Moonshine, and most of these are directly related to this KZ monodromy
on a sphere. For example, the knot invariants arising from subfactors and quantum groups
come from braid group representations, and Drinfel’d and Kohno have proved that these
representations are the same ones coming from KZ monodromy.

On the other hand, the relation of the braid group B3 to SL2(Z) and its modular
functions, which we have seen already in Section 2.4.3 and which we argue later plays a
fundamental role in Monstrous Moonshine, does not have a direct relation to this braid
group monodromy. But we will see later that modularity too is due to monodromy of
a system of partial differential equations – the analogue of these KZ equations for a
once-punctured torus – defining a flat connection on the extended moduli space M̂1,1.
The solutions of these equations are spanned by the affine algebra characters (or more
generally the vertex operator algebra one-point functions). The associated monodromy
group is the mapping class group of M̂1,1, which is readily seen to be B3.

Intriguingly, this means that we’ve come full circle. Poincaré’s 125-year-old path
to modular functions (see [259] for a review) was differential equations of the form
(3.2.16a). Let f (z), g(z) be a basis for the space of solutions, and write ξ (z) = f (z)/g(z).
Note that the monodromy group acts on ξ by Möbius transformations: ξ �→ aξ+b

cξ+d .
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Poincaré found that, at least in some cases, when we invert ξ (z) and write z as a function
of ξ , then z will be a modular function for some discrete subgroup of SL2(R), acting on
ξ ∈ H.

A simple example is Legendre’s equation

d2 y

dk2
+ 1− 3k2

k (1− k2)

dy

dk
− y

1− k2
= 0.

This has the elliptic periods K (k) and K ′(k) = K (k ′) as solutions (recall Section 2.2.1).
It is more convenient to change variables to z = k2, when this equation becomes

d2w

dz2
+ 1− 2z

z (1− z)

dw

dz
− w

4z (1− z)
= 0. (3.2.19a)

Then K ′(z) = K (1− z), since k2 + k ′2 = 1. The domain D is the plane with z = 0 and
z = 1 removed; its fundamental group π1 is the free group F2 = 〈σ0, σ1〉 generated
by counter-clockwise loops σk about z = k. It turns out that K (z) is holomorphic at
z = 0, but K ′(z) has a logarithmic singularity there: K ′(z)+ 1

π
K (z) log z is holomor-

phic at z = 0. Thus as we go counter-clockwise in a small circle about z = 0, K (z) is
unchanged but K ′(z) becomes K ′(z)− 2iK (z). Hence, as we go counter-clockwise in a
small circle about z = 1, K ′(z) is unchanged but K (z) becomes K (z)+ 2iK ′(z). Thus in
terms of the basis {K (z), iK ′(z)} of solutions to (3.2.19a), the monodromy representation
becomes

σ0 �→
(

1 2
0 1

)
, σ1 �→

(
1 0
2 1

)
. (3.2.19b)

For the details of this calculation, see chapter 14.5 of [486]. The image of (3.2.19b)
is precisely the congruence subgroup �(2), which indeed is isomorphic to F2. Now,
Poincaré would have us invert the function iK ′(z)/K (z). That ratio turns out to always
be in H, and so denote it τ (z). Expressing z = k2 as a function of τ , we obtain

z(τ ) = θ2(τ )4

θ3(τ )4
. (3.2.19c)

Indeed, we know from (2.3.8) that (3.2.19c) is invariant under �(2).
It is remarkable to recover in this way the group �(2), its action on H and a mod-

ular function for �(2) (in fact, �(2) is genus-0 and θ4
2 /θ

4
3 generates all of its modular

functions). There are many other examples of this kind, for example

w′′ + z−1w′ +
(

31

144
z − 1

36

)
z−2 (z − 1)−2w = 0

yields in this way the j-function. See [516] for more on the deep relation between
modular forms and hypergeometric functions. The relations between affine algebras,
the KZ equation and hypergeometric functions is explored in [541]. The Riemann–
Hilbert problem asks that all linear representations of mapping class groups arise as
monodromies; see the appendix of [259] for a history of this problem and chapter VIII
of [80] for the modern treatment and generalisation using D-modules.
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Thus Poincaré, like conformal field theory over a century after him, finds it natural to
interpret modularity using differential equation monodromy!

3.2.5 Singularities and Lie algebras

In this subsection we quickly review the geometry underlying the associations of sin-
gularities to simple Lie algebras (duVal) and affine Lie algebras (McKay), which are
described in Section 2.5.2. This is related to mirror symmetry and provides a new expla-
nation for the modularity of affine algebra characters.

Let � be a finite subgroup of SU2(C). Then the orbifold C2/� has a critical point at

the fixed point (0, 0); the minimal resolution X� = C̃2/� is a smooth noncompact real
4-manifold with an ALE (‘asymptotically locally Euclidean’) hyper-Kähler structure.
An ALE manifold is Riemannian, with a metric tending quickly to the Euclidean one as
r →∞. Physically, they correspond to positive-definite self-dual solutions to Einstein’s
gravitation equations in a vacuum (‘gravitational instantons’). Conversely, any ALE
hyper-Kähler manifold is diffeomorphic to some X� for a unique �. The details are
reviewed in [362].

Kronheimer–Nakajima [362] use the Atiyah–Singer Index Theorem to directly relate
the duVal and McKay data associated with a simple singularity. Let X be an ALE hyper-
Kähler manifold and � < SU2(C) the corresponding finite group. Then asymptotically
at infinity, X is flat and in fact looks like R4/�. Given any vector bundle E over X ,
the fibre over∞ defines a �-module R via monodromy. Kronheimer–Nakajima take E
to be R⊗R∗, where R is the tautological vector bundle, because its index vanishes.
Then the monodromy representation R decomposes as

∑
i ρi ⊗ ρi , where ρi are the

irreducible representations of �. The Index Theorem provides an expression for the
numbers

1

‖�‖
∑

γ∈�,γ �=e

chρi (γ ) chρ∗j (γ )

2− chρ(γ )
,

for i, j = 0, 1, . . . , n, as an integral over X involving the intersection matrix, where ρ
is the defining two-dimensional representation of � < SL2(C). From this they quickly
establish the equivalence of duVal’s observation that the intersection matrix is the neg-
ative of the n × n Cartan matrix, with McKay’s interpretation of the (n + 1)× (n + 1)
Cartan matrix as coefficients of the product ρ ⊗ ρi .

The first direct relation between simple singularities and the Lie algebras Ar , Dr , Er

was established by Brieskorn [86]. Let g� be the finite-dimensional simple Lie algebra
associated with �, and G� the corresponding Lie group. Let W be its (finite) Weyl
group, and choose any Cartan subalgebra h. Then Brieskorn obtained the singularity
C2/� and its resolution by studying the map g� → h/W , sending x = xs + xn ∈ g�
(this decomposition of x is just the Jordan canonical form [300]) to the orbit of the
semi-simple part xs under the adjoint action of G� – these orbits are parametrised by
h/W (Section 1.5.2).
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More relevant for us is Nakajima’s geometric realisation of affine algebras and their
integrable representations (see e.g. his review [445]). Let E be an anti-self-dual Yang–
Mills instanton over X with gauge group Uk(C). These bundles E are associated with
three discrete invariants: the monodromy representation R as above; the first Chern class
c1(E); and the instanton number ch2(E) ∈ N.

The monodromy R is a k-dimensional representation of �. Decompose R into irre-
ducibles: R =∑

i λiρi , where the multiplicities λi ∈ N. Then taking dimensions we
obtain k =∑n

i=0 aiλi , where ai = dim ρi . According to the McKay correspondence, ai

are the labels of the corresponding nontwisted affine algebra g� , and so λ =∑
i λiωi is

a level-k integrable highest weight of g� .
Nakajima proceeds to construct not only g� from the geometric data, but also the

g�-module L(λ). The singularity at (0, 0) of C2/� resolves locally into n copies of
the sphere P1(C). These give a basis of H2(X,Z); Nakajima identifies them with the
usual basis hi of a Cartan subalgebra of the finite-dimensional algebra g� and their
intersection form with the Killing form. Thus the dual vectors c1(E) are weights. The
number ch2(E) is identified with an eigenvalue of the derivation δ = L0. The other
generators ei , fi of g� can be interpreted likewise. The moduli space M(k) of Uk(C)-
instantons on X has a finite-dimensional connected component M(k)λ,μ,n for every
choice of monodromy λ, c1 = μ and ch2 = n. The infinite-dimensional cohomology
space H �(M(k)) carries a natural though reducible module of the affine algebra g� .
However, the middle-dimensional cohomology

⊕μ,n H d (M(k)λ,μ,n), d = 1

2
dim(M(k)λ,μ,n) (3.2.20)

is isomorphic to L(λ), with each summand being a weight-space (the middle-dimensional
cohomology spaces are generally the most interesting – for example, the pairing defines
a bilinear form, here the Killing form, on them).

