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Gauß diagram sums on almost positive knots

A. Stoimenow

Abstract

Using the Fiedler–Polyak–Viro Gauß diagram formulae we study the Vassiliev invariants
of degree 2 and 3 on almost positive knots. As a consequence we show that the number of
almost positive knots of a given genus or unknotting number grows polynomially in the
crossing number, and also recover and extend, inter alia to their untwisted Whitehead
doubles, previous results on the polynomials and signatures of such knots. In particular,
we prove that there are no achiral almost positive knots and classify all almost positive
diagrams of the unknot. We give an application to contact geometry (Legendrian knots)
and property P .

1. Introduction

The Thurston–Bennequin invariant of Legendrian knots came to prominence when in 1983
Bennequin [Ben83] made use of it to discover a non-standard contact structure on the real space.
His proof was based on an inequality, now named after him [Ben83, Theorem 3], estimating this
invariant in the standard contact space in terms of the genus of the underlying topological knot.
This inequality, unfortunately, still often seemed inexact, and for a while the problem to (more)
efficiently estimate Thurston–Bennequin invariants remained open. The first apparently significant
progress was achieved in [Kan98], where, on a very special class, an estimate was found improv-
ing that of Bennequin’s inequality, thereby in particular solving Bennequin’s problem about the
maximal Thurston–Bennequin invariant of the negative trefoil.

Later, mainly by the work of Fuchs and Tabachnikov [FT97] (and some subsequent papers, see
e.g. [CGM00]), the link polynomials were introduced to the subject. They were then applied on
specific classes of links to give Thurston–Bennequin invariant estimates [DL01, DM01]. However,
the classes considered there (connected sums of two (2, · )-torus links and n-trivial links of braid
index �n) are rather narrow, and the proofs do not make use of a deeper study of the polynomials
of the links in question. Thus one is interested in general results on Thurston–Bennequin invariants
via more intrinsic properties of link polynomials. One approach to such a type of results was given in
[Stoe], building on estimates of the coefficients of the polynomials and the description of canonical
Seifert surfaces studied previously in [Sto01]. It was remarked that several classes of knots and links
can be made to fit into the picture, although the argument of [Stoe] does not always suffice, and
additional work is necessary.

In this paper we will carry out this work on the class of mirrored almost positive knots.
The additional ingredient needed comes from an originally quite unrelated direction, namely that of
Gauß diagram formula invariants [PV94, Fie01]. These formulae have several related knot theoretic
applications, which we also discuss. The reason why we consider almost positive knots is because
they form the most general class of knots to which the Gauß diagram methods appear applicable
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Gauß diagram sums on almost positive knots

with reasonable effort. We thus apply the Gauß diagram formulae to incorporate the Thurston–
Bennequin invariant inequalities for almost positive knots into a larger knot theoretic setting.

To state our results, we first make some definitions.
Many properties of knots are defined by the existence of diagrams with certain properties.

Such classical properties are alternation and positivity. By adjoining the word ‘almost’ before the
name of the property, we mean that the knot does not have a diagram with that property, but one
in which it can be attained by one crossing change. Here we consider the notion for positivity.

Definition 1.1. The writhe is a number (±1), assigned to any crossing in a link diagram. A crossing
as in Figure 1(a) has writhe 1 and is called positive. A crossing as in Figure 1(b) has writhe −1 and
is called negative.

(a) (b)

Figure 1. A positive (a) and a negative (b) crossing.

Definition 1.2. A knot is called positive if it has a positive diagram, i.e. a diagram with all
crossings positive. A knot is called almost positive if it is not positive, but has an almost positive
diagram, i.e. a diagram with all crossings positive except one.

Recently, the Fiedler–Polyak–Viro approach [PV94, Fie01] to Vassiliev invariants [Bar95, Bar,
Vas90] via Gauß diagram formulae gave a new powerful tool in studying positivity, see [Stoa].

The aim of the present paper is to extend the applications of the Fiedler Gauß diagram sum
formula to almost positivity. In particular we will apply this formula to classify almost positive
diagrams of the unknot (Corollary 3.2). More generally, we will show that knots with zero or
negative Fiedler invariant cannot be almost positive. As achiral knots have zero Fiedler invariant,
this means in particular that any almost positive knot is chiral.

We also show chirality for the untwisted Whitehead doubles of an almost positive knot
(with either clasps), which follows from the positivity of its Casson invariant v2 (§ 4). As a fur-
ther consequence we prove that an almost positive knot itself has non-trivial polynomial invariants.
This is proved for the Jones polynomial (and hence also for the HOMFLY, or skein, [FHL85] and
Kauffman [Kau90] F polynomial), but also for the Alexander polynomial [Ale28] and the Q poly-
nomial of Brandt–Lickorish–Millett [BLM86] and Ho [Ho85].

In § 5 we improve the positivity result for v2 on almost positive knots of given genus to an
estimate involving the crossing number, similar to the one on positive knots in [Stoa]. This allows
us to extend a result of [Sto01] to almost positive knots.

Theorem 1.1. The number of almost positive knots of given genus grows polynomially in the
crossing number. That is,

#{K : K almost positive knot, c(K) = n, g(K) = g} = O(npg),

for some number pg ∈ N, where O denotes the asymptotic behaviour as n → ∞. The same statement
holds if we replace the genus g(K) by the unknotting number u(K) (i.e. consider the number of
knots of a given unknotting number).

The positivity result for v2 has a consequence for the behaviour of the degrees of the skein
polynomial of almost positive knots. An application of this is the proof that Thurston–Bennequin
invariants of Legendrian mirrored positive and almost positive knots become arbitrarily small.

229

https://doi.org/10.1112/S0010437X03000174 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X03000174


A. Stoimenow

Figure 2. The knot !10145 is almost positive.

(Here, and in the sequel, for a knot K, !K denotes the obverse, or mirror image, of K. The definition
of tb and µ is recalled in § 5.)

Theorem 1.2. Let {Ki} be distinct positive or almost positive knots and {Ki} be Legendrian
embeddings of !Ki in the standard contact space (R3(x, y, z), dx + y dz) with Thurston–Bennequin
invariants tb(Ki) and Maslov (rotation) numbers µ(Ki). Then

tb(Ki) + |µ(Ki)| −−−→
i→∞

−∞.

The same statement holds for {Ki} transverse, when omitting the µ(Ki) term.

This result, which followed for positive knots already from [Stod], extends the aforementioned
first series of such examples constructed by Kanda [Kan98], and thus generalizes his result qualita-
tively. (How to obtain an explicit estimate in terms of genus and crossing number will be discussed
later; see the end of § 5.)

Finally, in § 6 we give a proof that almost positive knots have positive signatures.

2. Gauß diagram sums

The ‘almost’ concept was introduced by Adams et al. [Ada92] for alternation. Almost alternating
knots are much more common than almost positive, but their diversity makes proofs of specific
properties difficult.

The simplest example of an almost positive knot is given in Figure 2.

Example 2.1. The knot !10145 of [Rol76] is almost positive, as its diagram in Figure 2 shows, but it
is known not to be positive [Cro89].

We use the Alexander–Briggs notation and the Rolfsen [Rol76] tables to distinguish between a
knot and its obverse. ‘Projection’ is the same as ‘diagram’, and this means a knot or link diagram.
Diagrams are always assumed to be oriented.

So far much less seems to be known about almost positive knots than about almost alternating
knots. However, the concept of Gauß diagram sum invariants developed by Fiedler et al. [Fie01,
PV94] has several direct applications to such knots. We recall the basic parts of this concept now.

