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1. Introduction

In the present paper we shall consider some subgroups of (increasing)
autohomeomorphisms of the closed real interval <0̂  1>; mainly because of
brevity, we shall defer discussing possible generalizations of our results to
more general ordered fields.

Groups of (order) automorphisms of the real line, or more generally, of
some ordered sets have been frequently used in constructions of groups with
some specified properties (cf., e.g., [1], [4], [5]); in particular, the group of
all piecewise linear automorphisms of <(0, 1) coinciding with the identical
mapping in some neighbourhoods of 0 and 1 has served Chehata [1] in
establishing the existence of an (algebraically) simple (linearly) ordered
group.

Here, we present a whole family of (algebraically) ^simple (linearly)
ordered groups GH'. for every subgroup H of the multiplicative group R
of all positive real numbers, GH is the group of all so-called locally right
//-linear automorphisms of <0, 1) coinciding with the identical mapping
in some neighbourhoods of 0 and 1. In particular, GH is divisible if and only
if H is divisible; in fact, GH is then, in a certain sense, strongly divisible.
There is a one-to-one correspondence between the (linear) orders of GH and
those of H; thus, GH admits only two (linear) orders if and only if H is of
rank 1. Furthermore, GR contains an isomorphic copy of any (linearly)
ordered abelian group of countable "Archimedean rank" and the continuum
of non-qrder-isomofphic (linearly) ordered free groups of rank 2.

A particular value of our approach rests on the fact that simplicity and
other properties of the groups GH can be established very easily.

.,:''' 2. Preliminaries

Let G be the group of all increasing autohomeomorphisms of the interval
<0, 1>, i.e. the group of all continuous (strictly) increasing real functions on
<0,'l) having 0 arid l'"as'their fixed points. Throughout the paper, they will
be denoted by small Greek letters and written oh the right:

591

https://doi.org/10.1017/S1446788700006261 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700006261


592 Vlastimil Dlab [2]

a; (a/3) = (x<x)P for all x e <0, 1>;

e will always denote the unity of G.
An open interval (a, b) Q <0, 1> is said to be a supporting interval of

a. e G If uia =*= «, -6oc = & and #ac ^ ic for all XK e (a, b). The' fat most countable
disjoint) union of all supporting intervals of a is called the support of a.
An element of G with a single supporting interval is said to be simple.

Let H be a subgroup of the multiplicative group R of all positive real
numbers; in particular, Hr C R denotes, for every r e R, the least divisible
subgroup of R containing r. An automorphism a e G is said to be H-linear in
<«, &> C <0, 1> if there is A e ^ ^ u c h that .

x<x. = aoc+^(^—a) for all a; 6 (a, 6);

as is said to be piecewhe' H-Unear in <ar, 6> if there exists a finite number of
a/s: d = d o < 4 1 < i " < « , = : ! ) such that a is i/-linear in each <at_1; «,>,
1 ^ i ^ n.

In "what follows we .shall consider the subgroup 6H of G of < the locally
right H-linear automorphisms of <0, L>, i.e. the subgroup of all a e G such
that, for any a e <(0, 1), there exists a positive real e% and h^eH satisfying

xv. = aa.-\-ha(x—a) for all x e (a, # + ££)>;

thus, a e OH if and only if, for any a e <0, 1), there is a non-trivial interval
<«, a-\-e*y in which a is /^-linear.

To every ac ^ £ oi&H, let us make to correspond the {atmost countable)
well-ordered subset Aa = {aa(} of <0, 1>

0 ^ a a l < aa2 < • • • < «a< < • • • g 1

defined as follows: «a( e 4̂ if and only if aata. = aa\ and there is no neigh-
bourhood i V ^ J of aat such that xa = x in N{a/lt). Notice that

r , t

is the greatest element of Ax and that a is simple if and only if, Aa has two
elements. In fact, (axl, ax2) is always a supporting interval of a and, further-
more, provided axtf2 exists, either (aat) axt+1) or (aaj+ i , aat+z) is a supporting
interval of a.