This construction generalises considerably [445]. It also has a natural interpretation in
string theory. The Bogomol’nyi–Prasad–Sommerfeld (‘BPS’) states generally form an
algebra closely related to Borcherds–Kac–Moody algebras (Section 3.3.2) [276]. Inside
this BPS algebra for the heterotic string on the torus T 4 is the associated affine algebra.
This string theory is dual to that of a type IIA string on a K3 surface (X� is essentially
a noncompact K3), where Nakajima’s construction is very natural. So string theory
interprets Nakajima’s cohomological construction of affine algebras as a manifestation
of mirror symmetry [276]. In this context, Vafa–Witten suggested that the modularity of
affine algebra characters may have to do with S-duality [540], an SL2(Z)-symmetry of
the heterotic string. It seems unlikely though that this can account for the modularity in
arbitrary RCFT. We revisit mirror symmetry [291] in Section 7.3.8.

Physically, instantons are configurations for which the classical action (4.1.3) has a
local minima. This means that in the corresponding quantum theory, we should per-
turb about them just as we do about the vacua. See the review [159] on instantons in
supersymmetric theories. It turns out that (not necessarily holomorphic) modular forms
appear naturally in this context, with the modular group arising again through S-duality.
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Recalling Section 2.4.3, we can ask: Can S-duality sometimes be extended naturally into
a B3 symmetry? This may provide a universal simplification, for example, for fractional
instantons.

3.2.6 Loop groups

This brief subsection introduces the Lie groups of the affine algebras, by translating the
previous subsections into this geometric language. See the book [465] for more details.
Loop groups appear directly in Wess–Zumino–Witten string theory, and in the study of
certain differential equations (solitons), but otherwise the affine algebra is mathematically
prior. From our (limited) perspective, the geometric insight gained isn’t obviously worth
the analytic subtleties.

Choose any compact Lie group G, and let g be its Lie algebra. By the loop group LG
we mean all smooth maps S1 → G, and by the loop algebra Lg we mean all smooth
maps S1 → g. The loop group LG has a group structure given by pointwise product,
and in fact it forms an infinite-dimensional Lie group with Lie algebra Lg.

Think of G as a subgroup of Un(C), as we can. The polynomial loop group LpolyG is
the set of all loops γ ∈ LG that can be written in the form

γ (z) =
∞∑

m=−∞
am zm,

i.e. as a matrix-valued function, where z ∈ S1 and each am is an n × n complex matrix,
with all but finitely many am = 0. Note that LpolyG is indeed a group – for example,
inverse is given by γ (z)−1 =∑

m a†
m z−m ∈ LpolyG. However, note that Lpoly S1 consists

of the monomials azm for some constants m ∈ Z and a ∈ S1 ⊂ C (to see this, multiply
γ (z) by γ (z)†; the result is a Laurent polynomial in z with coefficients in C, which
identically equals 1 for uncountably many z ∈ C). Thus Lpoly S1 has Lie algebra iR �=
Lpoly S1. For semi-simple G, however, LpolyG has Lie algebra Lpolyg, as we’d like.

The loop group LG is generally better behaved than LpolyG. For example, we know
the exponential map exp: g→ G is onto and locally one-to-one. The exponential map
Lg→ LG is defined in the obvious way (as the exponential of a matrix-valued function),
and it is locally (but not globally) both one-to-one and onto. On the other hand, the
exponential of a Laurent polynomial will usually not be a Laurent polynomial, and so
the exponential map doesn’t exist for polynomial loops. By way of comparison, as we
mentioned in Section 3.1.2, exp : Vect(S1) → Diff(S1) is neither locally one-to-one nor
locally onto (in fact its image is nowhere dense).

Diff(S1) acts naturally on LG, by changing the parametrisation of the loop (for simple
G, the only other automorphisms of LG come from the loop group of Aut(G)).

To enrich the representation theory of LG, we centrally extend LG by S1. For simple
G, LG has an inequivalent central extension L̃Gn for each n = 0, 1, 2, . . . , and these
exhaust all of them. L̃G0

∼= S1 × LG is the trivial extension; L̃G1 is the unique simply-
connected such extension. L̃Gn is obtained from L̃G1 by quotienting by the order-n
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subgroup of the centre S1. The Lie algebra of any L̃Gn , n > 0, is isomorphic to the
unique nontrivial central extension of the loop algebra Lg.

We’re interested in continuous projective representations ofLG by bounded operators
in a Hilbert space H. We want these as usual to be Z-graded. But an S1 action is the
same as a Z-grading. More precisely, consider the group S1 of rigid rotations Rθ in LG –
that is, a loop γ (t) ∈ LG gets sent to the loop (Rθγ )(t) = γ (t − θ ) for some fixed
0 ≤ θ < 2π . We can decompose this S1 action on H Fourier-like into (the completion
of) a direct sum

⊕∞�=−∞H(�)

of subspaces H(�) on which Rθ acts like e−i�θ . In other words, e−iL0θ represents Rθ .
We require H(�) to vanish for all � sufficiently close to−∞. Because of the conformal

field theory interpretation given next chapter, these eigenvalues � are thought of as energy,
and these representations are called positive energy representations. Any such projective
representation of LG lifts to one of the semi-direct product of this S1 with any central
extension L̃Gn . This double S1-extension of LG corresponds to the double C-extension
of the (polynomial) loop algebra performed in Section 3.2.2.

Let G be semi-simple. Any projective representation H of LG of positive energy
is unitary and hence is completely reducible into a discrete direct sum of irreducible
representations. The above action of S1 (through the operators e−iL0θ ) extends to a
projective action of Diff+(S1). The L0-eigenspacesH(�) of any irreducible representation
H are all finite-dimensional. We can refine these eigenspaces by choosing a maximal
torus T of G (it will be isomorphic to S1 × · · · × S1 (r times), where r is the rank of
G). We can diagonalise this action of S1 × T × S1, where the first S1 is from the rigid
rotations, and the second from the central extension; then

H(n) = ⊕μ∈P+(g)H(n, μ, k)

is the corresponding diagonalisation into weight spaces. Of course we are rediscover-
ing the weight-space decomposition in, for example, (3.2.9a). The ‘rigid rotation’ S1

corresponds to the extension of the loop algebra Lpolyg by the derivation −�0, and the
projective Diff+(S1) action corresponds to the Virasoro action (3.2.15). The maximal
torus S1 × T × S1 of the double extension of LG corresponds to the (real) Cartan subal-
gebra h of g(1). Given any irreducible projective representation of LG of positive energy,
then the derived projective representation of Lg, restricted to Lpolyg, is an integrable
highest-weight representation L(λ) of g(1). Conversely, any such representation of g(1)

lifts (‘integrates’) to a projective representation of positive energy of LG.
Any irreducible projective representation of LG lifts to a true representation of the

simply-connected L̃G1. It lifts to a true representation of L̃Gn iff n divides the level k.
The analogue of Borel–Weil applies here much as in Section 1.5.5; the role of the

symmetric space G/T is played here by the infinite GrassmannianLG/T (see chapter 11
of [465]). The irreducible representations also fit in well with Kirillov’s orbit method
[198].
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It is tempting to hope more generally that the group Map(M,G), for any manifold
M and compact G, should be a relatively accessible class of infinite-dimensional Lie
groups. However, the theory is much more difficult than LG = Map(S1,G) and little is
known about their representations (see chapter 3 and section 9.1 in [465]).

Question 3.2.1. Define A to be the space of all differential operators of the form∑
m,n∈Z am,n xmdn/dxn , where all am,n ∈ C and all but finitely many am,n equal 0. Define

a Lie algebra structure on A in the obvious way. Prove that A is a simple Z-graded Lie
algebra of polynomial growth.

Question 3.2.2. For a manifold X and Lie algebra L, when is Map(X, L) a simple Lie
algebra?

Question 3.2.3. Show that the Witt algebra acts on the affine algebra g(1) as derivations.

Question 3.2.4. Show that a highest-weight representation of a nontwisted affine Lie
algebra g = Xr

(1) with highest weight (λ, k, u) is isomorphic as a g-module to one with
highest weight (λ, k, 0), when k �= 0.

Question 3.2.5. Classify all invariant symmetric bilinear forms for A1
(1).

Question 3.2.6. Compute the cardinality ‖Pk
+‖ for all series Ar

(1), Br
(1),Cr

(1), Dr
(1).

(Hint: this can always be done using one or two binomial coefficients.)

Question 3.2.7. The affine Weyl group of A1
(1) has two generators, which we call here

ω and t . These act on Z2 as follows:

ω(a, b) = (−a, b + 2a), t(a, b) = (3a + 2b,−2a − b).

