Masayoshi Miyanishi Nagoya Math. J. Vol. 41 (1971), 97–100

Ga-ACTION OF THE AFFINE PLANE

MASAYOSHI MIYANISHI*)

0. Recently, R. Rentschler [4] proved that if k is a field of characteristic 0, any action of the additive group G_a on the affine plane is equivalent to an action of the form ${}^t(x,y)=(x,y+tf(x))$, where $t\in G_a(k)$, $(x,y)\in k^2$ and $f\in k[X]$.

It will be natural to form a conjecture that if k is a field of positive characteristic p, any G_a -action on the affine plane is equivalent to an action of the form ${}^t(x,y)=(x,y+tf_0(x)+t^pf_1(x)+\cdots+t^{p^n}f_n(x))$, where $t\in G_a(k)$, $(x,y)\in k^2$ and $f_0,\cdots,f_n\in k[X]$.

The purpose of this article is to prove this conjecture.

1. Let k be an algebraically closed field of positive characteristic p, $S = \operatorname{Spec}(k[x,y])$ be the affine plane over k and $\sigma: G_a \otimes_k S^2 \longrightarrow S^2$ be a non-trivial action of the additive group G_a on S^2 . Let A = k[x,y] and let t be an indeterminate. Then it is well known (cf. [2]) that to give an action σ of G_a on S^2 is equivalent to giving a homomorphism of k-algebras $A: A \longrightarrow A \otimes_k k[t]$ which satisfies the following commutative diagrams;

$$A \xrightarrow{\Delta} A \otimes k[t] \qquad A \xrightarrow{\Delta} A \otimes k[t]$$

$$(1) \downarrow \Delta \qquad \downarrow \Delta \otimes id_{k[t]} \qquad (2) \qquad \cong \qquad \downarrow id_{A} \otimes \varepsilon$$

$$A \otimes k[t] \xrightarrow{id_{A} \otimes \mu} A \otimes k[t] \otimes k[t] \qquad A \otimes k$$

where $\mu: k[t] \longrightarrow k[t] \underset{k}{\otimes} k[t]$ and $\varepsilon: k[t] \longrightarrow k$ are homomorphisms of k-algebras defined by $\mu(t) = t \otimes 1 + 1 \otimes t$ and $\varepsilon(t) = 0$ respectively. Moreover, if we define k-linear endomorphisms of A by $\Delta(a) = \sum_{i \geqslant 0} D_i(a) \otimes t^i$ for $a \in A$, $D = \{D_i\}_{i \geqslant 0}$ is an iterative infinite higher derivation on A. To give an action σ of G_a on S^2 is equivalent to give an iterative infinite higher deri-

Received June 27, 1969.

^{*} This work was partially supported by "the Sakkokai Foundation".

vation $D = \{D_i\}_{i\geqslant 0}$ on A such that for any $a\in A$, $D_j(a) = 0$ for sufficiently large j (cf. [2]).

We shall begin with

LEMMA 1. (Nagata, Theorem 4.1 of [3]). Let A_0 be the ring of constants, i.e. $A_0 = \{a \in A \mid D_i(a) = 0 \text{ for } i \geq 1\}$. If $a \in A_0$, then each prime factor of a in A belongs to A_0 . In particular, A_0 is a unique factorization domain.

Lemma 2. (cf. [4]. A_0 satisfies the following properties.

- (i) $A_0 = k[f]$, for some irreducible element f in $A_0 k$. More precisely, $f \alpha$ is irreducible for any $\alpha \in k$.
- (ii) A_0 is algebraically closed in A.
- *Proof.* (i) Since σ is non-trivial, $A_0 \neq A$. On the other hand, $A_0 \neq k$ by virtue of a result in [2]. Let f be an element of $A_0 k$ such that the total degree with respect to x and y is minimal in $A_0 k$. Then by Lemma 1, f and $f \alpha$ are irreducible in A, where $\alpha \in k$. If $A_0 \neq k[f]$, let g be an element of minimal total degree in $A_0 k[f]$. Then g and $g \beta$ are irreducible in A, where $\beta \in k$. Let P be a point of S^2 which is not fixed by the action σ and let $\alpha = f(P)$ and $\beta = g(P)$. Then P belongs to the closed sets $V(f \alpha)$ and $V(g \beta)$ defined by $f \alpha$ and $g \beta$ in S^2 respectively. Hence, $V(f \alpha) = \overline{O(P)} = V(g \beta)$, where $\overline{O(P)}$ is the k-closure of the orbit of P. Therefore $g \in k[f]$.
- (ii) Let h be an element of A which satisfies an equation of the form, $a_0h^n + a_1h^{n-1} + \cdots + a_n = 0$, where $a_0, a_1, \cdots, a_n \in A_0$. Then the equation $a_0X^n + a_1X^{n-1} + \cdots + a_n = 0$ has only a finite number of solutions in A. If $t \in G_a(k)$, then $h \leadsto t_h$ is a permutation of these solutions. However, G_a is connected. Hence h is fixed by the action of G_a , i.e. $h \in A_0$. q.e.d.

