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Abstract
An infinite or semi-infinite medium, in which heat is generated or absorbed at a rate

proportional to the temperature, is placed at temperature zero in contact with a perfect
conductor of finite heat capacity at a higher temperature. Expressions are derived for the
subsequent behaviour in linear and spherical cases, and applications suggested.

(1) Linear Case
A semi-infinite medium (x>0) of diffusivity K, thermal conductivity k and temperature

zero is placed in contact over the face x = 0 with a well-stirred fluid or perfect conductor of
thermal capacity c' per unit area, at temperature To. The temperature T' of the fluid is
assumed equal at all subsequent times t to the surface temperature of the medium, in which
heat is generated or absorbed at a rate proportional to the temperature T(x, t).

Then

•(1)
T=0, x>0, t = 0,
T = T', x = 0, t>0,
te = c' dT'/dt, x = 0, t>0,

T'=T0, t=0,

where O is a constant, which may be positive or negative.
For convenience, set Kt=r, TjT0=u, T'jT0 = u', G/K=H, and kJKc'=w. Then the

equations become
du _ d2u
fc'dx2'

M = 0, T=0 ,
u=u', x*=0,

w dujdx = du'/dr, x=0,
M' = l, T = o .

•(2)

/•00

If u = L (u) = e~PT u dr denotes^the Laplace transform of u, these equations transform into
J o

(3)

d2u

du .

whose solution, finite at x =oo, is

p + aw
....(4)
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where
a = -Jp^H (5)

u is then determined by the inverse transform

U=J
1 r pVr—xx

= 5 ^ dp, (6)
2-nl J Lp+ocW r

where L passes from I(p) = -oo to I(p) = +00 and to the right of the zeros of p +w<x. The
substitution

p+wx^X (7)
enables us to write

where

J = _ L _ f AT-(X+WT)VA+^-H^A .

2T7IJM A'

Â ^ ( 1 0 )

and M is the corresponding contour. We may denote X + V)T by y and - j - - H by gr2. Then,

by the superposition theorem, J = <f>(s) ds and If = 0(s) rfs, where
Jo Jo

1 /*

2T7^ J Jlf

= —y~—. es2s-vVis (11)

and similarly

47ri J jvf

_ W p-gh-y2lis H21

~2 /—-e • v1^;
Hence, finally, from (8), (11), (12),

It can be confirmed by direct substitution that (13) satisfies the conditions of the problem.
An alternative form of the solution, which is more convenient if <?2>0, can be obtained,

either from (13) by using two relations given by Horenstein,(l), or more directly from the
transform (4). For, if p =/^2 +H, (6) becomes

= - . f exp{( /x 2 +g) r -^} ^ . (14)

L G.M.A.
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By resolving into partial fractions, we easily deduce

When there is no generation of heat, g = ̂ , and (15) reduces to
2

,15)

....(16)

The same expression can be derived with rather more trouble from (13), or, of course, directly
from (4), with a. = 4p.

A series solution suitable for large values of x\24r can be obtained as follows. By (6),

u = eBr.v (17)
where

p+w-Jp+H
Writing q for Jp, and expanding in negative powers of q, we have

p-xq

«=^r(i+-B1r1+-B2?-z + - ) (19)
where

etc.
Hence,

+ *2Bn{2-Jr)nin erfc —^1 (21)

if, in Hartree's (2) notation,
f00

in erfc z = i"'1 erfc z dz,
J z

and
i°erfc z=erfcz.

Since, when z is large,
2in erfc 2—-p (2z)-<n+1)e-l\

the series (21) converges rapidly for %/2*Jr>l. When x=0, (21) reduces to
oo R _n/2 —II—

L
^ + (w2-fl')T + ...l (22)

(22) converges rapidly for small T.
In what follows, we shall assume T0>0, H>0. Then it is clear from (22) that the surface

temperature commences by falling, irrespective of the value of H. From physical considera-
tions, however, it must subsequently rise again, in consequence of the generation of heat, if
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H>0. Although it appears difficult to define the turning-point in general terms, the behaviour
may be illustrated by a special case, corresponding to w2 = iH. For then g = 0 and the surface
temperature is therefore, by (15),

«(0) =e*P {(1 +2P) erfc f -%e~A , (23)
<- V T T )

where 1 = 2 N/T.