(a) Find a formula for the action of tn on (a, b). Find the orders of ω and t , and the
determinants det(ω) and det(t).
(b) Let β = (a, b) ∈ Z2 obey k := a + b > 0. Write ρ = (1, 1). Show that the affine
Weyl orbit of β + ρ intersects

Pk+2
++ := {(1, k + 1), (2, k), . . . , (k, 2), (k + 1, 1)}

in at most one point, and that the orbit fails to intersect Pk+2
++ iff β + ρ is fixed by some

nontrivial element of the affine Weyl group.

3.3 Generalisations of the affine algebras

Affine algebras are fascinating because they draw together so many different areas of
mathematics and physics. Like anything else, they embed into assorted families in plenty
of ways, each embedding preserving some properties and losing others. But do they
embed into a much larger family of algebras that are also of interest outside Lie theory?

Generalisation is not the point of mathematics, and in fact, one must be honest, is
usually rather dry. The challenge is to generalise in a rich and revealing direction. One
of the more reliable ways of doing this is closure. Suppose we like to perform a certain
activity, which unfortunately sometimes results in our toys being flung from our sandbox.
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Then we build a bigger sandbox. When we divide integers, we don’t always get integers,
so we construct the rationals. When we take limits of rationals, we don’t always get
rationals, so we construct the reals. When we take square-roots of reals, we don’t always
get reals, so we construct the complex numbers.

Another appealing strategy for generalisation – analogy – was followed by Moody at
the birth of Kac–Moody algebras (Section 3.2.1). However this strategy, even in the hands
of a master, will not always be successful. This section reviews various generalisations
of affine algebras, all obtained through analogy. Most important for our story are the
Borcherds–Kac–Moody algebras, which have played a key role for instance in the proof
of the Monstrous Moonshine conjectures.

3.3.1 Kac–Moody algebras

Recall the presentation r1, r2 of simple Lie algebras given in Definition 1.4.5, defined in
terms of a Cartan matrix c1–c4. From the point of view of generators and relations, the
step from ‘finite-dimensional simple’ to ‘Kac–Moody’ is rather easy: the only difference
is that we drop the ‘positive-definite’ condition c4 (which was responsible for finite-
dimensionality). That is:

Definition 3.3.1 (a) A CartanK M matrix A is any �× � integral matrix A obeying c1,
c2, c3 (see Definition 1.4.5(a)), together with

c4′ there exists a positive diagonal matrix D such that the product AD is symmetric (i.e.
(AD)t = AD).

(b) Given any CartanK M matrix A, the Kac–Moody algebra g = g(A) is the Lie
algebra with generators ei , fi , hi , subject as before to the relations r1 and r2 (see
Definition 1.4.5(b)).

What we call Kac–Moody algebras are usually called symmetrisable Kac–Moody alge-
bras in the literature. The adjective ‘symmetrisable’ emphasises the requirement c4′,
which we shall always assume; dropping it means losing the invariant bilinear form,
among other things. What we call ‘CartanK M matrix’ here is usually called ‘generalised
symmetrisable Cartan matrix’, but although that use of the word ‘generalised’ is tradi-
tional, it is now inappropriate (see Definition 3.3.4 below). More generally, appending
‘generalised’ to a term is an unimaginative empty cop-out that should be banned.

The theory of Kac–Moody algebras is quite parallel to that of the finite-dimensional
simple Lie algebras. They are also generated by (finitely many) A1 subalgebras. Most
entries of A again are zero, so it is most convenient to graphically represent A using
the Coxeter–Dynkin diagram (recall their definition in Section 1.4.3). As before, we
may without loss of generality take the CartanK M matrices to be indecomposable (i.e.
consider connected diagrams).

Lemma 3.3.2 ([328], section 4.3) Let A be an indecomposable CartanK M matrix.
Then exactly one of the following possibilities holds:
(Fin) det(A) �= 0 – there exists a column vector u > 0 such that Au > 0;
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(Aff) the nullspace (i.e. 0-eigenspace) of A is one-dimensional – there is a column vector
u > 0 such that Au = 0;
(Hyp) there is a column vector u > 0 such that Au < 0.

If the CartanK M matrix A is of finite type, then the corresponding Lie algebra g(A)
is finite-dimensional and simple. If the matrix A is of affine type, then the algebra
g(A) is infinite-dimensional, but has a Z-grading g(A) =∑

j g j into finite-dimensional
subspaces g j where dimensions dim(g j ) grow at most polynomially with j (see Sec-
tion 3.2.1). The affine algebras come in two flavours – nontwisted and twisted –
and are listed in Figures 3.2 and 3.3. For A of hyperbolic type, again g(A) has a
Z-grading into finite-dimensional subspaces g j , but their dimensions dim(g j ) grow
exponentially with j . We are mostly interested in the nontwisted affine algebras
(Section 3.2). Relatively little is known about the hyperbolic ones (but see Section 3.4.3).

The relation between the realisation in Section 3.2.2 of an affine algebra as a loop
algebra and the presentation of Definition 3.3.1(b) is as follows. Consider for simplicity

A1
(1). The relevant CartanK M matrix is A =

(
2 −2
−2 2

)
; then g(A) ∼= Lpoly(A1)⊕

CC , with the isomorphism identifying

e1 �→
(

0 1
0 0

)
, f1 �→

(
0 0
1 0

)
, h1 �→

(
1 0
0 −1

)
,

e0 �→
(

0 t
0 0

)
, f0 �→

(
0 0

t−1 0

)
, h0 �→ C −

(
1 0
0 −1

)
.

More generally, the central term C of the affine algebra is given by C =∑
i a∨i hi . Note

though that we are missing the derivation �0; we will return to that shortly.
For indecomposable A, g(A) is simple iff the determinant det(A) �= 0. When det(A) =

0, g(A) has a centre of dimension �− m where m is the rank of the matrix A.
The basic structure theorem for Kac–Moody algebras is:

Theorem 3.3.3 Let g = g(A) be a symmetrisable Kac–Moody algebra (over R). Then:
(a) g has triangular decomposition g = g+ ⊕ h⊕ g− where g+ is the subalgebra gener-

ated by the ei , g− is generated by the fi and h = span{hi } is the Cartan subalgebra;
(b) g has a root space decomposition – formally calling ei degree αi and fi degree−αi

and defining gα to be the subspace of degree α ∈ Zα1 + Zα2 + · · · , we get h = g0

and g± = ⊕α∈�±gα , where [gα, gβ] ⊂ gα+β and �− = −�+;
(c) there is an involution ω on g for which ωei = fi , ωhi = −hi and ωgα = g−α;
(d) dim gα <∞ and dim g±αi = 1;
(e) there is an invariant symmetric bilinear form (·|·), that is ([ab]|c) = −(b|[ac]), such

that for each root α �= 0 the restriction of (·|·) to gα × g−α is nondegenerate and
(gα|gβ) = 0 whenever β �= −α;

(f) there is a linear assignment α �→ hα ∈ h such that for all a ∈ gα , b ∈ g−α we have
[a, b] = (a|b) hα .

These α are called roots and the αi simple roots, as before. The roots α can be regarded
as linear functionals on h, in such a way that for any x ∈ gα and h ∈ h, we have [hx] =
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α(h) x . The involution in (c) is the Cartan involution, and is needed in defining unitary
representations. The bilinear form in (e) is the generalisation here of the Killing form.
For simple roots αi , hαi in (f) is hi , and is sometimes denoted α∨i and called a co-root.
The field was taken to be R here for convenience (Question 3.3.1).

When det(A) = 0, the bilinear form restricted to h will be degenerate and the simple
roots interpreted as linear functionals on h will be linearly dependent. To get around
this, extend the Cartan subalgebra by dim(Null(A)) = �− m more vectors. Call he the
resulting (2�− m)-dimensional space. Extend the bilinear form to he so that it becomes
nondegenerate, and the domain of the simple roots αi ∈ h∗ to all of he so they become
linearly independent. Up to equivalence, there is a unique way to do this. The space
g(A)e := g(A)+ he is given a Lie algebra structure by extending the relations of Defi-
nition 3.3.1(b) to include

[hh′] = 0, ∀h, h′ ∈ he, (3.3.1a)

[hei ] = αi (h), ∀h ∈ he, (3.3.1b)

[h fi ] = −αi (h), ∀h ∈ he. (3.3.1c)

For a CartanK M matrix A of affine type, g(A)e is isomorphic to the corresponding algebra
g = g(N ) we defined in Section 3.2.2: the extra vector is the derivation �0. Whenever
det(A) = 0, g(A)e and not g(A) is the correct algebra to consider. Write g(A)e := g(A)
when det(A) �= 0. Theorem 3.3.3 holds for g(A)e, provided h there is replaced with he.

Unlike the finite-dimensional case, some root multiplicities mult(α) := dim gα may
be > 1. The roots of g(A)e come in two flavours: real (with (α|α) > 0) and imaginary
(with (α|α) ≤ 0). The simple roots are all real. Real roots behave exactly like the roots
of finite-dimensional g: for example, mult(α) = 1 and the only multiples of α that are
also roots are ±α. Imaginary roots behave more like the nonroot 0 ∈ h∗: for example,
mult(α) ≥ 1 and any multiple Zα is also a root.