Now, for every XSGH, consider the function ha on <0, 1) mapping
each a e <0, 1) into the corresponding gradient hx e H; as a matter of fact,
we shall be particularly interested in the restriction of hx to Ax. Thus,
ha

a" =£ 1 if and only if {axtl axt+l) is a supporting interval of a; of course,
always h^*1 ̂  1. The function hx restricted to' Ax desfcribes what we like to
call the basic characteristic of a. More precisely, we shall say that a and /? of
GH have the same basic characteristic if there is an automorphism <p e G of
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[3] On a family of simple ordered groups 593

•(0, 1) (or, what appears to be the same, <p e GH or even <p e GH% defined
below) mapping Aa = {axt} onto Ap and satisfying

K" = A?"*.
Besides the subgroup GH of G, we shall investigate the subgroups GH* ,

G*H and GH of GH'. a ^ e belongs to GH*, G*H or GH if and only if 0 < aal,
aaT < 1 or 0 < f l J l < a 1 T < 1, respectively. Evidently, all three groups
are normal in GH] in fact, GH is the only minimal normal subgroup of GH

(for the full normal structure of GH see the diagram in Theorem 4.3.).

3. Preparatory results

PROPOSITION 3.1. (cf. [5], [7]). Two non-unity elements <x and ft of
GH, GH*, G*H or GH are conjugate in the respective subgroup if and only if
they have the same basic characteristic.

In particular, if a and /? of GH have the same basic characteristic, then

(3.1) /? = W-^OLW

with W SGH if «a Ti< < 1 and W e GH* otherwise.

PROOF. First, suppose that a and /? are conjugate in G, i.e. that

(5 = (f1^ for a certain <p e G.

Let Aa = {aai}. Then, evidently,

Ap= {afit}, where afft = aat<p.
Moreover,

l,a*tV ha"<r ha"< ha" fh"-^-1 ha" ha°" — ha"
nP — "<p~* na n(p — \ntp I na nq> — na >

and thus, a and /? have the same basic characteristic.
Now, assume that a and /? have the same basic characteristic, i.e. that

there is cp e G such that

K = {aat}, Afi = {aat/3} and hf = hp".

In order to construct an element W of GH such that (3.1) holds, it is evidently
sufficient to construct, for each supporting interval (aat, aat+1) of a, a func-
tion Wt of G which is locally right i?-linear in <«a4, «a(+i> and satisfies,
moreover,

" a i ^ * = ««t <P, ««t+i ¥t = aa t+1cp
and

W^a.Wt = P in (aat(p, aat+1<p}.

For, then the continuous function W defined by

xW = xWt in each(aat, aat+1)
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and piecewise //-linear in each complementary interval of the support of a in
<0, 1> belongs to GH and satisfies (3.1); moreover, since our XP1 will satisfy
xWx = x in a neighbourhood of aal, W can be taken from GH if aXTx < 1
and from GH* otherwise.

Thus, to complete the proof, we are going to construct a function Wt with
the appropriate properties. First, if aat > 0, let

t = (aatV)"*]^ i n <°. « I ( )

and, if aat+1 < 1,

xWt= l+(l — aaM(p)(l—aat+1)-
1x in (aat^, 1>.

Without loss of generality, assume that

(3.2) hi" > 1.

Let a and /? be linear in (aat, aa(-|-ei) and (aatq>, aa.t
ffJve"i?> respectively.

Take e > 0 satisfying the relation

hi" • e ;£j min(e1, e2)
and define

a ; ^ = x+axtrp — aat for x e <aat, a
Thus, for

x e <_aat<p, aat(p + e),

and

Now, consider the increasing sequence {«„} defined by

an = (a^j + eja""1 for « ^ 1.

In view of (3.2), we have
lim an = aat^x.
n

Hence, for every x e (,axt-\-e, *a«-i). there is (a unique) n0 ^ 1 such that
an < x :g «„ +1, and we complete the definition of Wt b}T putting

It ib a matter of routine to check that Wt possesses all the required properties
and thus to complete the proof of Proposition 3.1.