Definition 2.1 [Fie01]. A Gauß diagram of a knot diagram is an oriented circle with arrows
connecting points on it mapped to a crossing and oriented from the preimage of the undercrossing
to the preimage of the overcrossing.

Example 2.2. As an example, Figure 3 shows the knot 62 in its commonly known projection and
the corresponding Gauß diagram.
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Figure 3. The standard diagram of the knot 62 and its Gauß diagram.

A # B = A B

Figure 4. Connected sum of diagrams.

Fiedler [Fie01, FS00] found the following formula for (a variation of) the degree-three-Vassiliev
invariant using Gauß diagram sums:

v3 =
∑
(3,3)

wpwqwr +
∑

(4,2)0

wpwqwr +
1
2

∑
p, q linked

(wp + wq), (1)

where the configurations are

(3,3) (4,2)0 p,q linked

Here the chords depict arrows which may point in both directions and wp denotes the writhe of the
crossing p. For a given configuration, the summation in (1) is done over each unordered pair/triple
of crossings, whose arrows in the Gauß diagram form that configuration. If two chords intersect, we
call the corresponding crossings linked. If p and q are linked, and p’s over-crossing is followed by the
under-crossing of q when passing the diagram in the orientation direction, we call p distinguished.
We will denote by lk(D) the number of linked pairs in a diagram D.

To make precise which variation of the degree-3-Vassiliev invariant we mean, we noted in [FS00],
that

v3 = −1
3V (2)(1) − 1

9V (3)(1),
where V is the Jones polynomial [Jon85]. We noted also that v3 is asymmetric, i.e. v3(!K) = −v3(K),
so that achiral knots have zero invariant.

Definition 2.2. The diagram on the right-hand side of Figure 4 is called the connected sum A#B of
the diagrams A and B. If a diagram D can be represented as the connected sum of diagrams A and B,
such that both A and B have at least one crossing, then D is called disconnected (or composite),
else it is called connected (or prime).

Definition 2.3. A crossing p in a knot diagram D is called reducible (or nugatory) if it is linked
with no other crossing. Then D looks like the left-hand side of Figure 5. D is called reducible if
it has a reducible crossing, else it is called reduced. The reducing of the reducible crossing p is the
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p
P

Q −→ P Q (2)

Figure 5. Removing nugatory crossings.

move depicted on Figure 5. Each diagram D can be (made) reduced by a finite number of these
moves.

Definition 2.4. For two chords in a Gauß diagram a∩ b means ‘a intersects b’ (or crossings a and
b are linked) and a �∩ b means ‘a does not intersect b’ (or crossings a and b are not linked).

In [Stoa], we gave the following two properties of Gauß diagrams, which we will use extensively
in the following.

Lemma 2.1 (Double connectivity 2C(a, b, c), [Stoa]). Whenever in a Gauß diagram a ∩ c and b ∩ c
then either a ∩ b or there is an arrow d with d ∩ a and d ∩ b.

c
a

b
−→

c
a

b

d

∨

c
a

b

d

Lemma 2.2 (Even valence ev(c), [Stoa]). Any chord c in a Gauß diagram has odd length, i.e. an
even number of basepoints on both its sides or, equivalently, an even number of intersections with
other chords.

The first step is to show the following theorem, implying that knots with negative Fiedler
invariant are not almost positive.

Theorem 2.1. In any almost positive diagram K we have v3(K) � 0.

Proof. The idea is to show that for any negative configuration in the Gauß diagram sum, that is, a
configuration with a negative weight, we can find a positive configuration, that is, a configuration
with a positive weight, which ‘equilibrates’ it. Such positive configurations we will call accordingly
‘equilibrating’.

Let p be the arrow in the Gauß diagram corresponding to the negative crossing. There are three
types of negative configurations as follows.

i)
ba

p
This is equilibrated by (a, b) linked.

ii) By 2C(a, b, p), ∃c : c ∩ a, c ∩ b:
c

Then (a, b, p) is equilibrated by

(a, b, c) ∈ (4, 2)0.

iii)
p
b

a

This is equilibrated by (a, b) linked.

It remains to note that no positive configuration equilibrates this way more than one negative
configuration.

232

https://doi.org/10.1112/S0010437X03000174 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X03000174


Gauß diagram sums on almost positive knots

. . .

(a) (b) (c)

Figure 6. The possible prime factors of almost positive unknot diagrams.

To extend the result, we like to show that, except in the desired cases, non-equilibrating positive
configurations exist, and therefore the value of the Gauß diagram sum is positive. To do so, we
will study the ‘environment’ of the negative arrow p in the Gauß diagram. In most cases we will
make assumptions, then by 2C and ev we will show the existence of further and further arrows
in the Gauß diagram, leading at some point unavoidably to the creation of a non-equilibrating
configuration. Therefore these assumptions turn out wrong and leave only the desired cases. In the
following section we explain the tricky details of this obvious idea.

3. The classification of almost positive unknot diagrams

Playing a central role in knot theory, researchers have been trying for a long time to identify the
unknot from its diagrams and to classify them. This was achieved in theory by an algorithm of
Haken [Hak61]. This algorithm, unfortunately, but not unexpectedly, is far too complex to give
(or even let us hope for) some nice explicit description of all diagrams of the unknot. (See also
[HL01].) Other attempts have been made using braid representations. In this case, the question of
which conjugacy classes of 4-braids have unknotted closure is already known to be extremely hard
[Mor86, Fie93].

More is known for special cases of diagrams. It has been proved via different methods that
alternating [Cro89, Mur87, Gab86] or positive [Cro89, Stoa] diagrams of the unknot are completely
reducible, that is, transformable into the zero crossing diagram by (crossing number) reducing
Reidemeister I moves only. (One common argument is that in such diagrams the Seifert algorithm
must give a disc, and these are exactly the diagrams with this property.)

For almost positivity, the following appealing series of examples comes to mind: the twist knots
31, 41, 52, 61, 72, 81, . . . , that is, the knots with Conway notation (k, 2), k ∈ N, can be unknotted in
their alternating diagrams by one crossing change, giving (modulo mirroring) an almost positive
diagram, see Figure 6(c).

Here we will show that for connected diagrams these are indeed the only examples, which leads
to a classification of all almost positive diagrams of the unknot.

Note, that this result again gives a strong contrast to the problems of controlling almost alter-
nating diagrams of the unknot [Ada94, § 5.5].

Theorem 3.1. If K is a connected almost positive diagram and v3(K) = 0, then K is an unknotted
twist knot diagram (see Figure 6(c)) or a one crossing diagram.

Our proof is based on some very involved analysis of the combinatorics of the Fiedler formula,
similar to that of [Stoa], and is divided into several subcases. To introduce some abbreviations, in
the following ‘�’ denotes a contradiction and ‘‖ ’ denotes ‘parallel’ (see Figure 7). It appears more
appropriate to use a rather symbolic notation (even if it reduces readability), to avoid misinterpre-
tations of the wording, as some logical constructs that will appear will be rather complex.
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p∩q p ‖ q p � ‖ q

Figure 7. The possible mutual positions of two arrows in a Gauß diagram.

Proof. Fix K and its negative crossing p. K has no non-equilibrating positive configurations.
Therefore the following conditions hold in K (in the following we will refer to each one by boxing
its number):

1) If r, q are linked, p �∈ {r, q}, then at least one of r, q is linked with p. If not both are linked
with p, then the not linked one is ‖ p.