The Weyl group W here is generated by the reflections through the simple roots αi , or
equivalently by reflections through all real roots. It has the usual properties: for example,
root multiplicities are constant within the W -orbits.

A Kac–Moody algebra g(A)e has all the familiar representation-theoretic definitions
and properties. For any weights λ ∈ he∗, Verma modules M(λ) and the irreducible
highest-weight module L(λ) are defined as usual. In particular, highest-weight mod-
ules are spanned by vectors of the form

fim fim−1 · · · fi1v, (3.3.2)

where v is the highest-weight vector. Weight-space decompositions hold as before, and
characters chM (h) are defined as in (1.5.9a). The character of the Verma module M(λ)
again equals (3.2.6). Integrability is defined by the locally nilpotent condition (Sec-
tion 3.2.3); again, L(λ) is integrable iff all Dynkin labels λ(hi ) ∈ N, iff L(λ) is unitaris-
able. The character of an integrable L(λ) is given by the Weyl–Kac character formula

chL(λ) =
∑

w∈W det(w) ew(λ+ρ)

eρ
∏

α>0(1− e−α)mult(α)
. (3.3.3)
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This is identical to the Weyl character formula (1.5.11), except that the sum and product
are infinite, and the multiplicities of (imaginary) root spaces can be > 1. For affine
algebras, it reduces to (3.2.11c).

Apart from the affine and finite-dimensional simple algebras, the other Kac–Moody
algebras have yet to make a real impact on other areas of mathematics and mathematical
physics. However, [127] and [171] anticipate that the hyperbolic Kac–Moody algebras
E10 and E11 will appear in M-theory, the still-hypothetical physics underlying strings.

3.3.2 Borcherds’ algebras

In his efforts to prove the Monstrous Moonshine conjectures, Borcherds further gener-
alised affine algebras. It is easy to associate a Lie algebra to a matrix A, but which class
of matrices will yield a deep theory? Borcherds found such a class by holding in his hand
a single algebra – the fake Monster Lie algebra (Section 7.2.2) – which acted much like
a Kac–Moody algebra, even though it had imaginary simple roots.

Definition 3.3.4 (a) A CartanBK M matrix A is a (possibly infinite) matrix A = (ai j ),
ai j ∈ R, obeying

gc1. either aii = 2 or aii ≤ 0;
gc2. ai j ≤ 0 for i �= j , and ai j ∈ Z when aii = 2; and
gc3. there is a diagonal matrix D with each dii > 0 such that D A is symmetric.

(b) The universal Borcherds–Kac–Moody algebra ĝ = ĝ(A) is the Lie algebra with gen-
erators ei , fi , hi j , subject to the relations [71]:

gr1. [ei f j ] = hi j , [hi j ek] = δi j aikek and [hi j fk] = −δi j aik fk , for all i, j ;
gr2. (ad ei )1−ai j e j = (ad fi )1−ai j f j = 0, whenever both aii = 2 and i �= j ; and
gr3. [ei e j ] = [ fi f j ] = 0 whenever ai j = 0.

As before, the adjective ‘symmetrisable’ is usually appended in the literature. Unfor-
tunately, the name ‘Borcherds’ is often replaced with the abomination ‘generalised’.
Note that for each i , span{ei , fi , hii } is isomorphic to sl2(C) when aii �= 0 and to
Heis (recall (1.4.3)) when aii = 0. Immediate consequences of the definition are that:
(i) [hi j hmn] = 0; (ii) hi j = 0 unless the i th and j th column of A are identical; (iii) the
hi j for i �= j lie in the centre of ĝ. Setting all hi j = 0 for i �= j gives the definition
of the Borcherds–Kac–Moody algebra g = g(A) [69]. This central extension ĝ of g is
introduced for its role in Theorem 3.3.6 below. If A has no zero columns, then ĝ equals
its own universal central extension [71]. Because a Borcherds–Kac–Moody algebra can
satisfy fewer relations, it typically contains a large free Lie subalgebra [323] (a free Lie
algebra is analogous to a free group).

A universal Borcherds–Kac–Moody algebra differs from a Kac–Moody algebra in that
it is built up from Heisenberg algebras as well as A1, and these subalgebras intertwine in
more complicated ways. Nevertheless, much of the theory for finite-dimensional simple
Lie algebras continues to find an analogue in this much more general setting (e.g.

https://doi.org/10.1017/9781009401548.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401548.004


Generalisations of the affine algebras 213

root-space decomposition, Weyl group, character formula, . . . ). This unexpected feature
is the point of Borcherds–Kac–Moody algebras.

To get a feel for these algebras, let us prove a few simple results concerning the hi j . Note
first that, using the above relations together with anti-associativity, we obtain [hi j hk�] =
δi j (a jk − a j�)hk�. Comparing this with [hk�hi j ] = −[hi j hk�], we see that bracket must
always equal 0. Hence all h’s pairwise commute, and hi j = 0 unless the i th and j th
columns of A are identical.

The basic structure theorem is that of Kac–Moody algebras (Theorem 3.3.3):

Theorem 3.3.5 [69] Let g = g(A) be a Borcherds–Kac–Moody algebra (over R).
Then:
(a) g has triangular decomposition g = g+ ⊕ h⊕ g− where g+ is the subalgebra

generated by the ei , g− is generated by the fi and h = span{hi } is the Cartan
subalgebra;

(b) g has a root space decomposition – formally calling ei degree αi and fi degree−αi ,
and defining gα to be the subspace of degree α ∈ Zα1 + Zα2 + · · · , we get h = g0

and g± = ⊕α∈�±gα , where [gα, gβ] ⊂ gα+β and �− = −�+;
(c) there is an involution ω on g for which ωei = fi , ωhi = −hi and ωgα = g−α;
(d) dim gα <∞ and dim g±αi = 1;
(e) there is an invariant symmetric bilinear form (·|·) such that for each root α �= 0, the

restriction of (·|·) to gα × g−α is nondegenerate and (gα|gβ) = 0 whenever β �= −α;
(f) there is a linear assignment α �→ hα ∈ h such that for all a ∈ gα , b ∈ g−α , we have

[a, b] = (a|b) hα .

The condition that g be symmetrisable (i.e. condition gc3) is necessary for the existence
of the bilinear form in Theorem 3.3.5(e). As in Section 3.3.1, it is common to add
derivations. In particular, define Di (a) = ni a for any a ∈ gn1α1+···; then each linear map
Di is a derivation, and adjoining these to h defines an abelian algebra he. The simple
root αi can be interpreted as the element of he∗ obeying α j (hi ) = ai j and α j (Di ) = δi j .
The role of the derivations is to make these simple roots linearly independent. Construct
the induced bilinear form (·|·) on he∗, obeying (αi |α j ) = di ai j (see [322] for details).

The properties in Theorem 3.3.5 characterise Borcherds–Kac–Moody algebras (see
e.g. [72] for a proof):

Theorem 3.3.6 Let L be a Lie algebra (over R) satisfying the following conditions:
(i) L has a Z-grading ⊕i Li , and dim Li <∞ for all i �= 0;

(ii) L has an involution ω sending Li to L−i and acting as −1 on L0;
(iii) L has a contravariant bilinear form (·|·) such that (Li |L j ) = 0 if i �= − j , and

such that −(a |ω(a)) > 0 if 0 �= a ∈ Li for i �= 0.
Then there is a homomorphism π from some ĝ(A) to L whose kernel is contained in the
centre of ĝ(A), and L is the semi-direct product of the image of π with a subalgebra of
the abelian subalgebra L0. That is, L is obtained from ĝ by modding out some of the
centre and adding some commuting derivations.

https://doi.org/10.1017/9781009401548.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401548.004


214 Affine algebras and generalisations

Conversely, any (real) Borcherds–Kac–Moody algebra obeys conditions (i), (ii) and (iii).
For example, let L = sl2(R) and recall (1.4.2b). Then L has Z-grading L−1 ⊕ L0 ⊕ L1 =
Ce ⊕ Ch ⊕ C f ,ω(x) = −xt and (x |y) = tr(xy). Theorem 3.3.6 tells us that Borcherds–
Kac–Moody algebras are the ultimate generalisation of simple Lie algebras, in the sense
that any further generalisation will lose some basic structural ingredient.

Let"re be the set of all real simple roots, i.e. all αi with aii = 2; the remainder are the
imaginary simple roots α ∈ "im . The Weyl group W of ge is generated by the reflections
rαi : he∗ → he∗ for each αi ∈ "re: ri (λ) = λ− λ(hi )αi . It is a crystallographic Coxeter
group (Section 3.2.1). The real roots of ge are defined to be those in W ("re); all other
roots are called imaginary. For all real roots, dim (ge)α = 1 and (α |α) > 0.