L E J I M A 3.2. Let e =£ OJ e GH- If aa)1> 0, then- for any given 0 ^ a < aul,

«WT<u 5S & £S 1 and 1 ^ h e H — there are simple elements p and a of GH such

that

https://doi.org/10.1017/S1446788700006261 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700006261


[5] On a family of simple ordered groups 595

api = a*i = a, ^ = h% = h, ap Jp = aaT<j = b
and

= a 1p.

On the other hand, if E ̂  to = a~1p with simple elements p and a of GH such
that

then
0 ^ apl = aal < a(Ol and max (apTp, aarj ^ aWTo).

PROOF. Define co* e OH by

£&>* = X(x> for ico> Ŝ  a; and xco* = ^CD"1 otherwise;

thus, xco* ^x for all x e <0, 1>. Put h* = max (A, Z^1). Now, denote by
a* an element of GH such that

xa* = x in <0, a>,
xcr* = a + ^*(a;—a) in <a, a+e> for 0 < e < aMl—a,
xw* < xa* ^ 6 in <#+e, 6>

and
xa* = x in <(&, 1).

It is evident that such elements of GH exist: Consider the greatest subinter-
vals <q, c2> of <flwl, b} such that co* is linear in <cx, c2>; for each such
interval put

c,a* = %(b+ci(o*), i = 1, 2,

and CT* piecewise ^/-linear in <q, c2>; also, in {a^e, awl>, let tr* be piece-
wise if-linear with (a-i

re)a* = a^h^e and a^a* = ^(b + aul).
Now, if A* = h', j — ± 1 , put <T = {a*)} and p = am. It is routine

to check that /S satisfies all the requirements. The other part of Lemma 3.2
is obvious.

PROPOSITION 3.3. Let a. =£ e be a non-simple element of GH. Then, there
exists W e GH such that

a a l < awi, av Ty ^ aXT^ (i.e. W e GH*)
and

satisfies
A0 ={aal, afi2, aa J with Iff» = (lfa-»)2.

Moreover, given an arbitrary element \ = h e H, 'F can always be chosen
so that

h>" = h
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provided that two sequences {xn} and {yn} exist such that

xn = lim yn = aaT

and n n

*n« > Xn> yn«- < Vn f°r « ^ L

PROOF. Since the proof of the statement in each case to be considered
has the same basic idea, we present here only the proof of the last assertion
in the case A^1 < 1.

First, assume that h > 1. Let

(3.3) aal < aa2 ^ b1 < cx ^ • • • ^ bn < cn ^ • • •, lim bn = aar^
n

be a sequence of supporting- intervals of a such that

xa > x in each (bn, cn), n S; 1.

Define in each (bn, cn) a subinterval (un, vn} such that

vn < Unh-
and, moreover, such that a is linear in (blt vt} and un = vn if, for n ^ 2,
cn_1 = bn. Also, let v0 e (aal, aa2) be a number such that a is linear in
<««i> ^o>; put u0 = %(aal+v0).

Let a e OH be defined by

xa = xa for x e <«al, a^a), x e <£>„, cn>, « ^ 1
and

xa. = x otherwise. •

Furthermore, define ft e GH in the following manner:

(a) /? is linear in <aal, wo>, .<%, ̂ 0>. <wo. ̂ a " 1 ) (Mia"1, ^0>
 a n d <zo> wi>

with

«aij5 = «ai. ( « i « " ^ = « i r ! , uip = u1>

hf- = K-\ h^*-1 = h • {ti>j)-\

and

(b) for » ^ 1, ^ is linear in <vn, wn}, <wn, zn} and <zn, un+1) with
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U>n = $(Vn + c«)> Vnft = Vn, Un+1fi = Un+1,

hf = hi",

and

/£" 5g min | —

(c) xfi = x otherwise.
Hence, a and j5 have the same characteristic and therefore there is, in view
of Proposition 3.1, We GH* such that

Again, it is routine to check that /J = a.W~1a}¥ has two supporting intervals
(aal, M1a~2) and (u^"2, aXTJ with

A««i = (h^1)2 < 1 and h^a'2 = h>\.

