ON A FAMILY OF SIMPLE ORDERED GROUPS

VLASTIMIL DLAB
(Received 5 May 1967)

1. Introduction

In the present paper we shall consider some subgroups of (increasing)
autohomeomorphisms of the closed real interval <0; 1>; mainly because of
brevity, we shall defer discussing possible generalizations of our results to
more general ordered fields.

Groups of (order) automorphisms of the real line, or more generally, of
some ordered sets have been frequently used in constructions of groups with
some specified properties (cf., e.g., [1], [4], [6]); in particular, the group of
all piecewise linear automorphisms of (0, 1> coinciding with the identical
mapping in some neighbourhoods of 0 and ‘1 has served Chehata [1] in
establishing the existence of an (algebraically) simple (linearly) ordered
group.

Here, we present a whole family of (algebralcally) snnple (hnearly)
ordered groups Gg: for every subgroup H- of the multiplicative group R
of all positive real numbers, Gy is the group of all so-called locally right
H-linear automorphisms of <0, 1) coinciding with the identical mapping
in:some neighbourhoods ef 0 and 1. In particular, Gy is divisible if and only
if H is divisible; in fact, Gy is then, in-a certain sense, strongly divisible.
There is a one-to-one correspondence between the (linear) orders of Gy and
those of H; thus, Gy admits only two'(lineér) orders if and only if H is of
rank 1. Furthermore, G contains an isomorphic copy of any (linearly)
ordered abelian group of countable ““‘Archimedean rank” and the continuum
of non order-lsomorphlc (hnearly) ordered free groups of rank 2.

* A particular value of our approach rests on the fact that 51mp11c1tv and
other properties of the groups Gx can be established very easily.

2. Preliminaries

Let G be the roup of all increasing autohomeomorphlsms of the interval
<O 1), i.e. the group of all continuous (strlctly) increasing real functions on
0,1 havmg 0and 1'as the1r fixed points. Throughout the paper they will
be denoted by small Greek letters and written on the right:
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592 Vlastimil Dlab [2]

x(of) = (xa)f for all z € (0, 1);

¢ will always denote the unity of G.

An open interval (a, b) C <0, 1) is said to be a supporting interval of
o € Gifian = a, ba = b and z« # z for all 2 € (a, b). The' (at most countable
disjoint) union of all supporting intervals of « is called the support of a.
An element of G with a single supporting interval is said to be simple.

Let H be a subgroup of the multiplicative group R of all positive real
numbers; in particular, H, C R denotes, for every » € R, the least divisible
subgroup of R containing ». An automorphism o € G is said to be H-linear in
{a, by C 0, 1) if there is 4 €M guch that

o = aoc—f—h(x—a)T for all x e {a, 6);

i

« is said to be piecewdse' H-linear in <{a, &) if there exists a finite number of
a's: a=aj<<a <+ - < a,=bsuch that o is H-linear in each <{a,_,, 4,),
1 <1< n. ’

In 'what follows we shall consider the subgroup Gy of G of the locally
right H-linear automorphisms of (0, 1>, i.e. the subgroup of all « € G such
that, for any a4 € <0, 1), there exists a 'positive real ¢ and 4] € H satisfying

wo = ant-hl(x—a) for all x € <{a, a+e); L
thus, « € Gy if and only if, for any a € €0, 1), there is a non-trivial interval
{a, a+e€5> in which « is H-linear.

To every « # & of Gy, let us make to correspond the {at most countable)

well-ordered subset 4, = {a,} of {0, 1>

0S5 A, < @uog<<- <y << =1

of !

defined as follows: a,, € 4 if and only if a,,x = a,, and there is no neigh-
bourhood N{ay,) of a,, such that za = x in N(a,,). Notice that

a

X T == Sup Ayt

is the greatest element of 4, and that « is simple if and only if A4, has two
elements. In fact (@21, 445) 1s always a supporting 1nterva1 of « and further-
more, prov1ded Aaty2€ exists, either (a,,, @,,,,) or {a Ay ﬂ, Ay +2) isa su;{;portmg
interval of a.