2) p is in any (3, 3) configuration. That is, whenever a, b and c form a (3, 3) configuration, p is
one of a, b or c.

3) If a ‖ b, p �∈ {a, b} and ∃c �= p with (a, b, c) ∈ (4, 2)0, then c is unique with this property and
(a, b, p) ∈ (4, 2)0.

4) A fragment of the kind
c

b
p
a

with c ∩ a, b, p and a �∩ b �∩ p �∩ a does not exist. Else a ‖ p (else (c, a) ∈ 1 ) and b ‖ p
(else (c, b) ∈ 1 ), so a ‖ b and (a, b, c) ∈ (4, 2)0 � to 3 .

5) A fragment of the kind

d e

c
b
a

with p �∈ {a, b, c, d, e} and e, d ∩ a, b, c does not exist. Else a ∩ b or b ∩ c leads to a
(3, 3)-configuration (� to 2 ) and for a �∩ b and b �∩ c, two of {a, b, c} are ‖ , say (a, c).
Then (a, c) participate in at least two (4, 2)0 configurations, � to 3 .

Case 1. ∃a, b ∩ p, a ∩ b.

ba

p

Assume

∃c : c �∩ a, b, c ∩ p
p

a b
c

(3)

Then 2C(a, c, p) ⇒ ∃d : d ∩ a, d ∩ c and 2C(b, c, p) ⇒ ∃d′ : d′ ∩ b, d′ ∩ c. Now if d ∩ a, b, then
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(d, a, b) ∈ (3, 3) �, and if d′ ∩ a, b, then (d′, a, b) ∈ (3, 3) �, so d′ �∩ a, d �∩ b and in particular d �= d′.

p

a b
c

d′

d

Furthermore, d �∩ d′ (if d∩d′, then by d, d′∩c we had (d, d′, c) ∈ (3, 3) �), and therefore (see diagram)
not both d, d′ ∩ p. On the other hand, d, d′ �∩ p implies (c, d, p, d′) ∈ 4 �, so p is intersected by
exactly one of d, d′. Assume w.l.o.g. (modulo mirroring the diagram) that d ∩ p, d′ �∩ p.

p

a b
c

d′

d

As a result of 2C(d, c, d′) we have ∃e∩ d, d′. We have e∩ p (else (e, d′) ∈ 1 ) and e �∩ a, b, c (else 2 ).
There are two possibilities for e as follows:

p

a b
c

d′

d

e

p

a b
c

d′

d

e

Both choices are equivalent (the second is the same as the first with c, e swapped), so we consider
only the first, i.e.

p

a b
c

d′

d

e

Now 2C(d′, b, a) ⇒ ∃g : g ∩ a, g ∩ d′. Then g �∩ d, e, c, b (else 2 ) and g ∩ p (else (g, d′) ∈ 1 ).
So (modulo swapping b and g) we obtain the following diagram.

p

a b
c

d′

d

e

g

Now ev(b) ⇒ ∃h : h∩ b. Then h �∩ g (else (b, g, h, a, d′) ∈ 5 ) and h �∩ a, d′ (else 2 ). There are three
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choices of h indicated by dashed arcs in the following diagram.

p

a b

c

d′

d

e

g

If h is one of the chords in the lower part of the diagram, then apply 2C(h, b, d′). So ∃i : i∩h, i∩ d′.
But then i ∩ a and (a, d′, b, i, g) ∈ 5 �. If h is the chord in the upper part of the diagram, then
apply 2C(h, b, a) to deduce ∃i : i ∩ h, i ∩ a. But then i ∩ d′ with the same contradiction.

This shows, that the assumption (3) is wrong, and, using the fact that c �= a, b with c∩a, b leads
to 2 , we have proved

∀c �= a, b : c ∩ p ⇒ (c ∩ a ∧ c �∩ b) ∨ (c ∩ b ∧ c �∩ a). (4)

Now assume

∃c : c ∩ b, c �∩ a, c �∩ p
p

a b
c

(5)

The case ∃c : c ∩ a, c �∩ b, c �∩ p is dealt with analogously. Now 2C(a, c, b) ⇒ ∃d : d ∩ c, a. d �∩ b
(else 2 ) and d ∩ p (else (d, c) ∈ 1 ). Modulo swapping b and d one obtains a diagram as follows:

p

a b
cd

Now ev(d) ⇒ ∃e : e ∩ d. Then e �∩ b (else (b, d, c, a, e) ∈ 5 ) and e �∩ c, a (else 2 ). There are two
choices of e:

p

a b
c

d
e

p

a b
c

d

e

In the first case apply 2C(e, d, a) to deduce ∃f : f ∩ e, a. But then f ∩ c and (a, c, b, d, f) ∈ 5 �.
In the second case apply 2C(e, d, c). Then ∃f : f ∩ e, c. But then f ∩ a with the same contradiction.

This shows a contradiction to assumption (5), so that we obtain (c ∩ a ∨ c ∩ b) ⇒ c ∩ p, and
together with (4) we have

∀c �= a, b : (c ∩ a ∨ c ∩ b) ⇐⇒ c ∩ p. (6)

Assume
∃c : c ∩ p, c ∩ a, c �∩ b

∧ ∃c′ : c′ ∩ p, c′ �∩ a, c′ ∩ b.
(7)
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Case 1.1. c ∩ c′. Modulo swapping (b, c) and (a, c′) we obtain the following:

p

a b cc′

Now ev(a) ⇒ ∃d : d∩ a. Then d �∩ b, c (else a (3,3)-configuration of 2 ) and d �∩ c′ (else (c′, a, b, c, d)
∈ 5 ). There are three choices for d:

p

a b cc′

d

p

a b cc′
d

p

a b cc′

d

In the first case use 2C(d, a, b). So ∃e : e∩ d, e∩ b. Then e∩ c and (b, c, a, e, c′) ∈ 5 �. In the second
case use 2C(d, a, c), so that ∃e : e ∩ d, c. Then e ∩ b with the same contradiction. In the third case
use the symmetry of the diagram to obtain a d′ like

p

a b cc′

dd′

(or apply one of the other two cases to d′ to obtain a contradiction). Then 2C(d, d′, p) ⇒ ∃e :
e ∩ d, e ∩ d′. But then e ∩ c, e ∩ c′, which together with c ∩ c′ implies (c, c′, e) ∈ (3, 3) � to 2 .