Integrable highest-weight modules are defined as before: namely, each eα, fα must
act locally nilpotently for all real roots α. More precisely, V = ⊕μ∈he∗Vμ where the
weight-space Vμ :={v ∈ V | h.v = μ(h)v}, with dim Vμ <∞, and whenever aii = 2,
(ei )k .v = 0 = ( fi )k .v for all v ∈ V and all sufficiently large k. By the character we
mean the formal sum chV :=∑μ∈he∗ (dim Vμ) eμ. Let P+ be the set of all weights λ ∈ he∗

obeying λ(hi ) ∈ N whenever aii = 2, and λ(hi ) ≥ 0 for all other i . Define the highest-
weight ge-module L(λ) in the usual way as the quotient of the Verma module by the
largest proper graded submodule. Choose ρ ∈ he∗ to satisfy (ρ |αi ) = 1

2 (αi |αi ) for all
i , and define Sλ = eλ+ρ

∑
s ε(s) es where s runs over all sums of imaginary simple roots

and ε(s) = (−1)m if s is the sum of m distinct mutually orthogonal imaginary simple
roots, each of which is orthogonal to λ, otherwise ε(s) = 0. Then we get the Weyl–Kac–
Borcherds character formula:

chL(λ) =
∑

w∈W ε(w)w(Sλ)

eρ
∏

α∈�+ (1− e−α)multα
(3.3.4)

(compare (3.3.3)). Sλ is the correction factor due to imaginary simple roots.
Thus Borcherds’ algebras strongly resemble Kac–Moody ones and constitute a natural

and nontrivial generalisation. The main differences are that they can be generated by
copies of the Heisenberg algebra as well as sl2(R), and that there can be imaginary
simple roots. For more on their theory, see, for example, [328] chapter 11.13, [272],
[322], [469]. Interesting examples are the Monster Lie algebra (Section 7.2.2), whose
(twisted) denominator identity supplied the relations needed to complete the proof of
the Monstrous Moonshine conjectures, and the fake Monster [70]. A Borcherds–Kac–
Moody algebra can be associated with any even Lorentzian lattice, and also with any
Calabi–Yau manifold [275]. Of course it is a broad enough class that almost all of
them will be uninteresting; an intriguing approach to identifying the interesting ones is
sketched at the end of Section 3.4.3.

We know simple Lie algebras arise in both classical and quantum physics, and the
affine Kac–Moody algebras are important in conformal field theory, as we see next
chapter. Borcherds–Kac–Moody algebras have appeared in the physics literature in the
context of BPS states in string theory (see [275]), and as a possible symmetry of M-theory
[285].
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3.3.3 Toroidal algebras

As mentioned in Section 3.2.6, replacing the loop algebra S1 → g with more general
spaces M → g has a very different theory and seems much more complicated. The
most obvious generalisation of affine algebras, which has a chance of retaining some
of their special properties, is to replace the loop algebra S1 → g with a space of maps
S1 × · · · × S1 → g. As S1 × · · · × S1 (n times) is topologically the n-dimensional torus,
these are called toroidal algebras. We will try to mimic the theory of loop algebras as
far as we can. If nothing else, we will identify some features responsible for making the
earlier theory so special.

Let g be a simple finite-dimensional Lie algebra. Choose any n ≥ 1, and let g̃ be
the multi-loop algebra, i.e. tensor product g⊗ C[t±1

0 , . . . , t±1
n ] of g with Laurent poly-

nomials in formal variables ti . Then g̃ is a Lie algebra with Zn+1-grading into finite-
dimensional subspaces. The following theory treats as distinguished one of these n + 1
variables, namely t0. To complete the construction of the toroidal algebra, we take the
universal central extension 0 → K→ g̃⊗K→ g̃→ 0 of the multi-loop algebra g̃,
and then adjoin sufficiently many derivations (as we’ve done throughout this chap-
ter). However, both of these extensions are infinite-dimensional. More precisely, write
di = ti d/dti for the degree-derivation for variable ti . Let D∗ denote the algebra of deriva-
tions ⊕n

i=1C[t±1
0 , . . . , t±1

n ]di ⊕ Cd0. The resulting Lie algebra structure on the space
g̃⊕K⊕D∗ is uniquely determined up to a 2-cocycle τ : D∗ ×D∗ → K, which defines
how the bracket of derivations contributes a central term. There is a two-dimensional
space of these τ ; choosing any of them defines a toroidal Lie algebra gτ . Adding D∗
reduces the centre from the infinite-dimensional K to an (n + 1)-dimensional space. See
[53] for more details of the construction of gτ .

The role of the Virasoro algebra (which as we know is a central extension of
Der(C[t±1]) = Vect(S1)⊗ C) is here replaced by an abelian extension [173] of the com-
plex vector fields on a torus or equivalently of Der(C[t±1

0 , . . . , t±1
n ]). It is a Lie algebra

Vτ parametrised by the 2-cocycle τ , defined on the space K⊕ Der(C[t±1
0 , . . . , t±1

n ]).
Vτ acts for instance on the Verma modules of gτ . We will be more interested in the Lie
subalgebra vτ = K⊕D∗ of gτ . The modules constructed below carry a projective action
of the Witt algebra C[t±1

0 ]d0, as in the affine setting.
Affine algebras exist for their (integrable) modules and in particular their characters, so

we need to find an interesting class of modules for the toroidal algebras. This isn’t easy to
do, but major progress was made in [53]. Let Lτ be an irreducible highest-weight module
of level k �= 0, for the affine algebra g(1), and let W be any finite-dimensional module
for glN . Then [53] constructs an irreducible gτ -module Mλ,W that has finite-dimensional
homogeneous spaces with respect to the natural Zn+1-grading, and thus has a character.
More precisely, they first obtain a vτ -module by applying a Verma-like construction to
W ⊗ C[t±1

1 , . . . , t±1
n ], and then they take the irreducible quotient MW as usual; finally,

they define a gτ -module structure on the tensor product Mλ,W := Lλ ⊗ MW . In [54] they
show that these are modules of a ‘near-vertex operator algebra’ (see Definition 5.1.3(c))
closely related to affine algebra vertex operator algebras at generic level. From this,
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their characters can be computed, and familiar modular forms arise. This is promising
because interesting Lie algebra modules seem to be the ones that arise as modules of
related structures (e.g. Lie groups or vertex operator algebras). It is too easy to be a Lie
algebra module. On the other hand, these are surely not the best gτ -modules – they have
only found the analogue of generic L(λ), but not yet the analogue of the ‘integrable’
modules. Their characters are like (3.1.7a), but we would like to identify modules with
characters analogous to the discrete series. By analogy with better-understood algebras,
we should look for modules with maximal numbers of ‘null vectors’ quotiented out.

It may seem artificial to choose a distinguished direction (namely the 0th), but to
some extent this is inevitable. It is an elementary consequence of Schur’s Lemma (recall
Lemma 1.1.3) that in these irreducible gτ -modules, the centre span{K0, . . . , Kn} should
act as scalars, and thus an n-dimensional subspace must act trivially. These representa-
tions are designed so that K0 is nontrivial but the other Ki act trivially.

What is natural to pursue from, for example, an algebraic point of view, and what is
a successful theory from that point of view, is not necessarily of more general interest.
It is from this broader, multidisciplinary standpoint that we (unfairly) judge the value
of these generalisations. There is a large class of gτ -modules (namely those described
above) whose characters have (fairly weak) modularity properties, but this seems to
arise solely from the well-milled Heisenberg algebra combinatorics and it isn’t clear yet
that they have independent value. Possible physical relevance in Wess–Zumino–Witten
models in more than two space-time dimensions is explored in, for example, [306]. The
jury is still out on the greater relevance of toroidal algebras to, for example, Moonshine
or physics, and certainly more work is needed.

3.3.4 Lie algebras and Riemann surfaces

The previous subsection emphasises the difficulties of higher-dimensional analogues
of loop algebras. Perhaps the best generalisation of the affine algebras, particularly in
the sense of retaining and enriching automorphic properties of the characters, asso-
ciates infinite-dimensional Lie algebras to each Riemann surface with marked points.
This theory has been developed in a series of papers by Krichever–Novikov, Bremner,
Schlichenmaier, Sheinman and others – see [491] for a list of references. The starting
point is a reinterpretation of the Laurent polynomials

∑
antn ∈ Lpolyg. Before, we inter-

preted the formal variable t as a point on the unit circle S1 ⊂ C, but now we regard t
as lying in the punctured plane C\{0}, or equivalently the twice-punctured Riemann
sphere P′(C). Similarly, the Witt algebra Vect(S1) can be interpreted as the Lie algebra
of meromorphic vector fields on P′(C) with possible poles only at 0 and∞.