We shall next define a function λ on A with values in the ring of integers Z by $\lambda(a) = n$ if $\Delta(a) = a \otimes 1 + a_1 \otimes t + \cdots + a_n \otimes t^n$ and $a_n \neq 0$. Then A_0 consists of elements such that $\lambda(a) = 0$. Let n_0 be the minimal value of $\lambda(a)$ for $a \in A - A_0$. Then $n_0 \geq 1$. Let q be an element such that $\lambda(q) = n_0$ and that q is of minimal total degree in the set of elements a whose values of λ are n_0 . Then we have the following result.

Lemma 3.
$$\textit{\Delta}(q) - q \otimes 1 \! \in \! A_0 \underset{k}{\otimes} k[t].$$

 g_a -action 99

Proof. Let $\Delta(q) = q \otimes 1 + q_1 \otimes t + \cdots + q_{n_0} \otimes t^{n_0}$, where $q_1, \cdots q_{n_0} \in A$. Since $(\Delta \otimes id_{k[t]}) \cdot \Delta(q) = (id_A \otimes \mu) \cdot \Delta(q)$ from the commutative diagram (1), it is easy to deduce an equality, $\Delta(q_i) = q_i \otimes 1 + \binom{i+1}{1}q_{i+1} \otimes t + \cdots + \binom{i+j}{j}q_{i+j} \otimes t^j + \cdots + \binom{n_0}{n_0-i}q_{n_0} \otimes t^{n_0-i}$ for $1 \leq i \leq n_0$. Therefore by the choice of q, $\binom{i+1}{1}q_{i+1} = \cdots = \binom{n_0}{n_0-i}q_{n_0} = 0$ and $q_i \in A_0$.

Since q is also of the minimal total degree in $A - A_0$, $q - \beta$ is irreducible for any $\beta \in k$. In particular, $q - \beta$ is not divisible by any linear factor $f - \alpha$, for $\alpha \in k$.

Let B = k[f,q]. Then the restriction Δ on B sends B to $B \otimes k[t]$ and commutes the diagrams (1) and (2) where A is replaced by B. Namely Δ induces an action σ' of G_a on $X = \operatorname{Spec}(B)$ and the inclusion $B \subset A$ implies that there exists a $\operatorname{Spec}(k[f])$ -morphism $\varphi: S^2 = \operatorname{Spec}(A) \longrightarrow X = \operatorname{Spec}(B)$ which commutes with the actions σ and σ' on S^2 and X respectively.

We now see that φ is isomorphic on the fibres over the generic point of Spec (k[f]). In fact, let K be the quotient field of k[f] and $A_K = A \underset{A_0}{\otimes} K$. Then the higher derivation $D = \{D_i\}_{i > 0}$ in A can be canonically extended into A_K and it is easy to see that K is the ring of constant elements in A_K . Therefore Spec (A_K) is a G_a -homogeneous space defined over K. The argument as in [5] shows that A_K is isomorphic to K[u], the polynomial ring of one variable over K. Since $\lambda(u)$ must be minimal in K[u], we can take q for u. Therefore $B \underset{\sim}{\otimes} K \cong A \underset{\sim}{\otimes} K$. In particular, φ is birational.

q for u. Therefore $B \underset{A_0}{\otimes} K \cong A \underset{A_0}{\otimes} K$. In particular, φ is birational. On the other hand, we now show that $B \underset{A_0}{\otimes} A_0/(f-\alpha) \longrightarrow A \underset{A_0}{\otimes} A_0/(f-\alpha)$ is injective for all $\alpha \in k$. In fact, suppose that an element $\alpha_0 q^n + \alpha_1 q^{n-1} + \cdots + \alpha_n$ in $B \underset{A_0}{\otimes} A_0/(f-\alpha) \cong k[q]$ is sent to 0 in $A \underset{A_0}{\otimes} A_0/(f-\alpha) = k[x,y]/(f-\alpha)$. Then $\alpha_0 q^n + \alpha_1 q^{n-1} + \cdots + \alpha_n \in (f-\alpha)A$. Since k is algebraically closed, $\alpha_0 q^n + \alpha_1 q^{n-1} + \cdots + \alpha_n = \alpha_0 (q-\beta_1) \cdots (q-\beta_n)$ for $\beta_1, \dots, \beta_n \in k$. However since $(f-\alpha)A$ is prime ideal of A, some factor, say $(q-\beta_1)$, belongs to $(f-\alpha)A$. Hence, there exists an element h in A such that $(q-\beta_1)=(f-\alpha)h$. But this is not possible by virtue of the choice of q.