Case 1.2. c �∩ c′.

p

a b cc′

As a result of 2C(c′, p, c) we have ∃d : d ∩ c, c′. Then d �∩ a, b (else 2 ). So the diagram looks like

p

a b cc′

d

Now 2C(d, c′, b) ⇒ ∃e : e∩ d, e∩ b. Then e∩ p (else (e, d) ∈ 1 ) and e �∩ c, c′, a (else 2 ). In the same
way, 2C(d, c, a) ⇒ ∃f : f ∩ a, d, and f ∩ p, f �∩ c, c′, b. Furthermore, f �∩ e (else (f, e, d) ∈ (3, 3)).
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Modulo swapping (f, c) and (e, c′) we obtain

p

a b cc′

d

fe

Now ev(e) ⇒ ∃g : g ∩ e. For this g, g �∩ d, b (else 2 ), g �∩ c′ (else (c′, e, b, d, g) ∈ 5 ) and g ∩ p
(else (g, p, d, e) ∈ 4 ). However, a glimpse at the above diagram shows that no such g exists.
Therefore, this contradiction shows that our assumption (7) is wrong, and we have

∃i ∈ {a, b} : ∀c �= a, b : p ∩ c ⇐⇒ p ∩ i ∧ p �∩ ī (8)

with ī ∈ {a, b} \ {i}. Assume w.l.o.g. that i = a. As a consequence of (8), all c �= a : p ∩ c do not
mutually intersect (else an intersecting pair would build a (3, 3)-configuration with a). Then the
subdiagram made up of p and all its neighbours, i.e. all crossings linked with p, looks like

p

a

(9)

Assume now that there are more chords in the Gauß diagram. So by connectedness ∃d : d ∩ c for
some c ∩ p and d �∩ p; in particular, c �= a (as d ∩ a ⇒ d ∩ p).

p

a

d

c

But then ev(c) ⇒ ∃d′ ∩ c. d′ �∩ d (else 2 ) and by assumption d, d′ �∩ p, so (c, d, p, d′) ∈ 4 �.
Therefore there are no more chords in the Gauß diagram than those of (9), and the knot diagram
is an unknotted odd crossing number twist knot diagram.

Case 2. No pair a, b with a, b ∩ p is linked. Then the subdiagram of the Gauß diagram made up
of p and all crossings linked with it looks like

p

By the assumption and exclusion of 2 and 4 , no chord intersecting p is intersected more than once
else. By even valence, then any c : c ∩ p must be intersected exactly once else.

Now assume a, b∩p. Then by 2C(a, b, p) the second chord intersecting a and b must be the same
for all a, b ∩ p.
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But then the Gauß diagram looks like

p

and the knot diagram is an unknotted even crossing number twist knot diagram.

Two immediate consequences of the theorem are as follows.

Corollary 3.1. No knots with v3 = 0 ( inter alia, no achiral knots) can be almost positive.

Corollary 3.2. All almost positive unknot diagrams are connected sums of diagrams as in Figure 6
with summands of the kind (b) and (c) appearing together exactly once.

These results seem to have been first obtained (without published proof) by Przytycki and
Taniyama [PT91], and have been recently recovered in a nice way by Rudolph [Rud99]. A special
case of Corollary 3.2 (for almost alternating almost positive diagrams) was independently proved
by Hirasawa [Hir00].

The referee also informed me of a related (unpublished) result of Tat Sang Fung. He showed
that almost ascending (descending) knots, i.e. knots with diagrams ascending (descending) except
at one crossing, are twist knots.

4. Whitehead doubles and the Casson invariant

The use of Vassiliev invariants allows us to extend the previous chirality results to certain cables of
positive and almost positive knots.

Definition 4.1. In the following diagram we summarize three kinds of clasps in a knot diagram
and how we will refer to them (the diagrams are understood up to mirroring and strand orientation,
when the latter is not specified).

reverse clasp parallel clasp resolved clasp

Formally, a clasp is a digon, a connected component of the complement of the diagram, neighbouring
just two crossings. It can be identified with the (unordered) pair of these two crossings. (A pair
cannot form several clasps in a knot diagram.)

The idea to consider untwisted Whitehead doubles came out of a nice relationship between the
Vassiliev invariants of degrees two and three. Let v2 denote the Vassiliev invariant of degree two
given by

v2 = −1
6V ′′(1) = [∇(z)]z2

(in the following ∆ is the Alexander polynomial, ∇ the Conway polynomial [Con69] and P the
HOMFLY polynomial) and w± denotes the untwisted double with positive (respectively negative)
clasp. Then in [Stoa] it was proved that

v3(w±(K)) = ±8v2(K). (10)
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This follows basically from a combination of two observations of McDaniel and Rong [MR01]
(that the dualization of a double operation of a knot maps Vassiliev invariants to Vassiliev
invariants) and Lin [Lin94] (that this endomorphism is nilpotent).

Whitehead doubles are classical examples of knots with ∆ = 1 and so have been under some
consideration in connection with the often raised question about a non-trivial knot K with VK = 1
(or even PK = 1). Lickorish and Thistlethwaite [LT88] excluded Whitehead doubles of adequate
knots from having this property, and in [Rud90], as quoted in [KL98], it was shown that for K
positive, P (w±(K)) �= 1. The latter result inspired the strengthening of it in [Stoa] by combining
(10) with the lower bound for v2 in positive diagrams in [Stoa], showing that in fact for K positive,
w±(K) has a non-zero degree-three-Vassiliev invariant, and hence in particular is chiral and has a
non-trivial Jones polynomial. The extension of this result to almost positive knots (Corollary 4.2)
then follows from an inequality for v2 (stated in Theorem 4.1 below) similar to the condition on v3

in Theorem 3.1.
Note that for Whitehead doubles neither the signature, nor the Bennequin inequality work

(in some easy way) to show chirality. However, the referee informed us that in a recent paper
[JLWW02], Jiang et al. (using more advanced techniques) showed that a (not necessarily untwisted)
Whitehead double is achiral if and only if it is the unknot or the figure-8-knot.

Unfortunately, the need to exclude the knotted cases forces us to reprove, this time using v2,
the result on almost positive unknot diagrams. Fortunately, this time the proof is somewhat
easier.

Theorem 4.1. If D is a connected almost positive diagram then v2(D) � 0, and if v2(D) = 0, then
D is an unknotted twist knot diagram or a one crossing diagram.

An immediate corollary of this theorem generalizes a recent result of Menasco and Zhang [MZ00]
on the property P conjecture [BM71] (see e.g. [BS88, DR99, CG88]).

Corollary 4.1. Almost positive knots have property P (i.e. every non-trivial surgery on S3 along
such knots produces a non-simply connected manifold).

Proof. This follows from the surgery formula for the Casson invariant of homology spheres [AM90]
(see also [MZ00, § 1]).

For the proof of Theorem 4.1 we need some preparations. In addition to ev and 2C we will need
the following elementary observation.

Lemma 4.1 (Extended even valence eev(c), see [Stoa]). In the Gauß diagram of a positive knot
diagram, exactly one half of the arrows intersecting any chord c intersect it in one or the other
direction (that is, are distinguished or not in the resulting linked pair).

We will need the following Gauß diagram sum formula for v2 which is due to Polyak and Viro
[PV94, (4) and p. 451]:

v2 = =
1
2


 +


 . (11)

The point on the circle depicts a point to be put somewhere on the knot curve in the diagram, but
not at a crossing.
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Proof of Theorem 4.1. The fact that v2(D) � 0 is almost positive diagrams may be proved along
similar lines as v3, but it is easier to quote Cromwell’s (skein-theoretic) proof [Cro89, Corollary 2.2,
p. 539].

Now consider an almost positive knot diagram D and its Gauß diagram with the negative
arrow k. Recall the move we used in the proof of the positivity of v2 in positive diagrams in [Stoa]:

a

−→
a

.

We trivialized loops by pulling them above the rest of the diagram by crossing changes. On the level
of Gauß diagrams this means that we delete a chord a, intersecting all chords ending on one of its
sides, and then also delete all these intersecting chords.

For the following arguments it is convenient to place the point of (11) near one of the endpoints
of a. Now consider what happens with v2 under our move.