Now, for every « € Gy, consider the function h on <0, 1) mapping
each a € (0, 1) into the corresponding gradient 4} € H; as a matter of fact,
we shall be particularly interested in the restriction of 4, to A4,. Thus,
hzxt # 1 if and only if (a,,, a,,,) is a supportmg 1nterval of «; of course,
always %%t % 1. The function %, restricted to A desbrlbes what we 11]§e to
call the basic characteristic of «. More precisely, we shall say that « and /3 of
Gy have the same basic characteristic 1fthere is an automorphism <p €G of
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{0, 1> (or, what appears to be the same, ¢ € Gy or even ¢ € Gy, defined
below) mapping 4, = {a,,} onto A, and satisfying
hgrt = hg®.
Besides the subgroup Gy of G, we shall investigate the subgroups Gy,
Gyn and Gy of Gy: o # & belongs to Gy, Gy or Gp if and only if 0 < a,,,
ay,,<1or 0<<a, <a,, <1, respectively. Evidently, all three groups

are normal in Gy; in fact, Gy is the only minimal normal subgroup of Gy
(for the full normal structure of Gy see the diagram in Theorem 4.3.).

3. Preparatory results

ProposiTioN 3.1. (cf. [5], [7]). Two mnon-unity elements o and f of
Gy, Gy, Gyun or Gy are conjugate in the respective subgroup if and only if
they have the same basic characteristic.

In particular, if « and B of Gy have the same basic characteristic, then

(3.1) g = ¥1a¥
with ¥ e Gy if a, . <1 and ¥ € Gy otherwise.
Proor. First, suppose that « and g are conjugate in G, i.e. that
B = ¢~ lagp for a certain ¢ € G.
Let A, = {a,,}. Then, evidently,
Ay = {az,}, where ag, = a,,¢.

Moreover,
h;atQ’ — h;:tw hgut h;at — (h;ut)—l h:at h:;at — h:at,

and thus, « and g have the same basic characteristic.

Now, assume that « and g have the same basic characteristic, i.e. that
there is ¢ € G such that

A, = {ay,}, Ap = {a,,p} and ks = hg®.

In order to construct an element ¥ of G such that (3.1) holds, it is evidently
sufficient to construct, for each supporting interval (a,,, @,,,,) of «, a func-
tion ¥, of G which is locally right H-linear in {(a,,, @.;> and satisfies,
moreover,
e ¥y = 0,9, Gari1 Ve = Bay1®
and
?{It_la'glt = /3 in <aat‘P’ aat+1(p>'

For, then the continuous function ¥ defined by

¥ = ¥, in each(ay,, @y 1)
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594 Vlastimil Dlab 4y

and piecewise H-linear in each complementary interval of thesupport of « in
{0, 1> belongs to Gy and satisfies (3.1); moreover, since our ¥, will satisfy
¥, = z in a neighbourhood of a,,, ¥ can be taken from Gy if a,, <1
and from Gg, otherwise.

Thus, to complete the proof, we are going to construct a function ¥, with
the appropriate properties. First, if a,, > 0, let

2¥, = (a,p)a,tx in <0,a,,>
and, if a,,,, < 1,
W, = 14 (1=, 1 @) (1—ao 1) 2 N By 0aq, 1)
Without loss of generality, assume that
(3.2) gt > 1.

Let « and g be linear in {a,,, a,,+¢;> and {a,,p, a,,01¢,>, respectively.
Take e > 0 satisfying the relation

Rzt + e < min(e, &)

and define
x)}yt = x+aat(p_aat for z € <“at: aat+e>'
Thus, for
x € <ﬂat(p: aat¢+e>r
V) = ata,,— a9
and

(P al,) = [ay 4Ry (v —ay,¢)] P, = 2f.
Now, consider the increasing sequence {a,} defined by

a, = (a,,+e)x" 1 for n = 1.

n

In view of (3.2), we have

lima, =a,,.,.
n

Hence, for every z e {a,,+e, a,, ), there is (a unique) 7, = 1 such that
a, <& =a, ., and we complete the definition of ¥, by putting

x¥, = x(a 0 W, p).

It is a matter of routine to check that ¥, possesses all the required properties
and thus to complete the proof of Proposition 3.1.