Similarly, we deal with the case when h < 1. Then, we assume that
(3.3) satisfies

xx > x in {bl, Cj) and xx < x in each (bn, cn), n ^ 2.

Again, we define fi in a similar way as before with the exception of the inter-
val (aal, M2>; there, /? is linear in <aal, wo>, <u0, w0}, <w0, u1ar1'}, <M1a-1,«1),

hj", hj1 e H sufficiently small and A|°, A|° e H sufficiently large. The proof
can be then easily completed.

PROPOSITION 3.4. (i) Let e =£ co eGg. Then, for any B ^ O.BOH, there

are K and X of GH such that

o> =

(ii) Let coeGH#\GH- Then, for any X&GH\G*H, there are K, X,
and v of GH* such that

co = (/c"1 XK JJT1 xfi)^ (A""1 cnXv1 a.v).

(iii) Let on e GH\GH* • Then <o belongs to the normal closure of a e GH

in 6H if and only if the cyclic subgroup of R generated by h°a contains h°u

and, if aaTa = 1, aaT = 1, as well.
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PROOF, (i) This is an immediate consequence of Proposition 3.1 and
Lemma 3.2. Indeed let a e GH be given \>y

xa. = xa. for x e (aal, aa2) and xa — x otherwise.

Then, there are K and X of GH such that m = o~lp with

a = ic"1^, p = X^al and aCTT̂  = apT = aar<o (=#<X2K = aa2^)-

Define K and X of GH to satisfy

XK = :nc and a;2 = xX for x e <0, a ^ )

and to be identical and piecewise //-linear otherwise. Then

(ii) First, according to Proposition 3.3, there is W e GH* such that

has a supporting interval of the form (a, I). Then, Proposition 3.1 and
Lemma 3.2 can be applied as in the previous case (i):

co = ((c-iSJc)-1!-1^;

finally, put K = K, /* = fjc, A = A, r = Wl.

(iii) This part follows readily from Proposition 3.1.

EXAMPLE 3.5 As a matter of fact, very often we can make a stronger
conclusion in the case (ii) similar to that of (i). However, the following
example illustrates that, in general, such a conclusion does not hold:

Let (a, 1), 0 < a < 1, be a supporting interval of a> with /?" > 1; let
xa. ̂  x for all x e (b, 1>, 0 < b < 1, and 1 be an accumulation point of the
set of all x's such that xa. = x. Assume that, under these conditions, there
are K and A of GR such that

CJ = ( K - 1 ^ ) - 1 ; . - 1 ^ . .

First, there is evidently 0 < c < 1 such that

ca = c and ck > max(a, bi<).
Therefore, since

XK~1O.K ^ x for all x e <(&«:, 1),

y = (CAJK-"1*^ 2g cA > a.

Thus, by a simple calculation, we get

yco = [(cX)(K-1a.K)](K^a.K)-l(X~1a.X) = cod = cX ̂  y,

a contradiction of ha
u > 1.
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LEMMA 3.6. Let a e GH be simple with the supporting interval (a, b) and
ha

x = h0; let h e H. Then, there exists ft e GH, unique in GR, satisfying

(a) a/3 = /3a;
(b) h% = h;
(c) each supporting interval of ft has a non-empty intersection with [a, b).

If h = 1, then fi = e; otherwise, ft is simple with the supporting interval
{a, b). Moreover, if

h = hr
0 for a rational r = mjn, n > 0,

then /? is the (unique) solution of the equation

in = am.

PROOF. We shall sketch the proof in the case h0 > 1; the basic idea is
that of the proof of Proposition 3.1. Let c > a be such that a is linear in
<a, c> and take

0 < ax < min [c, a-\-h~lh0(c—a)];
put

an = ^a""1 for n ^ 1.

Evidently, lim^«n = b and, for every x e (a1, b), there is a unique n0 2; 1
such that an < x ^ #„ +1. Now, one can easily see that /S defined by

£j3 = a-\-h{x—a) for a; e <a, aj),

a;/5 = x«"n/3an for a; 6 (an, an+1}, n ^ 1,
and

a;/S = x otherwise

satisfies (a), (b), (c) and is by these three properties uniquely determined.
The rest of Lemma 3.6 follows easily.