It is clear that if a �∩ k, then the move never augments v2, because the only negative (contri-
bution) configurations removed are those of (k, c) with c ∩ a, but their contribution is equilibrated
by those of (c, a). Moreover, because of ev and eev, an even number of c with c ∩ a intersects k
(because after the move the Gauß diagram still corresponds to a knot diagram), an even number of
them does not intersect k, and exactly half of these numbers intersect a in either direction. Hence if
a ∩ c with c �∩ k, resolving a would strictly reduce v2 (as a is linked with some c by connectedness)
and leave over an almost positive diagram. Therefore, after the move still v2 � 0, and hence before
the move v2 > 0. So, for any a, a ∩ k or a intersects all c ∩ k. This splits the positive arrows into
two parts

{c : c∩ k}︸ ︷︷ ︸
A

∪ {c : c �∩ k ∧ ∀d∩ k : c∩d }︸ ︷︷ ︸
B

A

B




      

k

Now putting the point on some segment of the circle between an endpoint of a chord in A and an
endpoint of a chord in B and using ev and eev we see that any c ∈ B gives a positive contribution
to v2 equilibrating the negative contribution of k. Hence for v2 = 0 we must have |B| � 1.

If B = {c}, then c forms with k an (unlinked) resolved clasp, whose elimination by a
Reidemeister II move gives a positive diagram with v2 = 0. This diagram must then have only
isolated chords. Hence A has only non-mutually intersecting arrows (or non-linked crossings in the
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knot diagram), whose number by ev must be even, so we have

c

k

an unknotted twist knot diagram with an even crossing number.

If B = ∅, then the knot diagram can be obtained just by Reidemeister II moves and crossing
changes from

k

But then clearly the diagram will have a clasp somewhere (at least the one created by the last
Reidemeister II move). Hence

qp

all positive crossings in the diagram can be resolved by consecutively removing the clasps. Putting
the point near one of the endpoints of k in the Gauß diagram, one sees because of ev and eev that
resolving such a clasp (p, q) never augments v2 and that it reduces it strictly if ∃c �= k with c ∩ p, q
and p ∩ q or if ∃c1, c2 �= k with c1, c2 ∩ p, q and p �∩ q.

p

q

k
c

p

q

k
c1

c2

This means that for v2 = 0 no such clasp occurs in the sequence of clasps to be resolved. In particular,
there cannot be a, b, c ∩ k with a ∩ b, c and b ∩ c

k

abc

(12)

as at some point a, b or c must be involved in a clasp and it would have to be one of the above
kinds. Consequently, no subdiagram like

k

cba

occurs in the Gauß diagram. Else by 2C(b, k, c), ∃d ∩ b, c. By assumption d ∩ k, so d �∩ a
(else d, a, b ∈ (12)). But then by 2C(a, k, c) similarly there is some d′ such that d, d′ and c
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mutually intersect (contradicting (12)).

k

c
b

a

d

d′

So, if a, b∩k and a∩b, any c∩k intersects exactly one of a and b. This pairs up the chords intersecting
k in two parts of p and q elements, such that a ∩ b if and only if a and b belong to different parts.
ev forces p and q to be odd

}
}

q

p

k

and then the diagram is the diagram of a (p, q,−1) pretzel knot with p, q > 0 odd. Finally, to show
v2 = 0 only if such a knot is unknotted is a matter of direct calculation. It is known (or can be
deduced from the formula for v2) that v2(P (p, q, r)) = (pq + pr + qr + 1)/4, so v2(P (p, q,−1)) = 0
implies p = 1 or q = 1, and we have an unknotted twist knot diagram of odd crossing number.

Corollary 4.2. The untwisted Whitehead doubles (with either clasps) of an almost positive knot
are chiral and have non-trivial Jones polynomial.

Proof. As noted, this is straightforward from Theorem 4.1 and (10).

Clearly the chirality of the satellite follows from that of the companion, hence this result is a
consequence of the previous one (Corollary 3.1) also by classical arguments. However, the following
corollary shows that the chirality result extends to many cases, where it is less obvious, for example
for the connected sum of an almost positive knot and its obverse.

Corollary 4.3. If a knot K is the connected sum of positive, almost positive knots and their
obverses, or a cable knot thereof, then its untwisted Whitehead doubles (with either clasps) are
chiral, and have non-trivial Jones polynomial.

Proof. If K is a connected sum, then the positivity of v2 follows from its invariance under mirror-
ing and additivity under connected sum. As for cables, if p, q ∈ N are coprime, Tp,q denotes the
(p, q)-torus knot and Kp,q the satellite of Tp,q around K, we have

v2(Kp,q) = ap,qv2(K) + cp,q. (13)

It is known that the eigenvalues of Vassiliev invariants (modulo Vassiliev invariants of lower degree)
under cabling operations are always positive (see [KSA97] or [MR01]; in fact, they are powers of
the number of parallels of the cable), hence so is ap,q, and putting the unknot in (13) we obtain
cp,q = v2(Tp,q) > 0; hence the positivity of v2 for the cable follows from that of its companion.

Finally, we can now exhibit non-triviality of the polynomials for almost positive knots themselves.
While for V (and hence for P and F ) we could have concluded non-triviality already in the previous
paragraph using v3, we postponed it until now in order to do it for all five polynomials at one go.
This is another considerable bonus of using Vassiliev invariants instead of signatures as in [PT91].
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Corollary 4.4. For any of the polynomials of Alexander–Conway, Jones, HOMFLY, Brandt–
Lickorish–Millett–Ho and Kauffman there is no almost positive knot with unit polynomial.

Proof. Use the positivity of v2 and the relations

−6v2 := −3∆′′(1) = V ′′(1) = Q′(−2)

and the well-known specializations for the HOMFLY and Kauffman polynomial. The equality
between the Jones and Alexander polynomial is probably due already to Jones [Jon87, § 12].
The relation between the Jones and Brandt–Lickorish–Millett–Ho polynomial is proved by
Kanenobu in [Kan88].

For the Jones (and hence also HOMFLY and Kauffman) polynomial, this result was also
announced in [PT91]. An alternative proof, using arguments similar to those of Przytycki and
Taniyama, appeared in [Stoc].

5. Some further inequalities related to the genus

An obvious desire is to improve the positivity results for v2 and v3 on almost positive knots to
inequalities involving the crossing number, as for positive knots in [Stoa, Theorem 6.1]. Focusing
in the following on v2, which leads to more interesting consequences, this is related to a conjecture
made in [Stoa, § 6].

Definition 5.1. Call a diagram bireduced if it is reduced, i.e. has no nugatory crossings, and does
not admit a move

−→ . (14)

From now on we will assume that all diagrams are reduced.

Conjecture 5.1. In a positive bireduced diagram D, v2 � lk(D)/4, where lk(D) is the number of
linked pairs in D.

A computer experiment revealed that the conjecture is in general false. One counterexample is
a diagram of 819 obtained by making the alternating diagram of 940 positive by crossing changes.
It has 21 linked pairs, but v2 = v2(819) = 5.

Nevertheless, a weaker version of the conjecture is true. To formulate the statement, we need to
recall the notion of the genus of a diagram. In the following we will also use the weak genus of a
knot K. Both terms were introduced in [Sto01].

Definition 5.2. For a diagram D of knot K, we define the genus g(D) as the genus of the surface
obtained by applying the Seifert algorithm to this diagram,

g(D) =
c(D) − s(D) + 1

2
,

with c(D) and s(D) being the crossing and Seifert circle number of D, respectively. The weak genus
of K, denoted by g̃(K), is the minimal genus of all its diagrams:

g̃(K) = min{g(D) : D is a diagram of K}.
We start with the following technical lemma, which will be of decisive importance later.