LEMMA 3.2. Let & + w e Gyu. If a,, > 0, then — for any given 0 < a << a,;,
Ay, =b=1and 1 5 heH — there are simple elements p and o of Gy such
that
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—_ - e ___ pha J— -
a,,=a,,=a, hy=h="h a, =a,, =b
and
w = o lp.

On the other hand, if & # w = o p with simple elements p and o of Gy such
that

hgpr = hgev=h, h ke, b (Bge) T
then

0=a,, =a,,<a,, and max (a,, ,d;, ) = a,,,-

Proor. Define w* € @y by
xzo* = 2w for xo = ¢ and rw* = xw! otherwise;

thus, zo* Z 2 for all 2 € €0, 1>. Put A* = max (4, #71). Now, denote by
o* an element of Gy such that

zo* = x in {0, a),
xo* = a-+h*(x—a) in {a,a+te) for 0 < e <a,,—a,
zw* < xo* < b in {ate, b)
and
xo* =z in (b, 1).

It is evident that such elements of Gy exist: Consider the greatest subinter-
vals (¢, ¢p> of <a,q, > such that o* is linear in (¢, ¢,»; for each such
interval put

c;0* = 3(b+c,0%), 1=1,2,

and o* piece'wise H-linear in {c¢,, ¢,>; also, in {a,+e, a,,>, let o* be piece-
wise H-linear with (a+e¢)o* = a+h*e and a,,0* = 3(b-+a,,).

Now, if &% =47, § = 41, put o = (6*%)/ and p = cw. It is routine
to check that 8 satisfies all the requirements. The other part of Lemma 3.2
1s obvious.

ProposITION 3.3. Let o 5£ & be a non-stmple element of Gy. Then, there
exists ¥ € Gy such that

/2% < Ay, Qay Ty é Ay 7 (l‘r.e. ¥e GH*)

F

and
p=a¥Wla¥
satisfies
Ap = a1, agy, a,, } with gt = ()%
Moreover, given an arbitvary element 1 = h e H, W can always be chosen
so that

higs = h
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provided that two sequences {x,} and {y,} exist such that

limz, =limy, = a,,,
n n

and
T, >, Yu<y, forn=1

ProoF. Since the proof of the statement in each case to be considered
has the same basic idea, we present here only the proof of the last assertion
in the case A1 < 1.

First, assume that # > 1. Let

(3.3) Uy < Ao SOy < =---=Zh, <o, =--,limb, = a,,
be a sequence of supporting intervals of « such that "
x, > z in each (b,, c,), n =1,
Define in each (b,, ¢,) a subinterval {%,, v, such that
v, < U,x

and, moreover, such that « is linear in {(b;, v;> and %, = v, if, for n = 2,

Cpeq = b,. Also, let vy € (@4, @,,) be a number such that « is linear in
<a¢11 'U0>; Puf uo = %(aal_*_vo)'
Let & € Gi be defined by

xx = zo for z € {a,,, a2y, x€{b,, c,), n=1

and
z& = x otherwise. .

Furthermore, define g € Gy in the following manner:

(a) Bis linear in {a,y, 4y, LUy, Wo), {Wo, ya™) {uya™, z) and <z, %;)

with
o1 B = gy, (a?)B = wua% wf=u,
h’%al —_ h:a 1 h%la_l — h . (h’:;l)_l:
Voo —a
Ak 2 S LY
4 2(by—u,) 7
-2
B > & " Vo , heH,
8 ot —by
and
h%" = L , hH*eH.
h—1 8
(b) for » = 1, B is linear in <v,, w,>, {®,, 2, and {z,, #,,;) with
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— 1 — —

W, = 3 vn+cn)’ vnB = Uy, un+lﬁ = Upi1,
b

h-;—"= an,

w bn+1_wn w

Moz T e,
Chn—W,

and

. (U1 —bpry U1 — [V, A (0, —v

h%" é mln( n+1 n+1, n+1 [ n+ u( n n)] , }I%"EH.