PROPOSITION 3.7. Let OLEGH and r be a real number. Let (h°"')reH
for every supporting interval (aat, aat+1) of <x. Then there exists /S e GH, unique
in GR, satisfying

(a) a/3 = ,3a;
(b) each supporting interval of {S intersects non-trivially some supporting

interval of a;

(c) for each (aat, aat+1), hf* = (ha
a")\

As a consequence, a and /3 have the same supporting intervals. Also, if
r = mjn, n > 0, is rational, then ft = a.m/n is the (unique) solution of the equa-
tion
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In general, for any a. e OR and any real r, a unique /? satisfying (a), (b),
(c) always exists in GR; by definition, put

Then,
<xr<xs = a r + s =

and
(ar)» = a" = (as)r

for all real numbers r and s.

PROOF. The first part follows from the preceding Lemma 3.6 applied to
each supporting interval of a. But then we get readily the remaining relations
for the "powers". For, /? = ocras and /? = <xsar satisfy (a), (b) and (c) with

hence, in view of uniqueness,

aras = asar = ar+s.

Similarly, apply the first part of this Proposition. 3.7 to <xr: Both
/^ = (<xr)s, /S2 = <xr* satisfy (i) and (ii); furthermore,

KV = (K")s = i(K")ry = (K"Y3 = *?:•
Hence, /?x == /92, as required.

LEMMA 3.8. (cf.(2]) Let

i, Tj) = ^iTjh^rjl* . . . ffcn^n,

where all the integers kit lt (1 ^ * ^ n) with a possible exception of ln are
non-zero, be a given "word". Let 0 ̂  a < b j£ 1. Then, for every H QR,
there exist a and (i in GH such that

aai = "pi = a, aaT^ = afiTfi = b
and

W(OL, /J) ^ e.

PROOF. First, put

where I* = 1 if /„ = 0 and /* = /„ otherwise. Choose hoe H such that h0 > 3.
Furthermore, put

h = h\ > 3* ̂  3,

and denote by c a number satisfying h f£ c; finally, choose

b-a
0 < e < ,

2nc
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put a0 = a and
aa = a+q(h— l)e for 2 <: q ^ 2«— 1;

clearly, a0 < a2 < • • • < a ^ ^ < b.
Now, in the interval <«a, a(r+2(A—l)e) define the function Wa by

—aq) for a; e <a8, att+e},

xlFa = aq+he+h-1(x—ag—e) for x e (aq+e, ag+e+he}
and

= x otherwise.

By means of these functions then define &eGH and /? e GH in the following
way:

(i) #5 = ^ in <0, «) and <*, 2},

x5c = a;^,^!, in <a2<*-i>. «z*> f o r x ^ * = n~ 1>

and
a;a ^ x, a piecewise /^-linear otherwise.

(ii) Xjg = a; in <0, «>, <a+2Ae, a+3(A— l)e> and <b, 1>,

x in <a2i_!, a2t+i> f o r 2 ^ t ^ »—1,

—l)e in (a-\-e, a-\-hey,
x$ = aZn_1+h(x—a2n_1) in <a2ra_1, «an_i+«)

and
xfi =£ x, ft piecewise .//-linear otherwise.

Finally, apply Lemma 3.6, and define a e GH by

a;a = xarki in (flg,,-^), a2t> for 1 fs*i f=k n—
and

a;a = xa.~k" otherwise.

Similarly, take ft e GH satisfying

xfi = xfi-1* in <«, a3>,

x/3 = a;̂ ~!' in <«2t-i. <%+i> f°r 2 ^ * Ss w—
and

a;j? = xfi~l" otherwise.

A routine calculation shows that

{a+e)W(«., /S) = a+e+2ne(h— 1) ^
as required.
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4. Theorems

In this final section, we shall derive - using the results of the preceding
section - the main properties of the groups GH, H <Z R. As a matter of fact,
formulations of the results in § 3 allow many statements on GH to be extended
to GH etc.