Lemma 5.1. For every genus g, and every ε > 0, there are at most finitely many positive diagrams
D of genus g and lk(D)/v2(D) > 4 + ε.

244

https://doi.org/10.1112/S0010437X03000174 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X03000174


Gauß diagram sums on almost positive knots

For the proof, we recall the main result of our work on the diagram genus in [Sto01], which will
be used in the following. It is related to the move below which we call a t̄2 move:

−→ . (15)

Another move we will use, the flype, is the one of [MT91].

Theorem 5.1 (Theorem 3.1 of [Sto01]). Reduced knot diagrams of given genus decompose into
finitely many equivalence classes modulo crossing changes, t̄2 moves and their inverses. That is,
reduced knot diagrams of given genus with no resolved clasps can all be obtained from finitely
many (called ‘generating’) diagrams by repeated t̄2 moves.

A further result we will need later is proved in [Stoa].

Lemma 5.2. [Stoa] If D is a positive bireduced diagram of c crossings, then lk(D) � 3�(c − 1)/2�.
Proof of Lemma 5.1. One needs to observe that if D′ arises from D by a t̄2 move, then lk(D′) −
lk(D) = 4(v2(D′)− v2(D)). To see this, put the basepoint in (11) near the (crossings of the) created
clasp. Then Theorem 5.1 implies that for any sequence D1,D2, . . . of (distinct) positive diagrams
of fixed genus, it holds that lk(Di)/v2(Di) → 4 as i → ∞.

The number of generating diagrams grows very rapidly with the genus, but in [Sto01, Stob] at
least a description of all such diagrams for genus one and two was obtained. This work can be used
to make the estimate in Lemma 5.1 more explicit for small genus by accounting for the exceptional
cases.

Proposition 5.1. On any positive diagram D of genus at most three, we have v2(D)/lk (D) � 5/21.

Proof. To make a systematic verification of the maximal ratio lk/v2 on positive diagrams, once
having found it to be greater than 4, the argument proving Lemma 5.1 shows that we need to
consider just diagrams without reverse clasps. A similar argument also shows the same for parallel
clasps (resolving a parallel clasp in a positive diagram reduces lk by 4n − 1 and v2 by n). Thus let
D be a positive diagram of genus at most three with no clasps.

We fix a linked pair (a, b) of crossings in D and smooth them out, obtaining a genus-two dia-
gram D′. If D cannot be simplified (after a possible sequence of flypes) by the inverse of a t̄2 move,
we showed in the proof of Theorem 3.1 of [Sto01], that D′ has at most four reducible crossings, but
using the stronger condition that D has no clasp, we see that our argument there modifies to show
that in fact there is at most one reducible crossing p in D′. Let D′′ be D′ if p does not exist, or the
diagram obtained from D′ after reducing p according to (2), if p exists.

It is easy to see that for knot diagrams with p being the only reducible crossing on the left-hand
side of (2), reducing p never augments the number of clasps by more than one.1 Also, as smoothing
out a crossing augments the number of clasps at most by two, D′ has at most four clasps (note that
one crossing may be in two clasps, as on the right-hand side of (15)).

Case 1. If D′′ is connected and p exists, then one of P and Q in (2) has no crossing. In this
case, a, b and p are the corners of a triangular component of the complement of D, and smoothing
out b destroys (one of) the clasp(s) created by smoothing out a. Thus D′ has (instead of at most
four) in fact at most two clasps, and D′′ has at most three clasps.

Case 2. If D′′ is connected and p does not exist, then D′′ = D′ has at most four clasps, as noted.
Case 3. In the remaining case D′′ has at most five clasps, but is disconnected (that is, the

connected sum of two genus-one diagrams).

1Note that this is not true for link diagrams – consider the diagram of the Hopf link with one kink.
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In all three cases the classification of genus-two diagrams of [Stob] shows that D′′ has at most
13 crossings. Thus D′ has at most 14 crossings, and D has at most 16 crossings.

Now, the computer check of all less than or equal to 16 crossing diagrams without (reverse or
parallel) clasp (up to flypes they are 203) shows that the ratio lk/v2 on genus-three diagrams is
indeed maximal on the mentioned 9 crossing diagram of 819.

Now we use Lemma 5.2 to obtain an inequality between v2 and c. To make the expressions
somewhat simpler, instead of 3�(c − 1)/2� in the following we use 4c/3, which is weaker except for
c � 8 or c = 10, 12, 14, 16. For these crossing numbers lk � 4c/3 is checked directly by computer
and is found to be true except for c = 3, 4, in which cases the subsequent claims are a matter of
straightforward verification.

Therefore, from Proposition 5.1 we obtain the following.

Corollary 5.1. For any positive knot K of genus at most three, we have v2(K)/c(K) � 20/63.

To get from the positive to the almost positive case, we have the following lemma.

Lemma 5.3. If D′ is an almost positive diagram that by flypes cannot be transformed into a diagram
with (the negative crossing involved into) a resolved clasp, and D is obtained from D′ by switching
the negative crossing to a positive one, then v2(D′) � v2(D) − lk(D)/5.

Proof. Let p be the negative crossing in D′. First we show that if a ∩ p, then #{q : q ∩ a} � 4.
Assume the contrary, i.e. ∃a ∩ p : ∃!c �= p : c ∩ a. Now if ∃d ∩ c : d �∩ p, then 2C(d, c, a) would

give a third chord intersecting a, and in the same way 2C(d, p, a) will also do if ∃d ∩ p : d �∩ c.

p

a

c

d

Therefore, {q : q ∩ c} = {q : q ∩ p}, which means that after possible flypes p and c form a (resolved)
clasp.

Therefore, ∀a ∩ p : #{q : q ∩ a} � 4. This implies that, if we set v(p) := #{a : a ∩ p}, then
there are at least 3v(p)/2 linked pairs in D′ not involving p. The claim then follows from the fact
(which is straightforward from the Gauß diagram sum formula), that if D is the (positive) diagram
obtained from D′ by switching p, then v2(D) − v2(D′) = v(p)/2.

Corollary 5.2. For any almost positive knot K of genus two, we have

v2(K)
c(K)

� 16
315

.

Proof. An almost positive diagram D of K has genus at most three. Thus using Proposition 5.1
and Lemma 5.3, we get

v2(D)
lk(D)

� 5
21

− 1
5

=
4

105
.

Multiplying the right-hand side by 4/3 and replacing lk(D) by c(D) (by the weaker version of
Lemma 5.2), and then c(D) by c(K), gives the result.

Note that we lose the genus-three case, as there may be almost positive genus-three knots that
only possess almost positive diagrams of genus four. On the other hand, the statement for the
genus-one case is obsolete, because almost positive genus-one knots do not exist (see [Stob]).

A presumably difficult combinatorial question that makes sense to ask now is the following.
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Figure 8: The 16 crossing diagram of the knot 15126448, maximizing the ratio lk/v2 on all positive
diagrams of at most 16 crossings, and the diagram of the same knot included in Thistlethwaite’s
table.

Question 5.1. Does lk/v2 grow unboundedly on positive diagrams?

Remark 5.1. The computer experiment revealed that the maximal value of lk/v2 on positive less
than or equal to 16 crossing diagrams is attained on the diagram in Figure 8 of the (4, 5)-torus
knot 15126448, where it is 64/15 = 4.26. This, of course, is far from giving any indication about a
(positive or negative) answer for Question 5.1.

Coming back to the case of arbitrary genus, we can obtain some partial improvements in the
results of [Stoa] and those proved already in this paper.