Upp1—Cp Upy1— Wy

(c) #B = x otherwise.
Hence, a and g have the same characteristic and therefore there is, in view
of Proposition 3.1, ¥ € Gu, such that

B = ¥Y1la?.
Again, it is routine to check that g = a¥1a¥ has two supporting intervals
(@1, #y272) and (w072, a4, ) with
Byt = (h3=*)2 <1 and Ap* " =h > 1.

Similarly, we deal with the case when % < 1. Then, we assume that
(3.3) satisfies

o > z in (by, ¢;) and xax <z in each (b,,¢,), n =2,
Again, we define f in a similar way as before with the exception of the inter-
val {a,y, #,); there, Bislinearin {a,,, uy), {ty, Wy, @y, w a1y, {Uy,u;),
{uy, Zgy, {2g, gy With
1B = oy, (™) = wa%, UuyB = u,,
h%al — h:ul, h%la—l = - (hZI)—l’

kg, hg' € H sufficiently small and 4%, 45 € H sufficiently large. The proof
can be then easily completed.

PRroOPOSITION 3.4. (i) Let ¢ # w € Gu. Then, for any & # « € Gu, there
are « and A of Gy such that
w = («tax) A1l
(ii) Let w € Gu\Gu. Then, for any o € Gu\Gyu, there are «, A, p
and v of Gy, such that
o = {(ktarputoau) (A Tadvlar).
(iii) Let w € Gu\Guy. Then w belongs to the normal closure of « € Gy

in Gy if and only if the cyclic subgroup of R generated by hS contains hd
and, +f a,, =1, a,, =1, as well.
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Proor. (i) This is an immediate consequence of Proposition 3.1 and
Lemma 3.2. Indeed let & € Gy be given by
xx = xa for x € (a,,, a,,) and xa = x otherwise.
Then, there are & and 4 of Gy such that @ = ¢'p with
o=Fk1aR, p=21'al and a,, =4,, =d,,,
Define « and 4 of Gy to satisfy
xk = 2k and zA = 24 for x € (0, a,,»
and to be identical and piecewise H-linear otherwise. Then
o = (kTar) A ad.
(ii) First, according to Proposition 3.3, there is ¥ € G, such that
&= a¥la¥

has a supporting interval of the form (@, 1). Then, Proposition 3.1 and
Lemma 3.2 can be applied as in the previous case (i):

o = (klag) 1 17'al;
finally, put x = ik, u = Y&, A = 1, » = P4
(i1i) This part follows readily from Proposition 3.1.

ExXAMPLE 3.5 As a matter of fact, very often we can make a stronger
conclusion in the case (ii) similar to that of (i). However, the following
example illustrates that, in general, such a conclusion does not hold:

Let (a, 1), 0 <a < 1, be a supporting interval of w with 4% > 1; let
xa = x forallz € <b, 1>, 0 < b < 1, and 1 be an accumulation point of the
set of all «’s such that xa = z. Assume that, under these conditions, there
are « and 4 of G, such that

w = (kTax) Aol

First, there is evidently 0 << ¢ <C 1 such that

ce = ¢ and cA > max(a, bx).
Therefore, since
xxklax = x for all z € (bk, 1,

Yy = (C}.)K_louc = ¢l > a.
Thus, by a simple calculation, we get
Yo = [(cA)(«Tor)]{(kTax) (A ad) = cod = cd Z g,

a contradiction of 42 > 1.
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LeEMMA 3.6. Let o € Gy be simple with the supporting interval (a, b) and
he = hy; let he H. Then, there exists f € Gy, unique in Gy, satisfying

() af = px;
(b) g = h;
(c) each supporting interval of § has a non-empty intersection with (a, b).

If h = 1, then B = g; otherwise, f§ is simple with the supporting interval
(@, b). Moreover, if

h = hg for a rational v = mfn, n > 0,
then B is the (unique) solution of the equation
§7L P am.

Proor. We shall sketch the proof in the case %, > 1; the basic idea is
that of the proof of Proposition 3.1. Let ¢ > a be such that « is linear in
{a, ¢> and take

0 < a; < min ¢, at+h 1 hy(c—a)l;
put
a, = a," ! for n = 1.