The turning-value is defined by

0 = ^ 1 ̂ ^e hi(l+i2) eric i - ~(1+2^)e~A , (24)

which has a single root ~ 0-847.
As an example, let us suppose a cold explosive gas to be brought in contact with a hot

metallic foil. Heat will be generated in the gas according to an Aarhenius function of tempera-
ture, which we may represent very roughly by the linear equation

(dT/dt)K&ct. = GT, (25)
if 0 is defined by

GT0=Ae-ElRT°, (26)
where ^4~1012 °K/«. Provided the condition w2 = 4jff is satisfied, we may then expect the
surface temperature to commence rising after a time tc defined by £~0-85, that is, by

Gte~O-l (27)
By (26), this reduces to

*,.~O-7xlO-12ToeJS7*T« • (28)
Assuming iJ~4b,000 cal./mole, we have the following variation of tc, which may be identified
with the lag time for ignition.

T0(°K) 5000 4000 3000 2000 1000 700 500
Usec.) 2xlO-7 4xlO- 7 2 x 10"6 3 x 10~5 3X10-1 103 8 x 107

It is clear that ignition in any normal sense requires a foil temperature of the order of
1000° K, which is a physically reasonable level. Since G must evidently be ~ 1 , the condition
w2=4:H implies W ~ 2 / V K ~ 1 , which corresponds to a foil thickness of the order of 10~3 cm.
Although this example is a rather crude one, it does illustrate the possibility of a useful
application of the present analysis. No doubt this would be more profitable in the case of
condensed explosives, where convective effects are absent.

(2) Spherical Case
If B denotes a radial co-ordinate, we suppose the region R>a with thermal constants

h, K, to be initially at zero temperature. The region R<a is filled with a perfect conductor
initially at temperature To. Conditions being otherwise as before, we have

T=0, R>a,t=0,
T = T, R=a,t>0,

BT dT'
' R

(29)

where c' is the heat capacity of the perfect conductor per unit area of the interface.
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For convenience, set R - a = x, xt ST, RT/aT0 = u, T'/T0=u', —=H and 1CJC'K=W. Then

du d2u
OT OX2

(30)U — U , X — 0 ,

( du u\ du' .

U'=l, T = 0.

In the same manner as before, we find

p H 1- aw
a

so that

-J—l—dp (32)
w

p-\ (-aw
L a

w w
If now p +— =P, and H + — =K, (32) becomes

a a

=u=-—^ - — 5 - dP, (33)

where

Comparison with (5), (6) shows that T/To is then obtained from the linear solution by multiplying
ct —V!I w

by-=e a and replacing x by R-a and H by H+—. Thus, if we set z=R -a+wr ;
lift ID

h2=^--H-~, (13) yields:

(z T\ fr
a)l fz_ _W\ ftWJW/2 H

and it can be verified by substitution in (29) that this satisfies the conditions of the problem.
Relations corresponding to (15), (16), (21), (22) can be written down in the same way. For
example, by (15)

{ h ) e { J
T= -nsir

(36)

W2 10

provided h2=-j--H — > 0 . Otherwise, (35) may be used.

(35), (36) include, when H = 0, the interesting case of a perfectly conducting sphere
heated or cooled in an infinite medium. The solution, curiously enough, does not seem to
have been given previously.
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Again, for large (B -a)/2\/r , (21) becomes

a (H+-\rf R-a °° ,- B-a~\
^ \ +«) \ t + 2 : B ( 2 j ) n i « e T i c j ^ \ , (37)

to
where Bn is defined by (20) with H replaced by H +- . Similarly, by (22),

(X

+ ...J ,.. (38)

The remarks concerning the variation of T' in the linear case apply equally to the spherical
problem. We may illustrate the behaviour of T' by a special case, corresponding now to h = 0,

tO IV '
that is, to — =H. From (36), by letting h approach zero we deduce

4 Ct

:2erfc|--S= , (39)

where, as before, £=WVT/2. AS would be expected, (39) reduces to (23) when the radius
a-^co.

Since aw = -~-, , where C, p are the specific heat and density of the medium (B>a) and

C", p corresponding quantities for the source (B<a), and since we require aw>4, (39) cannot
apply to any solid sphere in a gas : for such systems, aw~10~2. However, it is possible for
aw to exceed 4 in the case of a liquid or solid external medium. For example, aluminium
spheres in nitroglycerin would give aw<~5. If we take this value for illustration, (39) has a
minimum at £c>—'2-4, so that W<~5/«/TC. Adopting a typical value of 0-01 cm.2/sec. for K and
requiring that tc^-l sec. for explosion, we conclude w~50 cm."1, whereupon a.—1 mm. Then
# ~ 1 2 5 , and so G = KH~l-25. However (3), for nitroglycerin, G^WTo-h-20-000^ by
equation (26). Hence, finally, TI

0'~600o K. The analysis therefore suggests that an aluminium
sphere of radius 1 mm. will ignite nitroglycerin if raised to a temperature of about 300° C.
The result is quite reasonable, since nitroglycerin in bulk ignites at about 200° C.
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