Proposition 5.2. For any δ < 3/8 and any g ∈ N, there are only finitely many positive knots of
genus g with v2 < δc.

Proof. Use Lemmas 5.2 and 5.1.

Proposition 5.3. For any δ < 3/40 and any g ∈ N, there are only finitely many almost positive
diagrams of almost positive knots of genus g with v2 < δc. In particular, there are only finitely
many such knots.

Proof. By the extension of Bennequin’s inequality [Ben83, Theorem 3] to arbitrary diagrams
(see [Rud99, Stoa]), an almost positive knot of genus g has almost positive diagrams only of genus g
or g+1, and thus it suffices to consider diagrams of bounded genus. It this situation Lemma 5.1 shows
that, up to finitely many exceptions, on diagrams of given genus v2 > (1/4− ε) lk . Therefore, again
up to finitely many exceptions, on almost positive diagrams of given genus, v2 > (1/4 − 1/5 − ε) lk
by Lemma 5.3.

The above constant 3/40 comes from the multiplication of 1/4 − 1/5 = 1/20 by 3/2, occurring
in Lemma 5.2 (the defect constant in c therein is put into the ε). Applying Lemma 5.2 we need
to remark that if the positive diagram admits a move of the type (14), then so it does after the
crossing change, unless then it looks like

.

But in this case the negative crossing is linked with only two positive crossings, and therefore v2

decreases only by one under the crossing change.

If we use the corollary for diagrams, we obtain the following.
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Corollary 5.3. Each almost positive knot has only finitely many almost positive diagrams.

Proof. If there were infinitely many such diagrams, they would be of bounded genus, and then by
Proposition 5.3, we would have v2 → ∞ on them, a contradiction.

The next consequence is the main step towards the proof of Theorem 1.2.

Proposition 5.4. There are only finitely many almost positive knots with given maxdeg V or
maxdegv P (in the variables of [CM92]). That is, if K1,K2, . . . is a sequence of distinct almost
positive knots, then maxdeg VKi → ∞.

Proof. As for almost positive knots by [Stoc, Proposition 4.2] we have min deg V � g − 1; assume,
taking a subsequence, that the genera of Ki are bounded. Then by [Stod, Corollary 5.3] any coef-
ficient of V admits only finitely many values on {Ki}, and if max deg V were bounded on {Ki}, so
would be v2 = −V ′′(1)/6, contradicting Proposition 5.3.

This argument establishes the desired property for a subsequence of (Ki), but applying it to any
subsequence of (Ki) gives the result.

Exactly the same reasoning applies for P (in fact, even for its absolute [P ]z0 or quadratic terms
[P ]z2 of the Alexander variable, which contain v2, see [KM98]).

Recall that the Thurston–Bennequin number tb(K) of a Legendrian knot K in the standard
contact space (R3(x, y, z), dx + y dz) is the linking number of K with K′, where K′ is obtained from
K by a push-forward along a vector field transverse to the (hyperplanes of the) contact structure.

The Maslov (rotation) index µ(K) of K is the degree of the map

t ∈ S1 �→ pr ∂K
∂t (t)∣∣pr ∂K
∂t (t)

∣∣ ∈ S1,

where pr : R
3 → R

2 � C is the projection (x, y, z) �→ (y, z).

Proof of Theorem 1.2. Combine the result of Proposition 5.4 for P with the inequalities of [FT97,
§ 2, Theorem 2.4] for tb and µ coming from mindegv P (take care of the mirroring convention for
the contact structure).

Corollary 5.4. For any given genus g, there are only finitely many almost positive knots of genus
g with a given ∆ or Q polynomial.

Proof. Use again the fact that v2 is contained in ∆ and Q.

Remark 5.2. Of course, in view of the results on positive knots it is reasonable to conjecture the
statement to be true even without the genus condition. For the Alexander polynomial it would
follow from the following conjecture made in [Stoc].

Conjecture 5.2. If a knot K is almost positive, then maxdeg ∆K = min deg VK .

In [Stoa] we used the inequality of Theorem 6.1 therein to show that if a positive knot has a
(reduced) positive diagram of c crossings, then its crossing number is at least

√
2c. This result can

now be extended to almost positive knots, if we fix the genus.

Corollary 5.5. Let δ < 3/5. Then for any genus g there are only finitely many almost positive
knots K with a (reduced) almost positive diagram of c crossings but c(K) <

√
δc.

Proof. Use again (the proof of) Proposition 5.3 and Theorem 1.E of [PV01]. The constant 3/5 comes
from multiplying the 1/20 appearing in the proof of Proposition 5.3 by the 8 in the denominator of
Theorem 1.E of [PV01], giving 2/5, and using the inequality lk(D) � (3/2 − ε)c(D) for a reduced
diagram D.
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This result is indeed a little technical, but is exactly the missing piece required to extend the
results of [Sto01] that the number of positive knots of given genus or unknotting number grows
polynomially in the crossing number.

The proof of Theorem 1.1 is now analogous to the one in [Sto01].

Proof of Theorem 1.1. Consider first the genus case and fix g. Then, by Bennequin’s inequality, we
need to consider diagrams of genus at most g + 1. Then Theorem 3.1 of [Sto01] shows that the
number of such diagrams grows polynomially in the crossing number c(D) of the diagram. But now,
as we consider diagrams of bounded genus, we have by Corollary 5.5 only finitely many exceptions
to throw out, to be allowed to apply, say, the inequality c(K) �

√
c(D)/2, for D a diagram of K.

This shows that (up to these finitely many exceptions) we obtain all knots K of given c(K) by
taking diagrams of at most c(D) � 2c(K)2 crossings, and a polynomial in 2c(K)2 is a polynomial
(of double degree) in c(K).

The unknotting number result follows from that for the genus, because u � g − 1 for an almost
positive knot.

A final application of the methods described in this section is a simple proof of the following
fact.

Proposition 5.5. There are only finitely many almost positive knots K of given genus g(K) and
given braid index b(K).

Proof. As a result of the braid index inequality

b(K) � 1 + 1
2v-span(PK) = 1 + 1

2(max degv PK − min degv PK) (16)

of Franks and Williams [FW87] and Morton [Mor86], and Proposition 5.4, it suffices to show that
for almost positive knots K of given genus g, min degv PK is bounded (above). Now, it follows from
the identity PK(v, v + v−1) = 1 that mindegv PK � maxdegm PK , from an inequality of [Mor86]
that max degm PK � 2g̃(K), and from Bennequin’s inequality that g̃(K) � g(K) + 1 for an almost
positive knot K. Joining all this, we obtain

min degv PK � maxdegm PK � 2g̃(K) � 2g(K) + 2,

and thus the desired bound.

If desired, the estimates of the degrees of V and P can be made, in particular with regard to
Theorem 1.2, more explicit. The lower bound we obtain for max degv P (K) for K positive or almost
positive is of the form

2g(K) − 2 + max
(
0, 3

√
Ag(K)c(K) − Bg(K)

)
, (17)

with certain constants Ag > 0 and Bg depending on g only. Ag will need to incorporate the constants
of Propositions 5.2 and 5.3, and (in some exponential form) the numbers dg of [Sto01] as an estimate
for the coefficients. The exceptional knots of Propositions 5.2 and 5.3 account for the correction
term Bg. In (17), the cube root term comes from the v-span n of X(v) = [P (K)]z0 , and is explained
as follows: when mindegv X � 2g and X ∈ Z[v2], then X has at most n/2 + 1 non-zero coefficients
bounded by Cg, and the derivation produces a factor of at most (2g+n)(2g+n−1) for the coefficient
of each monomial, so that

v2 = C|X ′′(1)| � (2g + n)2 · (n/2 + 1) · Cg � C ′
g · n3,

for certain constants C, Cg and C ′
g. This cube root thus also gives an estimate for the braid index of

K via (16). See also [Sto99], where similar degree estimates for V and for positive knots are given.
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−→ =

Figure 9: An almost loop-move. Take a crossing whose smoothing out gives a component with
no self-crossings, and switch some of the crossings on the segment except the last one, so that the
segment to (over-/under-)pass them all in different way than the last one. Then the segment can
be simplified to have just two crossings on it.