Let � be any Riemann surface of genus g, and choose p > 1 distinct ordered points
P = (z1, . . . , z p), zi ∈ �. In the language of string theory described next chapter, we
can think of � as being a world-sheet corresponding to p asymptotic incoming or
outgoing strings (Section 4.3.1). Let A�,P be the space of functions meromorphic on �,
with possible poles only at P , and let L�,P be the space of meromorphic vector fields
on �, again with possible poles only at P . The bracket of L�,P comes from the Lie
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derivative, as usual with vector fields, while the bracket of A�,P is taken to be trivial.
Let g be any simple finite-dimensional Lie algebra. The loop algebra Lpolyg is replaced
with g�,P := A�,P ⊗ g, with bracket [

∑
i fi ⊗ xi ,

∑
j g j ⊗ y j ] =

∑
i, j fi g j [xi y j ]. The

Laurent polynomials C[t±1] are replaced with A�,P . The Witt algebra is replaced with
L�,P . Just as Witt acts on Lpolyg by derivations, so does L�,P act on g�,P .

There are some subtle differences with the more familiar loop algebras. The loop
algebras have an important Z-grading. These higher-genus algebras L�,P and g�,P
have instead an almost-grading by Z, in the sense that L�,P (say) can be decomposed
L�,P = ⊕(L�,P )n as a vector space into finite-dimensional subspaces (L�,P )n , such that

[(L�,P )m, (L�,P )n] ⊆ ⊕m+n+M
�=m+n+L (L�,P )�

for some fixed integers L , M ∈ Z. This would be a true grading if M = L = 0. The
algebra g�,P behaves similarly. The subspaces (L�,P )n and (g�,P )n are defined by con-
sidering orders of poles (and splitting P into incoming and outgoing points).

In the loop algebra situation, for g simple, there is a unique nontrivial central extension.
On the other hand, g�,P typically has several. However, only one will be compatible with
the almost-grading, and so that is the one we choose. Call it ĝ�,P . Similarly, we get a
unique central extension L̂�,P of L�,P , which in the special case of a sphere with one
incoming and one outgoing puncture is Vir.

Verma modules, etc. for ĝ�,P can be defined as before using the universal enveloping
algebra, and are parametrised by p = ‖P‖ highest weights λ(1), . . . , λ(p) ∈ h∗ and a
complex number k (the level). For these modules W(λ,k), λ = (λ(1), . . . , λ(p)), there is an
analogue of the Sugawara construction (3.2.15), which shows that each of these ĝ�,P -
modules W(λ,k) is simultaneously a L̂�,P -module, in perfect analogy with the affine
situation.

Physically, these algebras ĝ�,P and L̂�,P should be regarded as higher-genus global
symmetries for, for example, the Wess–Zumino–Witten models discussed next chapter.
Locally, that is in terms of local coordinates at each marked point zi , we get a copy of the
affine algebra g(1) and Virasoro algebra Vir. A module for, for example, ĝ�,P similarly
specialises to the g(1)-module L(λ(i)) at each point zi ∈ P .

The theory is still a work in progress – see, for example, [491], [492] and references
therein. But it can be expected that for each positive level k and choice of �, and
p highest weights λ(i) ∈ Pk

+(g), a number of level-k representations of ĝ�,P will be
singled out (the exact number being given by Verlinde’s formula (6.1.2)), and these will
‘transform covariantly’ with respect to the mapping class group of �\P . Obviously this
is an exciting direction that should be pursued, with direct relevance to higher-genus
Moonshine (Section 6.3.1).

Question 3.3.1. (a) Define D =∏
α∈�+ (1− e−α)mult(α). Verify ri (D) = e−αi D.

(a) Find a vector r ∈ h such that w(er D) = ε(w) er D.

Question 3.3.2. Let A be a CartanBK M matrix, and g the corresponding universal
Borcherds–Kac–Moody algebra.
(a) Prove hi j lies in the centre.
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(b) Suppose the i th and j th rows of A are identical. Then show that hii − h j j is in the
centre of g.

Question 3.3.3. In what ways (if any) do Theorems 3.3.3, 3.3.5, 3.3.6 change if the field
is C and not R?

Question 3.3.4. Prove that for any Lie algebra L obeying conditions (i), (ii), (iii) of
Theorem 3.3.6, L0 will be an abelian subalgebra.

3.4 Variations on a theme of character

3.4.1 Twisted #3: twisted representations

In this subsection we complete the introduction of the twisted character which we began
in Section 1.5.4. These are to the usual character what the McKay–Thompson series
are to the j-function. In Section 5.3.6 we generalise this construction, but as always
the special case of affine algebras is particularly pretty and significant. The reader is
encouraged to reread Section 1.5.4 for background.

Let’s start with a twisted affine algebra g(N ), obtained as in (3.2.4) from the nontwisted
algebra g = g(1) and an order-N symmetry α of the Coxeter–Dynkin diagram of g.
Consider any integrable highest-weight g(N )-module L(λ), λ ∈ Pk

+(g(N )). Think of this
as a representation ρ. We can extend ρ linearly to g, by defining

ρ(xtn) = ξ i−n
N ρ(xtn), (3.4.1a)

for x in the α-eigenspace (g)i (Section 1.5.4). This isn’t a true representation of g – it’s
called a twisted representation of g, as it obeys

[ρ(xtn), ρ(ytm)] = ξ
i+ j−n−m
N ρ([xtn, ytm]), (3.4.1b)

when x ∈ (g)i and y ∈ (g) j . Thus a true representation of the twisted affine algebra g(N )

corresponds to a twisted representation of the nontwisted algebra g(1). In Section 5.4.6
we extend this notion of twisted representation to vertex operator algebras.

Twisted representations are vaguely reminiscent of projective representations. But a
projective representation becomes a true representation when the algebra is extended,
while a twisted representation becomes a true representation when the algebra is shrunk.
Groups most naturally have projective representations, vertex operator algebras most
naturally have twisted ones, and affine algebras have both.

Consider more generally any symmetry α of the Coxeter–Dynkin diagram of g. As
in Section 3.2.2, α extends to an automorphism of g (e.g. α(ei ) = eαi , and α fixes the
centre and derivation). Because of this, α permutes the g-modules as in Section 1.5.4.
In particular, α takes the highest-weight module L(λ) to L(λα), where (λα)i = λαi , and
moreover takes weight-space L(λ)μ to weight-space L(λα)μα . All of this generalises to
any Borcherds–Kac–Moody algebra.

Now supposeλα = λ, that isλ is a fixed point ofα. Then L(λ) and L(λ)α are isomorphic
as g-modules, so let τα be a linear isomorphism of the space L(λ) that intertwines their
g-actions: that is, α(x).v = x .τα(v) in terms of the g-action of L(λ). Because L(λ) is
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irreducible, τα is uniquely determined up to a scalar multiple; scaled appropriately, it will
permute all vectors of the form (3.3.2). By the α-twisted character or twining character
χα
λ we mean

χα
λ (h) = exp

[(
−hλ + cλ

24
+ k (d − dorb)

24h∨

)
δ

]
trL(λ)ταeh

= exp

[(
−hλ + cλ

24
+ k (d − dorb)

24h∨

)
δ

] ∑
μ=αμ

tr(τα)eμ(h), ∀h ∈ h (3.4.2a)

where d and dorb are the dimensions of the semi-simple Lie algebras g and gorb (the
algebra gorb is defined in Theorem 3.4.1) and hλ, cλ are in (3.2.9). As in (3.2.9a), the
normalisation here is chosen to make modularity simplest – see (3.4.2b) below. As we see
from (3.2.5d), the vector δ ∈ h∗ in (3.4.2a) isolates the coefficient 2π iτ of the derivation
�0.

Theorem 3.4.1 [213] Let g = Xr
(1) be a nontwisted affine algebra, and let α be a

symmetry of the Coxeter–Dynkin diagram of g. Then for any integrable highest-weight
λ of g, with αλ = λ, the α-twisted character χα

λ (h), restricted to any h ∈ h fixed by α,
equals some true character χλ̃(h) of the ‘orbit Lie algebra’ gorb = ((gop)0)op.