THEOREM 4.1. For any subgroup HQR, GH can be linearly ordered.
In fact, there is a one-to-one correspondence between the linear orders of H
and those of GH. Hence, GH has only two linear orders if and only if H is of
rank 1, i.e. if and only if H is a subgroup of HT for a suitable r e R.

PROOF. Let P(H) be the positive cone of a linear order in H. Define
P(GH) by

m e P(GH) if and only if co = e or A""1 e P(H).

In view of Proposition 3.1, P(GH) is the positive cone of a linear order of GH.
On the other hand, let P(GH) be the positive cone of a linear order of

GH. Evidently, P(GH) contains simple elements: let a e P{GH) be simple,
(a, b) its supporting interval and h% = h0. We are going to show that any
co e GH with haj>1 = h0 belongs to P(GH)- First, take Wo e GH such that

/J= o^oWv eP(GH)
satisfies

A0 = {a, b, c}, A" = hi hb
e = V

Now, given 1 ^ h e H, there are, according to Proposition 3.3, always three
elements a, Wx and *P2 of GH such that

satisfy

and

Pi ==

*,x =

A« =

«.¥

{a,

{a,

b,

b,

a f ]

c}.

and p2 =

ha
fii = h i ,

hi = h%,

In view of Proposition 3.1, ^1€P{GH) and thus, necessarily, a
Hence, (52 e P(GH). Since, again by Propositions 3.1 and 3.3, there is W e GH

such that OJW^OOW and /?2 are conjugate, we get w e P(GH), as required.
From here we deduce immediately that the correspondence

"h e H belongs to P(H) if and only if all <w e GH
with hajl = h belong to P{GH)"

between the linear orders of the groups H and GH is one-to-one.
The rest of Theorem 4.1 follows easily.
Another consequence of Proposition 3.3 is the following
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THEOREM 4.2. Let FH Q GH be the subgroup of all elements of GH which
are piecewise H-linear (in <0, 1)). Thus, for every e ^ a. e FH, K is linear in
an interval -(a, aaT^y; put ha = ha

a. Let P(H) be the positive cone of a certain
linear order of H. Define the linear order in FH by

e ^ « 6 P(FH) if and only if ha e P(H).

This (partial) order of GH cannot be extended to a linear order of GH, i.e. GH
is not an 0*'-group in the sense of [3].

PROOF. Again, given h s P(H), there are, by Propositions 3.1 and 3.3,
a, W1 and W% of GH such that

belong to FH and
1 and £2 =

Thus, f}x e P(FH) whilst /J2 $ P(FH)', consequently, there is no linear order
of GH extending the given order of FH-

THEOREM 4.3. For any subgroup H QR, GH is {algebraically) simple.
Ln fact, the following diagram

where Lx = L2 are isomorphic to the lattice of all subgroups of H describes
the full normal structure of GH (G^H/GH ~ GHJGH* = H).

PROOF. The first part of Theorem 4.3 follows immediately from Proposi-
tion 3.4 (i). As a matter of fact, the diagram is a straightforward consequence
of Proposition 3.4, as well.

THEOREM 4.4. The group GH is divisible if and only if H QR is divisible.
In fact, GH is then strongly divisible in the following sense: Every equation
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(4.1) fKia1|
n!!<x2 • • • f"«aa = e with nt > 0, x{ e GH for 1 ^ i ^ q

possesses a unique solution £x in GH-

Also, GR is "continuously" divisible in the sense that every equation

| r = a with a real exponent r and a e GR

has a (unique) solution in GR.
PROOF. Again, the first and the last parts of Theorem 4.4 follow immedi-

ately from Proposition 3.7.
However, the statement on solvability of (4.1) (in the case when H

is divisible) needs an independent proof: We shall construct a solution £x

of (4.1) and - at the same time - show that it is unique. It is evident that,
without loss of generality, we can assume nt = 1 for all 1 ^ i ^ q. Moreover,
throughout the proof we shall always denote the products

4 a i ^ « 2 - - - f«a<-i (1 ^ * ^ q), where ^ e GH,

by Wt(ia); in particular, Wx(£x) = e.
Discarding the trivial case, assume that a4 =£ e for at least one i and put

a = min (aa(1) > 0.