6. The signature

Although the Vassiliev invariant inequalities for positive knots of [Stoa] have nice theoretical con-
sequences, they are revealed to be too weak to exclude knots with almost positive diagrams from
being positive. In this regard the most handy criterion is obtained using the signature σ. It was
announced by Przytycki and Taniyama in [PT91], but a proof was never published. We give an
independent proof of this criterion, using some methods and results of [Stoa], [Sto01] and [Stob],
and then apply it to show that there are infinitely many almost positive knots.

Theorem 6.1. (See [PT91]). Any positive knot has signature of at least 4, except for the
(p, q, r)-pretzel knots with p, q, r > 0 odd, which have signature 2.

Proof. In [Stoa, § 6] we introduced a move on (positive) diagrams, called loop-move, to show an
inequality of the Casson invariant (Theorem 6.1) and observed that it can also be used to show
the positivity of the signature, a result of Cochran and Gompf [CG88, Corollary 3.4, p. 497] and
Traczyk [Tra88].

The loop-move from a diagram A to a diagram B, henceforth denoted by A → B, consists of
choosing a segment of the line in A between the two passings of a crossing, such that it has no self-
crossings, and removing this segment by switching half of the crossings on it (and elimination of all
reducible crossings thereafter). Such a move never augments the signature, that is, σ(B) � σ(A), and
a finite number of such moves makes any positive diagram trivial, that is, for any diagram D, there
is a sequence D = D0 → D1 → · · · → Dn of loop moves, with Dn being the zero crossing diagram.

By considering a loop move sequence in which n is maximal, the diagram D′ := Dn−1 be-
fore applying the last step of such a sequence can be chosen so that any loop move unknots it.
If σ(D′) � 4, then the assertion is satisfied. By [Stoa, Exercise 6.4] and [Sto01] σ(D′) = 2 exactly
if D′ is a diagram of genus one, in which case it corresponds to one of the desired pretzel knots.

Therefore, it remains to show that if D′ is of genus one, but n > 1, then σ(D) � 4. We show
that already σ(D′′) � 4 for D′′ := Dn−2.

Replace the loop move D′′ → D′ by an almost loop-move, as shown in Figure 9. One obtains
from D′′ a (positive) diagram D̃, from which D′ arises by switching on of the two crossings of the
segment removed by D′′ → D′. By direct observation one sees that (independently of the orien-
tation), the move D̃ → D′ (which is formally also a loop-move), preserves the number of Seifert
circles, and hence D̃ has genus two.

But all (inter alia, positive) genus-two diagrams are classified in [Stob], and are in particular
shown to be transformable by changing positive crossings to certain 24 (called therein ‘generating’)
diagrams, and it is straightforward to check that for all of them σ � 4 (see Corollary 3.2 therein),
which shows the assertion.
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Figure 10. The knot !1434605, a member of an infinite family of almost positive knots.

Remark 6.1. When the length n of the loop-move sequence becomes large, then it is apparent that
a much better estimate should be obtainable for the signature. This evidence is compatible with
the conjecture made in [Sto00] that σ is bounded below by an increasing function of the genus for
positive (and hence also for almost positive) knots. To prove such a statement using loop-moves
only seems difficult, though. Although a loop move in general reduces σ, this need not always be the
case. Worse yet, there are positive diagrams, on which none of the applicable loop-moves strictly
reduces σ (one such diagram is the 14 crossing diagram of the knot 1445657 given in [Sto00]).

Example 6.1. There are infinitely many almost positive knots. Consider the knot !1434605 of Hoste
and Thistlethwaite [HTW98, HT] in Figure 10. It is a genus-two knot of determinant −3, and hence
has signature 2. Switching one of the five crossings forming reverse clasps in the upper left-hand
side of the diagram, we obtain !121692, a knot with the same genus and determinant, and also the
same for !10145, obtained by switching two of these five crossings. Therefore, applying t̄2 moves at
the five crossings

−→ ,

we obtain an infinite family of knots starting with !10145, !121692, !1434605, !16970714, . . . with genus
two and determinant −3, and hence signature 2. If some of them were positive, then it would have
to be a pretzel knot, and would have genus one. On the other hand, the diagrams are evidently
all almost positive, therefore so are all these knots. Moreover, the diagrams obtained are indeed of
minimal crossing number as can be shown by examining their Q polynomial [Kid87] and using the
fact that by [Stoc, § 5] the knots are non-alternating.

Corollary 6.1. Any almost positive knot has positive signature.

Proof. Switch the one negative crossing to the positive, which does not augment σ by more than 2,
and apply the previous theorem. The only point to remark is that an almost positive diagram of
genus one corresponds to a positive knot.

Remark 6.2. In fact, it is worth mentioning that the loop-move can also be used to show Taniyama’s
theorems of [Tan89], that any non-trivial knot diagram can be crossing-switched to a diagram of the
trefoil, and that any connected knot diagram of genus at least two can be done so to the (5, 2)-torus
knot. For this we just need not to pull out the loops in the loop-moves and to switch any subsequent
loop above this additional set of crossings (remaining by not pulling out the previous loops). If we
need to perform an almost loop-move in the end, then we switch the crossings on this loop (except
the one) so as to pull the loop below the rest of the diagram. Then we need to consider only the
24 generating genus-two diagrams of [Stob, Figure 5] (modulo flypes, which are irrelevant here), for
which the claims can be verified directly.
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7. A conjecture

The considerations open a natural question about further generalizations.

Definition 7.1. A knot is called 2-almost positive, if the minimal number of negative crossings in
all its diagrams is 2.

Although it is not clear how the classification result should carry over to 2-almost positive
unknot diagrams, at a first glance it appears that at least Theorem 2.1 should generalize to this
case. Surprisingly, this turns out not to be the case.

Example 7.1. The knots !61 and !62 have in their (2-almost positive) 6 crossing diagrams v3 = −4.
This also shows that !61 and !62 are indeed 2-almost positive. Furthermore, as !61 and !62 can
be unknotted in their 6 crossing diagrams by switching only positive crossings, this shows that
(although measuring positivity in general by positive values, contrarily to the signature) v3 increases
sometimes, when a positive crossing is switched to a negative one.

Therefore, unfortunately, our approach is very unlikely to carry over to classify 2-almost positive
unknot diagrams. This has been achieved in [Stob] using a deeper tool – the version of the inequality
of Bennequin for arbitrary knot diagrams [Rud99, Stoa].

However, with some heuristics the above example leads to the following conjecture.
Conjecture 7.1. Let D be a 2-almost positive even crossing number diagram minimizing v3 over all
diagrams of that crossing number. Then D is a diagram of a (a1, . . . , ak, 2) pretzel knot, ai ∈ {1, 3}.
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