Evidently, lim,a, = b and, for every « € (4,, b), there is a unique %, =1
such that @, <z =< a,_,,. Now, one can easily see that § defined by

2B = a+h(x—a) for x € {a, a,),

xf = xa"Bu” for x e (a,, 4,1, n=1,
and
xf = x otherwise

satisfies (a), (b), (c) and is by these three properties uniquely determined.
The rest of Lemma 3.6 follows easily.

ProposITION 3.7. Let a € Gy and v be a real number. Let (hy*)" e H
for every supporting interval (a,,, a,,.,) of «. Then there exists p € Gu, unique
wn GQg, satisfying

(@) off = fo;

(b) each supporting interval of B intersects non-trivially some supporiing
interval of «;

(c) for each (a,,, ayypq), hgt = (h=*)".

As a consequence, o and f have the same supporting intervals. Also, if
v = mln, n > 0, is rational, then B = o™™ is the (unigque) solution of the equa-
tion

Eﬂ f— am'
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In general, for any a € Gy and any real v, a unique B satisfying (a), (b),
(c) always exists in Gg; by definition, put

f=a.

Then,

o = o = gt
and

(“r)s = ot = (as)r
for all veal numbers v and s.

Proor. The first part follows from the preceding Lemma 3.6 applied to

each supporting interval of «. But then we get readily the remaining relations
for the “powers”. For, § = o"«® and g = «*a” satisfy (a), (b) and (c) with

Myt = B = B b = G
hence, in view of uniqueness,
oo = ofa” = a .
Similarly, apply the first part of this Proposition 3.7 to «: Both
f1 = (x")%, B = o *® satisfy (i) and (ii); furthermore,
Bt = (et = (Ao} = (hgeryrs = hgee.
Hence, 8, = B,, as required.
LeEmMMA 3.8, (cf.{2]) Let
W (&, n) = Eaghghagla. - - Eongln,

where all the integers k;, I, (1 <1 < n) with a possible exception of I, are
non-zero, be a given “word”’. Let 0 < a < b < 1. Then, for every HC R,
there exist o and B in Gy such that

Uy =gy =4, Ay, =5, =D
and
W(a, B) # &.
Proor. First, put
k= |kylikyly - Ryl 2 1,

where I} = 1if], = 0and I} =, otherwise. Choose %, € H such that 4, > 3.
Furthermore, put
h=hy>3 =3,
and denote by ¢ a number satisfying # < c; finally, choose
b—a

0<e< ’
2nc
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put @y = a and
a, = at+gh—1)e for 2 < g < 2n—1;

clearly, ay < ay << -+ < dg,_4 < b.
Now, in the interval {a,, a,+2(h—1)e) define the function ¥, by

2¥, = a,+h(x—a,) for x e <a,, a,+e),

q

eV, = a,+het+h(w—a,—e) for x € {a,+e¢, a,+e+he)

a
and

z¥, = x otherwise.

By means of these functions then define & € Gy and Be Gy in the following
way:
(i) z& == in <0,a) and {4, 1),
2& = xWy;_q In {Ay_y), ag;y for 1 =7 < n—1,
TX = Ay(n) A (@—as,1)) I {Bpii-n), Bai—p+ED

and
x& # x, & piecewise H-linear otherwise.
(ii) «f =z in <0, a), {(a+2he, a+3(h—1)e) and (b, 1),
2f = xWy_, In {ay; 4, sy for 2 =17 < n—1,
zf = a+h{r—a) in <{a, ate),
2f = x4+ (h—1)e in {a-te, a+he),
TP = Agp 1 +h(T—az, 1) D {By,_1, Byp11¢)
and

xB # x, B piecewise H-linear otherwise.

Finally, apply Lemma 3.6, and define « € Gz by

o = 2& 7 in {ay;_yy, g,y for 1 £i = n—1
and
xo = X% otherwise.

Similarly, take € Gy satisfying

2f = af4 in (a, az),
2f = 2f7Y in {ay;_,, @y 4y for 2 =7 =n—1

and
xf = zB~% otherwise.
A routine calculation shows that
(ate)W(a, B) = ate+2ne(h—1) # ate,
as required.
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4. Theorems

In this final section, we shall derive ~ using the results of the preceding
section — the main properties of the groups Gy, H C R. As a matter of fact,
formulations of the results in § 3 allow many statements on Gy to be extended
to Gy etc.