Since q is not algebraic over k[f] and since $k[x,y]/(f-\alpha)$ is the affine algebra of an irreducible curve $f=\alpha$ in S^2 , φ restricted to the fibres over a closed point $f=\alpha$ of Spec (k[f]) is quasi-finite. Moreover, note that X is normal.

Now applying Zariski's Main Theorem (cf. EGA (III, 4.4.9)), φ is an open immersion. Let $V = X - \varphi(S^2)$. Then it is easy to see that codim $(V) \ge 2$,

noting that the structural morphism $S^2 \longrightarrow \operatorname{Spec}(k[f])$ is surjective. Hence $\operatorname{Prof}_{V}(\mathscr{O}_{X}) \geqslant 2$ because X is normal. Therefore $\Gamma(X - V, \mathscr{O}_{X}) \cong \Gamma(X, \mathscr{O}_{X})$ by virtue of EGA, (IV, 5, 10, 5). Since $\varphi(S^2)$ is an affine open set, $\varphi(S^2) = \operatorname{Spec}(\Gamma(X - V, \mathscr{O}_{X})) \cong \operatorname{Spec}(\Gamma(X, \mathscr{O}_{X})) = X$. Thus we have proven that k[f, q] = k[x, y].

Now we shall note that the action σ of G_a on S^2 is determined by a homorphism of group schemes $\Psi\colon G_a\longrightarrow \operatorname{Aut}(S^2/S^1)$, where $\operatorname{Aut}(S^2/S^1)$ is the k[f]-automorphism group of the affine line $S^2=\operatorname{Spec}(k[f,q])$ over $S^1=\operatorname{Spec}(k[f])$ and is isomorphic to a sub-group scheme $G=\left\{\begin{pmatrix} a,b\\0,1\end{pmatrix}; a\in k^*=k-0, b\in k[f]\right\}$ of GL(2,k[f]). The action of an element $\begin{pmatrix} a,b\\0,1\end{pmatrix}$ of G on S^2 is given by sending $\begin{pmatrix} q\\1\end{pmatrix}$ to $\begin{pmatrix} a,b\\0,1\end{pmatrix}\begin{pmatrix} q\\1\end{pmatrix}=\begin{pmatrix} aq+b\\1\end{pmatrix}$. Then the correspondence $t\in G_a\approx \longrightarrow a(t)$ is a multiplicative character of G_a hence a(t)=1. Then $t\approx \longrightarrow \begin{pmatrix} 1,b\\0,1\end{pmatrix}$ defines an endomorphism of G_a . Then b is a p-polynomial with respect to t with coefficients in k[f], $b=a_0(f)t+\cdots+a_n(f)t^{p^n}$. Then $t=q=q+a_0(f)t+\cdots+a_n(f)t^{p^n}$.

Thus we have proven

Theorem. Let k be an algebraically closed field of positive characteristic p. Then any action of the additive group G_a on the affine plane is equivalent to the action of the form,

$$t(x,y) \longrightarrow (x,y+tf_0(x)+t^pf_1(x)+\cdots+t^{p^n}f_n(x))$$

where $t \in G_a(k)$, $(x, y) \in k^2$ and $f_0(x), \dots, f_n(x) \in k[X]$.

BIBLIOGRAPHY

- [1] A. Grothendieck et J. Dieudonné, Eléments de Géométrie Algébrique (referred to as EGA), Chapitres III et IV, Publ. Math. Inst. Hautes Etudes Sci., No. 11 and 24.
- [2] M. Miyanishi, A remark on an iterative infinite higher derivation, J. Math. Kyoto Univ., 8 (1968), 411-415.
- [3] M. Nagata, Note on orbit spaces, Osaka Math. J., 14 (1962), 21-31.
- [4] R. Rentschler, Opérations du groupe additif sur le plan affine, C.R. Acad. Soc. Paris, 267 (1968), 384–387.
- [5] T.A. Springer, On a lemma of Rosenlicht, Indagationes Mathematicae, 30 (1968), 378-383.

Kyoto University