‘gop’ is the affine Kac–Moody algebra whose Coxeter–Dynkin diagram is that of g

except with all arrows reversed. Note that gorb is not a subalgebra of g, although its
Cartan subalgebra horb can be identified with that h0 of the fixed-point subalgebra g0.
What is special about gorb is that there is a natural map Pα (see Section 3.3 of [213] for its
precise construction) sending g-weights fixed by α to the weights of gorb, and preserving
all inner-products. The weight λ̃ in Theorem 3.4.1 is Pα(λ). The normalisation in (3.4.2a)
is exactly what one would expect for a character of gorb:

horb
λ̃
− corb

24
= hλ − c

24
+ k (d − dorb)

24h∨
. (3.4.2b)

For example, consider g = A2n−1
(1) and g = A2n

(1), respectively, with α being the left–
right reflection symmetry (‘charge-conjugation’) ‘C’ fixing the 0th node. Then the orbit
Lie algebra gorb is the twisted affine algebras Dn+1

(2) and A2n
(2), respectively. For g =

sln
(1) with a cyclic symmetry (‘simple-current’) ‘J n/d ’ of order d (so d divides n),

gorb = sln/d
(1). The map Pα in these examples is

PC : λ0ω0 +
n−1∑
i=1

λi (ωi + ω2n−i )+ λnωn �→
n∑

j=0

λiω
orb
i ,

PC : λ0ω0 +
n∑

i=1

λi (ωi + ω2n−i ) �→
n∑

j=0

λiω
orb
i ,

PJ n/d :
n/d−1∑

i=0

λi
(
ωi + ωi+n/d + · · · + ωi+n−n/d

) �→ n/d−1∑
j=0

λiω
orb
i .
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The map Pα is not mysterious. For example, forg = sl2n
(1) andα = C , the fundamental

weights ωorb
i of gorb are the obvious basis for the C-invariant weights of g, namely

ωorb
i = ωi + ω2n−i (for 1 ≤ i < n) together with ωorb

0 = ω0 and ωorb
n = ωn .

The most important case in Theorem 3.4.1 is the degenerate one. The Coxeter–Dynkin
diagram of sln

(1) has an order-n cyclic symmetry J . In this case, an α-fixed point looks
like λ = (λ0, λ0, . . . , λ0) for λ0 = k/n, and the α-twisted character χα

λ (h), restricted to
h fixed by α, equals the τ -independent function exp[2π i (λ(h)+ ku)] – that is, only the
top weight-space survives.

A good question in Lie theory is always rewarded with a beautiful answer.
Theorem 3.4.1 holds more generally for any Borcherds–Kac–Moody algebra. The proof
follows that of the Weyl–Kac–Borcherds character formula.

We get from Theorems 3.4.1 and 3.2.4 that the twisted characters are modular func-
tions, and obey an analogue of Theorem 3.2.3. As an isolated example, this is rather
surprising, but it fits into a much larger context (Section 5.3.6). We also find there how
modular transformations relate the twisted characters to twisted representations – it is
quite analogous to (2.3.10b). From this greater context of vertex operator algebra mod-
ules and characters twisted by automorphisms, the modularity of these twisted characters
is not so surprising. What is more surprising is positivity, that is, the q-expansion has
positive integer coefficients. This is true, for instance, for only two-thirds of the McKay–
Thompson series Tg . See Section 7.3.5, especially Conjecture 7.3.3, for an analogous
result for the Moonshine module V �.

3.4.2 Denominator identities

A very useful formula for the characters of simple finite-dimensional Lie algebras g is the
Weyl character formula (1.5.11). It is rare indeed when the trivial special case of a theorem
or formula is interesting. But that happens here. Consider the trivial representation: i.e.
x �→ 0 for all x ∈ g. Then the character (1.5.9a) is identically 1: ch0 ≡ 1. Thus the
character formula tells us that a certain alternating sum over the Weyl group W equals
a certain product over positive roots α ∈ �+:∏

α∈�+

(
1− e−α(z)

) = e−ρ(z)
∑
w∈W

ε(w) ew(ρ)(z). (3.4.3)

Here, z lies in the Cartan subalgebra h, and the Weyl vector ρ isω1 + · · · + ωr . Equation
(3.4.3) is called a denominator identity. For the smallest simple algebra A1, (3.4.3) is
trivial: 1− e−z = e−z/2(ez/2 − e−z/2). For A2 we get a sum of six terms equalling a
product of three terms, and the complexity continues to rise from there.

In particular, look at g = sln(C). We can realise the roots, etc. of g in terms of an
orthonormal basis {ei } of Cn as follows: the positive roots are ei − e j for 1 ≤ i < j ≤ n;
the Cartan subalgebra h is the hyperplane orthogonal to

∑
i ei ; the Weyl group is the

symmetric group Sn , acting on Cn and hence h by permuting the ei ; the Weyl vector
ρ = 1

2

∑
i (n + 1− 2i)ei . Write z =∑

i zi ei ∈ h and xi = e−zi (so
∏

i xi = 1). Then the
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left side of (3.4.3) becomes∏
1≤i< j≤n

(1− e−zi+z j ) = x−1
2 x−2

3 · · · x1−n
n

∏
1≤i< j≤n

(x j − xi ).

The right side of (3.4.3) becomes∏
j

x (n+1−2 j)/2
j

∑
π∈Sn

ε(π )
∏

i

x−(n+1−2i)/2
π i = x−1

2 x−2
3 · · · x1−n

n

∑
π∈Sn

ε(π )
∏

i

x i
π i .

Thus the denominator identity for sln(C) is simply the formula for the determinant of
the Vandermonde matrix

det

⎛⎜⎜⎜⎝
x1 x2 · · · xn

x2
1 x2

2 · · · x2
n

...
...

...
xn

1 xn
2 · · · xn

n

⎞⎟⎟⎟⎠ = ∏
1≤i< j≤n

(x j − xi ). (3.4.4)

In the early 1970s Macdonald [396] generalised these finite denominator identities to
infinite identities, corresponding to the extended Coxeter–Dynkin diagrams. The simplest
of his was known classically as the Jacobi triple product identity:

∞∏
m=1

(1− x2m)(1− x2m−1 y)(1− x2m−1 y−1) =
∞∑

n=−∞
(−1)n xn2

yn. (3.4.5a)

To Macdonald these were purely combinatorial, but soon Kac, Moody and others rein-
terpreted his formulae as denominator identities for nontwisted affine algebras, that is
substituting λ = 0 into the Weyl–Kac character formula (3.3.3).

For example, parametrise the Cartan subalgebra of A1
(1) by zα1 + z�0 + uC ; then

(3.2.5d) says (mα1 + nδ)(zα1 + τ�0 + uC) = 2mz − nτ . The positive roots of A1
(1) are

α1 + nδ (n ≥ 0), −α1 + nδ (n ≥ 1) and nδ (n ≥ 1). The Weyl group acts on the Weyl
vector ρ by tnα1ρ = ρ + 2nα1 − (2n2 + n)δ and tnα1rα1ρ = ρ + (2n − 1)α1 − (2n2 −
n)δ. Thus the A1

(1) denominator identity is

∞∏
n=0

(1− rqn)
∞∏

n=1

(1− r−1qn)
∞∏

n=1

(1− qn) =
∞∑

m=−∞
(−1)mr−mq (m2+m)/2, (3.4.5b)

where q = e−τ and r = e−2z . Equation (3.4.5a) is recovered from (3.4.5b) by setting
x = √q and y = qr−1.

Freeman Dyson is a famous quantum physicist, but started his academic life in number
theory and still enjoys it as a hobby. Dyson [166] found a curious formula for the
Ramanujan τ -function, defined by

∑∞
n=1 τ (n)qn = η(q)24 := q

∏∞
m=1(1− qm)24:

τ (n) =
∑∏

1≤i< j≤5(ai − a j )

1! 2! 3! 4!
, (3.4.6)

where the sum is over all 5-tuples ai with ai ≡ i (mod 5) obeying
∑

i ai = 0
and

∑
i a2

i = 10n. Using this, an analogous formula can be found for η24. Dyson
knew that similar formulae were also known for ηd for the values d = 3, 8, 10, 14,
15, 21, 24, 26, 28, 35, 36, . . .
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What was ironic was that Dyson found (3.4.6) at the same time that Macdonald was
finding his own identities. Both were at Princeton then, and would often chat a little
when they bumped into each other after dropping off their daughters at school. But they
never discussed work. Dyson didn’t realise that his strange list of numbers has a simple
interpretation: they are precisely the dimensions of the simple Lie algebras! 3 = dim(A1),
8 = dim(A2), 10 = dim(C2), 14 = dim(G2), etc. In fact these formulae for ηd are none
other than (specialisations of) the Macdonald identities. For example, Dyson’s formula
is the denominator formula for A4

(1) (24 = dim(A4)). If they had spoken, they would
surely have anticipated the affine algebra denominator identity interpretation.

Incidentally, no simple Lie algebra has dimension 26, so the formula for η26 can’t
correspond to any of Macdonald’s identities. Its algebraic meaning is still uncertain.

Macdonald certainly didn’t close the book on denominator identities. Any algebra with
a character formula analogous to (1.5.11) (e.g. Borcherds–Kac–Moody algebras (3.3.4))
will have one. Kac and Wakimoto [336] use denominator identities for Lie superalgebras
to obtain nice formulae for various generating functions involving sums of squares, sums
of triangular numbers (triangular numbers are numbers of the form 1

2 k(k + 1)), etc. For
instance, the number of ways n can be written as a sum of 16 triangular numbers is

1

3 · 43

∑
ab (a2 − b2)2,

where the sum is over all odd positive integers a, b, r, s obeying ar + bs = 2n + 4 and
a > b.