THeEOREM 4.1. For any subgroup H C R, Gu can be linearly ordered.
In fact, there is a one-to-one corvespondence between the linear ovders of H
and those of Gu. Hence, Gg has only two linear orders if and only if H is of
rank 1, 1.e. if and only of H is a subgroup of H_ for a suitabler € R.

Proor. Let P(H) be the positive cone of a linear order in H. Define
P(Gx) by
w e P(Gy) if and only if w = ¢ or Alte P(H).

In view of Proposition 8.1, P(Gg) is the positive cone of a linear order of Gy.

On the other hand, let P(Gy) be the positive cone of a linear order of
Gy. Evidently, P(Gy) contains simple elements: let ¢ € P(Gg) be simple,
(a, b) its supporting interval and A% = h,. We are going to show that any
w € Gg with Al = k, belongs to P(Gg). First, take ¥, e Gy such that

B = a?¥;' ¥, € P(Gn)
satisfies
Ag={a, b, ¢}, hy=ny, hy=h,.

Now, given 1 # % € H, there are, according to Proposition 3.3, always three
elements «, ¥; and ¥, of Gy such that

B = a7 ta¥; and B, = P o,
satisfy
Aﬂl = {a, b, c}, hf;l =h2, h;l = hy
and
Ag,={a, b, c}, hy = h, hg, = h.

In view of Proposition 3.1, 8, € P(Gx) and thus, necessarily, a € P(GH).

Hence, $, € P(Gy). Since, again by Propositions 3.1 and 3.3, there is ¥ € Gy

such that w?'w¥ and 8, are conjugate, we get w € P(Gg), as required.
From here we deduce immediately that the correspondence

“h e H belongs to P(H) if and only if all w € Gy
with Al»* = h belong to P(Gnu)”

between the linear orders of the groups H and Gy is one-to-one.
The rest of Theorem 4.1 follows easily.
Another consequence of Proposition 3.3 is the following
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THEOREM 4.2. Let Fu C Gu be the subgroup of all elements of Gy which
are piecewise H-linear (in {0, 1)). Thus, for every ¢ = o € Iy, o is linear in
an interval {a, a, ., »; put h, = hy. Let P(H) be the positive cone of a certain
linear ovder of H. Define the linear order in Fy by

& # we P(Fy) if and only if h, e P(H).

This (partial) order of Gu cannot be extended to a lineay order of Gy, 1.e. Gy
1is not an O*-group in the sense of [3].

Proor. Again, given 4 € P(H), there are, by Propositions 3.1 and 3.3,
«, ¥, and ¥, of Gy such that '
B = «¥7ta¥; and B, = a¥;%a¥,
belong to Fg and
hp, = h = (hg ).

Thus, g, € P(Fy) whilst $, ¢ P(Fg); consequently, there is no linear order
of Gy extending the given order of Fy.

THEOREM 4.3. For any subgroup H C R, Gy is (algebraically) si'mple.
In fact, the following diagram

where L, > L, are isomorphic to the lattice of all subgroups of H describes
the full normal structure of Qg (Gyn/Gu = Gu/Guy =~ H).

Proor. The first part of Theorem 4.3 follows immediately from Proposi-
tion 3.4 (i). As a matter of fact, the diagram is a straightforward consequence
of Proposition 3.4, as well.

THEOREM 4.4. The group G is divisible if and only if HC R is divistble.
In fact, Gy s then strongly divisible in the following sense: Every equation
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(4.1) Emaftray - Eho, = ¢ with n; > 0,0, €Gy for 1 S1=¢q

possesses a unigue solution &, in Gy.
Also, Gy is “contemuously’ divisible in the sense that every equation

& = o with a real exponent v and o € Gp

has a (unigue) solution in Gg.

ProOF. Again, the first and the last parts of Theorem 4.4 follow immedi-
ately from Proposition 3.7.