Notice that £a = s satisfies (4.1) in the interval <0, a}; moreover, any
I e GH satisfying (4.1) in <0, «> is necessarily identical with e in this
interval.

Let Nx be the set of all 1 g i ^ q such that aa, 1 = a. Define ha eH as
the (unique) real number satisfying

Consider an element W1 e GH such that

xW1 = x in <0, a}
and

xWx = a-\-ha(x—a) in <«, a+ex> for a suitable e1 > 0.

Clearly, there is b > a such that £6 = W satisfies (4.1) in <0, b} and

(b ^ )b* = max

Moreover, if̂  any other £ e GH satisfies (4.1) in <0, by, then I necessarily
coincides with £b in <0, b*}.

Now, denote by / the (non-empty) subset of (0, 1> of all x such that
there is an element gx e GH satisfying (4.1) in <0, x}. Evidently, if xx < xz

and x2 eI, then xx eI. Furthermore, for each x el and the corresponding
£x define, for every z e <0, x~)
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(z ^)z*(ix) = max

Notice that always z*(£x) < 1 unless z = x = 1 and that zx < z2 implies

*?(f) <*?(*)•
First, we are going to show that, for 0 < x1 ̂  x2, the corresponding

functions t-x and £x coincide in the interval <0, x*(£x )>. In order to prove
the assertion, denote by / the set of all y e <0, x* (fx ) > such that

x£Xi = xgXt for x e <0, y}.

Certainly, since every y ̂  min (x* (£XJ, b) belongs to / , / is non-empty.
Also, in view of continuity of the functions Sx and gx , we get necessarily

sup y = yoej.
yeJ

We claim that y0 = x*(^x). Assuming the contrary, i.e. yo<
xi(^ICl)> we

deduce

(4.2) A?« ̂  h> .

Define
x0 = min [«/0^7l(^,)] < Vo-

Clearly, 2/0 = x*(ixj and thus, since y0 < x*(gXi), we have x0 < xx. Now,
denoting by iV2 the set of all 1 ̂  t ^ q for which

z» < VoWj1^), i.e. x0Wt(^) < y0,

and by m ^ 1 the number of the remaining i's, we can easily calculate that
hf° and /^» must satisfy the following equation for h

(4.3) n hx/w^*JW TT A

and must therefore be equal, in contradiction to (4.2). Hence

x^x = ^ s for sce<0,**(^)>.

Therefore, also x* (gx ) =x*(£x). As a consequence, if xel, then there
is a unique x ^ x* ^ I such that a function £„ satisfying (4.1) in <0, x> is
uniquely determined in <0, x*} and x* = x*(t-x). In particular, this yields the
uniqueness of the solution of (4.1) in GH provided that a solution exists.
Moreover, if xx, x2e I, then xx .< x2 implies x* < x* and, for any x < x*,
there is a unique w such that

w el and w* = a;.
Now, put

(4.4) s = sup x and s' = sup x*.
xel xel
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Clearly, 0 < s ^ s' ^ 1. We want to show s = s' = 1.
Using an indirect argument again, suppose that s < 1. Define the

function W2 e GH as follows: First of all, for x e <0, s'),

2 = xgw, where w* = x
and

s'W2 = l i m x ^ .
X-+S-

Since W2 (for the time being defined in <0, s") only) satisfies the equation
(4.1) in <0, s) and is uniquely determined in <0, s'), we deduce, in view of
continuity, that W2 satisfies (4.1) in (0, s) and is uniquely determined in
<0, s*), where s* = s'. Also, since s < 1, necessarily s*xP2 < 1 and we can
extend W2 on <0, 1) in such a way - by calculating the gradient h% from
a relation similar to (4.3) - t h a t W2 satisfies (4.1) in an interval <0, s-\-e2}
with a suitable e2 > 0. Hence, s + e 2 e / — a contradiction of (4.4); con-
sequently, s = s* = 1, as required.