The most important application of denominator identities from our perspective is
Borcherds’ use of them (Section 7.2.2) in proving the Monstrous Moonshine conjectures.
Indeed, this possibility was what motivated his introduction of the Borcherds–Kac–
Moody algebras. Other applications are discussed next subsection.

Explicitly writing down denominator identities for Borcherds–Kac–Moody algebras
tends to be quite difficult, because their root multiplicities are hard to find. The denom-
inator identity of the Monster Lie algebra m is a remarkable identity originally due to
Zagier, but discovered independently by Borcherds and others:

p−1
∏
m>0
n∈Z

(1− pmqn)amn = J (z)− J (τ ), (3.4.7a)

with p = e2π iz , where the powers ‘ai ’ are the coefficients of the q-expansion of the
modular function J (τ ) =∑

i ai qi . This yields infinitely many nontrivial polynomial
identities in the coefficients an – for example, comparing third-degree terms on both
sides gives

a4 =
(a1

2

)
+ a3. (3.4.7b)

In fact, (3.4.7a) is older than m and is proved independently (Hecke operators permit a
quick proof); turning the logic around, it is used to tell us the root multiplicities of m.
This is its direct use in the proof of the Monstrous Moonshine conjectures.
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Unfortunately, the numerator of the Weyl character formula for L(λ) rarely has a
product formula. However, certain specialisations of the numerator can manifestly equal
certain (λ-dependent) specialisations of the denominator, and thus inherit the product
expansion of the latter. Consider a simple example: any finite-dimensional An-module
L(λ) has a character satisfying

chL(λ)(tρ) = x (n+1)t(λ)/2
∏

1≤i< j≤n+1

x j y j − xi yi

y j − yi
, (3.4.8a)

for any t ∈ C, where x = et and yi = exp[(i −∑n
j=i λ j )t]. Similar formulae hold for

all Kac–Moody algebras [374]. In particular, from these we obtain instantly Weyl’s
dimension formula for finite-dimensional semi-simple Lie algebras:

dim L(λ) =
∏
α>0

(α|λ+ ρ)

(α|ρ)
. (3.4.8b)

3.4.3 Automorphic products

In Section 2.4.1 we explain the important notion of lifting a modular form f : H → C for
a discrete subgroup� of G = SL2(R). The result is an automorphic function φ : G → C
obeying the transformation (2.4.2b).

Borcherds discovered an unexpected way to lift (meromorphic) modular forms for
discrete � in SL2(R) to much larger Lie groups. His starting point was (3.4.7a), where
the coefficients of a modular function appear in the exponents of a product expansion.
In hindsight, another example of this phenomenon is the product formula(2.2.6b) for η:

η(τ ) = q1/24
∞∏

n=1

(1− qn)1, (3.4.9)

where the powers ‘1’ are the coefficients of the q-expansion of the modular form θ3(τ )/2.
Moreover, both (3.4.7a) and (3.4.9) are the denominators of the Monster algebra m

and the affine algebra u1
(1) (recall (3.2.12c)). Are these hints of a much more general

phenomenon?
Indeed. Borcherds found a far-reaching generalisation of (3.4.7a):

Theorem 3.4.2 [76] Suppose f (τ ) =∑
n anqn is a meromorphic modular form for

SL2(Z) of weight −s/2, holomorphic in H (so its only possible pole is at the cusp), and
with integer coefficients an. We require s = 0, 8, 16, . . . ; if s = 0 we also require that 24
divides a0. Let v0 ∈ Rs+1,1 be a generic vector of negative norm. Then there is a unique
lattice vector ρ ∈ I Is+1,1 ⊂ Rs+1,1 such that

F(v) = e−2π i ρ·v ∏
r∈I Is+1,1, r ·v0>0

(1− e−2π i r ·v)a−r ·r/2 (3.4.10)

can be analytically extended to a meromorphic modular form on Hs+1,1 of weight a0/2
for the group Os+2,2(Z)+.
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Since f in Theorem 3.4.2 has nonpositive weight and is holomorphic in H, it will
necessarily have poles at the cusps Q ∪ {i∞} (unless it is constant). The set I Is+1,1

is the unique even self-dual lattice of signature (s + 1, 1) (Section 1.2.1). Os+2,2(R) is
the group of (s + 4)× (s + 4) matrices A with real entries, which obey AD At = D for
D = diag(1, . . . , 1,−1,−1). By a modular form for Os+2,2(Z)+, we mean the following.
First, the imaginary norm vectors in Rs+1,1 lie in two disjoint cones; denote by C the cone
containing −v0. The analogue of the upper half-plane H is here the set Hs+1,1 ⊂ Cs+1,1

consisting of all vectors v with imaginary part Im(v) ∈ C . Then

F(v + λ) = F(v), ∀λ ∈ I Is+1,1, (3.4.11a)

F(w(v)) = ±F(v), ∀w ∈ Aut(I Is+1,1)+, (3.4.11b)

F

(
2v

v · v
)
= ±

(v · v
2

)a0/2
F(v), (3.4.11c)

for appropriate choice of signs, where Aut(I Is+1,1)+ are the automorphisms of the lattice
I Is+1,1 that send the cone C to itself. The transformations on Hs+1,1 given in (3.4.11)
generate a subgroup of Os+2,2(Z), denoted Os+2,2(Z)+. Now F can be lifted to the Lie
group Os+2,2(R)+ in the usual way. This lifting of a modular form for a subgroup � of
SL2(R) to automorphic forms for Os+2,2(R)+ is called a Borcherds lift.

Of course (3.4.7a) is recovered from taking f (τ ) = j(τ )− 744; then s = 0, and the
real Lie group O2,2(R) is essentially SL2(R)× SL2(R) – that is, they share the same Lie
algebra (recall Theorem 1.4.3) – with each SL2(R) contributing a copy of H and SL2(Z).

We can recover from F more familiar modular forms by restricting the domain of F
to multiples τv of imaginary norm vectors v in I Is+1,1. For example, we get:

Theorem 3.4.3 [76] Let f (τ ) =∑∞
n=−∞ anqn be any meromorphic modular form for

�(4), holomorphic in H but possibly with poles at the cusps, and with integer coefficients
an. We require an = 0 unless n ≡ 0, 1 (mod 4). Then for some choice of h ∈ Z/12,

F(τ ) = qh
∞∏

n=1

(1− qn)an2

is a meromorphic modular form of weight a0, with all poles and zeros at cusps.

For example, (3.4.9) (or rather its square) is recovered by taking f (τ ) = θ3(2τ ). Modular
forms for SL2 arise here because O1,2(R) is essentially SL2(R).

In this section we find several examples of product expansions of modular forms,
Jacobi forms, etc. coming from the denominators of characters. An exciting development
is provided by Gritsenko and Nikulin [264], [265]. Given any hyperbolic Kac–Moody
algebra of rank n ≥ 3 with certain properties (making them close in spirit to semi-
simple Lie algebras), there exists a Borcherds–Kac–Moody algebra of the same rank
with identical real roots (hence Weyl group, which will be a subgroup of On−1,1(R)),
but with precisely the imaginary simple roots needed so that its denominator is an
automorphic form for On,2(R). It is reminiscent of Macdonald’s identities: he found he
needed to introduce extra factors to get modularity (namely the third product in (3.4.7b)),

https://doi.org/10.1017/9781009401548.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401548.004


Variations on a theme of character 225

and we now interpret those as due to the imaginary roots of the corresponding affine
algebra.

Most Borcherds–Kac–Moody algebras are of course not interesting; those that are (e.g.
the Monster and fake Monster Lie algebras) have automorphic denominator identities.
Thus this provides a systematic construction of what should be interesting Borcherds–
Kac–Moody algebras. It is known that there are only finitely many such hyperbolic
Kac–Moody algebras, and so this is a finite family of Borcherds–Kac–Moody algebras.
Clearly, we should study their representation theory, and compute the characters of their
‘interesting’ (presumably integrable) modules. In analogy with affine algebras, we may
hope that the numerators of those characters will also be automorphic.

Relations of these automorphic forms with mirror symmetry and string theory are
beyond this book, but see, for example, [266], [342], [275], [276], [434]. The review
article [358] is a good treatment of many of the topics of this subsection.

Question 3.4.1. Let f (q) =∑
n=0 anqn , with a0 = 1. Verify that, at least formally (i.e.

without any regard to convergence), this can be written as f (q) =∏∞
n=1(1− qn)bn for

some unique numbers bn . If all an are integers, then so are all bn .

Question 3.4.2. Prove (3.4.8a) and the Weyl dimension formula (3.4.8b) for sln .

Question 3.4.3. Express the character χλ of any integrable representation λ of A1
(1),

specialised appropriately, as an infinite product.
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