However, the statement on solvability of (4.1) (in the case when H
is divisible) needs an independent proof: We shall construct a solution &
of (4.1) and — at the same time ~ show that it is unique. It is evident that,
without loss of generality, we can assume #; = 1 forall 1 < ¢ < ¢. Moreover,
throughout the proof we shall always denote the products

Gy &yt £,y (1 =4 = g), where §,€Gn,

by W, (é,); in particular, W,(&,) = &.
Discarding the trivial case, assume that «; 5= ¢ for at least one ¢ and put
a4 = min (a,,) > 0.
a,£€
Notice that &, = ¢ satisfies (4.1) in the interval (0, a)>; moreover, any
& e Gy satisfying (4.1) in <0, a) is necessarily identical with ¢ in this
interval.
Let N, be the set of all 1 <7 < ¢ such that a, ; = a. Define k,e H as
the (unique) real number satisfying
ho =TI (hz)~ 2.
ieN,
Consider an element ¥, € Gy such that

¥, =z in {0, a>
and
x¥, = a-th,(x—a) in {a, a+e;) for a suitable ¢; > 0.

Clearly, there is b > a such that &, = ¥ satisfies (4.1) in (0, &) and
(b < )b* = max [BW,(£,)] < ate,.

1<i<q
Moreover, if any other & e Gy satisfies (4.1) in (0, b>, then & necessarily
coincides with &, in <0, b*).

Now, denote by I the (non-empty) subset of (0, 1) of all # such that
there is an element £, € Gy satisfying (4.1) in <0, z). Evidently, if 2, < «,
and z, € I, then z; e I. Furthermore, for each z e I and the corresponding
&, define, for every z € 0, 2>
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(2 =)2*(8,) = max zW,(&,)].
=i
Notice that always z*(£,) << 1 unless z =z = 1 and that z; < 2, implies
2t (&) < 5 (&)
First, we are going to show that, for 0 < x; < z,, the corresponding
functions &, and &, coincide in the interval <0, zf (&) In order to prove
the assertion, denote by J the set of all y & 0, z7 (&, ) such that

&b, = x&,, for z € <0, y>.
Certainly, since every y < min («f (&,), b) belongs to J, J is non-empty.
Also, in view of continuity of the functions fxl and .;‘-'z’, we get necessarily
supy =y, € J.

veJ

We claim that y, = #7 (£, ). Assuming the contrary, ie. y, <=7 (£,), we
deduce

(4.2) hey - hgs .
Define
2, = min [y, W* (&)1 = 9.
1sisq
Clearly, y, = g (§,) and thus, since y, < af (&,,), we have zy < z,. Now,
denoting by N, the set of all 1 < ¢ < ¢ for which

zg < YoWi'(&,), ie. mWil&) < w0,
and by m = 1 the number of the remaining ¢’s, we can easily calculate that

hgwol and hg:' must satisfy the following equation for 4

e
(4.3) 11 h:t:[wl(g:cl)gml] 11 hz:wi(gzl) =1,

i=1 ieN, !
and must therefore be equal, in contradiction to (4.2). Hence
x, = &, for e {0, xf¥ (&)
Therefore, also 2y (&,) = #f(£,). As a consequence, if z &, then there
is a unique x < z* < 1 such that a function &, satisfying (4.1) in €0, z} is
uniquely determined in <0, 2*) and * = 2*(£,). In particular, this yields the
uniqueness of the solution of (4.1) in Gy provided that a solution exists.
Moreover, if «,, x, € I, then z, < x, implies ¥ < af and, for any z < =¥,
there is a unique w such that
wel and w* = 2.
Now, put
(4.4) s = supz and s’ = sup z*.

zel xel
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Clearly, 0 << s =s" =< 1. We want to show s = s’ = 1.
Using an indirect argument again, suppose that s << 1. Define the
function ¥, € Gy as follows: First of all, for z € <0, s'),

xW, = xf,, where w* = &

s'¥V, = lim «¥,.
x5l

Since ¥, (for the time being defined in (0, s") only) satisfies the equation
(4.1) in <0, s) and is uniquely determined in (0, s”), we deduce, in view of
continuity, that ¥, satisfies (4.1) in <0, s> and is uniquely determined in
{0, s*>, where s* = s’. Also, since s < 1, necessarily s*%, << 1 and we can
extend ¥, on <0, 1> in such a way - by calculating the gradient h";z from
a relation similar to (4.3} —that ¥, satisfies (4.1) in an interval <0, s+4-¢,)
with a suitable e, > 0. Hence, s-+¢, € — a contradiction of (4.4); con-
sequently, s = s* = 1, as required.