Thus, there exists a solution | x e GH* of (4.1) and - as shown above -
it is unique. Moreover, one can see immediately that

m i n (aal) ^ a{1 a n d at ^ m a x {a^^ ) .

Hence, ^ belongs to GH-
The proof of Theorem 4.4 is completed.

COROLLARY 4.5. For every divisible H Q R, GH is an (algebraically)
simple divisible (linearly) ordered group; in particular, GH is an (algebraically)
simple divisible group admitting only two linear orders.

THEOREM 4.6. Let e ^ a be an element of GH', 1st <0, a a l ) , (aar , 1)
and <am, 6m), m e M, be all non-trivial disjoint closed intervals complementary
to the support of a; let 1 £̂ n0 Ŝ J$o be the number of the supporting intervals
of a. Then, the centre Za of the centraliser C(a) of y. in GH is isomorphic to a
direct product of n0 copies of H and

meM

where G1 ^ G H * . G.2 = G%H and Gm = GH for all m e M.

PROOF. By Lemma 3.6 and Proposition 3.7, every supporting interval
of /? e C(oc) is either a supporting interval of a - and /3 is then in that sup-
porting interval a (real) power of a, or does not intersect the support of a. On
the other hand, any element whose support does not intersect the support
of a belongs evidently to C(a). Thus, define

CD e G1 if and only if au)T ^ aal,
oi E Gm if and only if am <, a011 < aa ^ < bm, in e M,

<x> e G.2 if and only if a0LT 5S aal,
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and Theorem 4.6 follows.
We conclude the paper with the following two simple remarks.

REMARK 4.7. (cf. [6]). With respect to its "natural" order (i.e. the order
corresponding to the natural order of R), the group GR contains the continuum
of non-order-isomorphic linearly ordered free subgroups of rank 2.

This is an immediate consequence of Lemma 3.8: Let

0 < a0 < b0 < ax < a2 < • • • < an < • • • < 1

be an arbitrary sequence and Wn(£, rj) - the set of all "words" in | , r\. For
every n 2; 1, let «„ and /3n be two elements of GR whose supports are /„ =
(an, an+1) and for which Wn(x.n, (}„) ^ e. Moreover, let <x0 be a (simple)
element of GR with the supporting interval 70 = (a0, b0) and

(4.5) fi0 = OLT
O for a real number r e R.

Now, denote by F(a, (}) the (free) subgroup of GR generated by a and ft
defined by

xa = xy.n, xfi = xfin for x e In, n ^ 0
and

xx = xf! = x otherwise.

Evidently, the number r e R in (4.5) can be chosen in continuum different
ways so that the resulting linearly ordered subgroups F(oc, /S) are non-
order-isomorphic .

It is apparent from the proof that there is an infinite number of non-
order isomorphic linearly ordered free subgroups of rank 2 in GH for every
H Q R. Also, let us point out here the trivial fact that GR (with its "natural"
order) contains an isomorphic copy of any abelian linearly ordered group of
countable "Archimedean rank" (cf. [8]).

REMARK 4.8. Let H QR and 0 < a < 1. Then the subgroup G% Q GH

consisting of all a e GH such that ay. = a is a maximal subgroup of GH-
We offer here a proof which retains its validity for every "transitive"

subgroup of automorphisms of (0, 1).
Let j3 be an arbitrary element of GH\GH; without loss of generality,

assume that a/3~J > a. In order to prove maximality of GH in GH it is
obviously sufficient to show that any to e GH such that aw1 > a belongs to
the group generated by GH and f}. Take

0 < max (a^1, aco^1) < b < 1

and denote by a a piecewise //-linear automorphism of <0, 1) satisfying

and
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xa = x in <0, a} and (b, 1>.
Now, since

«[(a/?)-1w] = a ^ a - 1 ^ = a,

y = (a/?)"1 to belongs to G# and thus

co = xPy with a and y from G%,
as required.
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