Thus, there exists a solution &, € Gu, of (4.1) and — as shown above ~
it is unique. Moreover, one can see immediately that

and

min (@, ,) = a;, and g, ,, = Max (@a;r, )
@ e N ’
Hence, £, belongs to Gu.
The proof of Theorem 4.4 is completed.

COROLLARY 4.5. For every divisible H C R, Gy is an (algebraically)
simple divisible (Linearly) ordered group; in particular, G is an (algebraically)
simple divisible group admaitting only two linear orders.

THEOREM 4.6. Let e # a be an element of Gu; let <0, az,>, {du,, 1)
and {a,,, b, >, m e M, be all non-trivial disjoint closed intevvals complementary
to the support of ; let 1 < ny << R, be the number of the supporting intervals
of . Then, the centre Z, of the centraliser C(a) of « in Gy is isomorphic to a
divect product of ny copies of H and

C)/Z, = Gyx T] G, xG,,

meM

where Gy ~ Gy, Gy = Gyn and G, =~ Gy for all m e M.

Proor. By Lemma 3.6 and Proposition 3.7, every supporting interval
of f e C(a) is either a supporting interval of « — and g is then in that sup-
porting interval a (real) power of «, or does not intersect the support of «. On
the other hand, any element whose support does not intersect the support
of o belongs evidently to C(«). Thus, define

o e Gy if and only if a,, =a,,,
»eG, if and only if a, <a,, <a,, =b,, mell,
we Gy 1f and only if a,, = a,;,
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and Theorem 4.6 follows.
We conclude the paper with the following two simple remarks.

REMARK 4.7. (cf. [6]). With respect to its “natural’”’ order (i.e. the order
corresponding to the natural order of R), the group G contains the continuum
of non-order-isomorphic linearly ovdered free subgroups of rank 2.

This is an immediate consequence of Lemma 3.8: Let

0 <ay<by<ay <ag<<-++<a,<<---<1

be an arbitrary sequence and W, (&, i) - the set of all “words” in &, 5. For
every # = 1, let «, and f, be two elements of G whose supports are I, =
(@, a,.,) and for which W, (o,, f,) # £. Moreover, let «, be a (simple)
element of Gy with the supporting interval Iy = (a,, b,) and

(4.5) Bo = of for a real number » € R.

Now, denote by F(«, 8) the (free) subgroup of G generated by « and f
defined by

o = T xf =8, for xel,, n=0

n’

and
xa = xff = x otherwise.

Evidently, the number 7 € R in (4.5) can be chosen in continuum different
ways so that the resulting linearly ordered subgroups F{(«, ) are non-
order-isomorphic.

It is apparent from the proof that there is an infinite number of non-
order isomorphic linearly ordered free subgroups of rank 2 in Gg for every
H C R. Also, let us point out here the trivial fact that G (with its ““natural”
order) contains an isomorphic copy of any abelian linearly ordered group of
countable ““Archimedean rank” (cf. [8]).

REMARK 4.8. Let HC R and 0 << a < 1. Then the subgroup Gg < Gy
consisting of all o € Gy such that ax = a is a maximal subgroup of Gu.

We offer here a proof which retains its validity for every “transitive”
subgroup of automorphisms of (0, 1).

Let B be an arbitrary element of Gy \G%,; without loss of generality,
assume that af~ > a. In order to prove maximality of G§ in Gy it is
obviously sufficient to show that any w € Gy such that aw~1 > a belongs to
the group generated by G§ and 8. Take

0 < max (ag™}, an™l) < b <1
and denote by « a piecewise H-linear automorphism of (0, 1) satisfving

(awHx = ap!
and
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za = z in <0, a)> and (b, 1).
Now, since
al(@f) o] = aflalw = a,

y = («8)w belongs to G and thus

o = affy with « and y from Gg,
as required.
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