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1. Introduction. In [6] B. H. Neumann proved the following beautiful result: if a
group G is covered by finitely many cosets, say G =\ x,H;, then we can omit from the
i=1

union any x;H; for which |G:H,| is infinite. In particular, |G :Hj| is finite, for some
je{l,...,n}.

In an unpublished result R. Baer characterized the groups covered by finitely many
abelian subgroups, they are exactly the centre-by-finite groups [8]. Coverings by nilpotent
subgroups or by Engel subgroups and by normal subgroups have been studied, for
example, by R. Baer (see [8]), L. C. Kappe [2,1], M. A. Brodie and R. F. Chamberlain
[1], and recently by M. J. Tomkinson [9].

In this paper we study groups covered by finitely many isolators of subgroups.

If H is a subgroup of the group G, the isolator of H in G is, by definition, the subset

I(H)={x € G | x" € H for some n > 0}.
We denote by X the class of groups G such that, whenever G = U 1;(H;), then

G = I;(H;) for some je {1,. n}.
We prove the following results

THEOREM A. Let A be a normal abelian subgroup of G. If G/AeX,then GeX. If G
is locally soluble, then G € X.

From Theorem A, using a result of J. C. Lennox [4], it follows that if G is a finitely
generated soluble group and G = U I;(H;), then |G:H;| is finite, for some je
{1,...,n}.

TueorREM B. Let G = L"Jl I(H;), where H,, . . . , H, are abelian subgroups of G.

Then G = I(H,) for slo_mej e{l,...,n}.

The same conclusion of Theorem B holds if G= ’_Lnjl Ic(H;), with H,... ,H,

subnormal subgroups of G (Theorem C and Corollary 3.2).

Most of the standard notation used comes from [8].

We say that a group G has the isolator property (G has I.P.) if the isolator of every
subgroup of G is itself a subgroup of G.

A subgroup H is called isolated if Ic(H)=H.

Finally, if H, K are subgroups of G, then we write H ~ K to mean Ig(H) = I5(K).

2. Proof of Theorem A. We begin with some preliminary results:
LEMMA 2.1. If every two generator subgroup of G is in X, then so is G.
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Proof. Suppose false, and let G = L"JIG(H,), where n =2 is minimal subject to
i=1

G # I5(H;) for any i e {1, . .., n}. By minimality of n, there exists h, € H, — (‘g IG(H,-))‘
Similarly there exists h,€ H, such that hye [o(H))UIls(H)U---Ulg(H,). Let J=
(h,, h,). ThenJ = L_'_'J L(H;NJ), and by the hypothesis J = I,(H; N J) for some i.

Hence J = IG(I:I:)1 for some i, a contradiction.

Lemma 2.2. X =0ZX.

Proof. Easily verified.

LemMmA 2.3. Let H =G be such that G = I;(H). Then G € X if and only if H € X.

Proof. Assume GeX. If H= U L;(K;), then G = U I5(K;), so that 1,(K;) = H for

some I.
Conversely, let He X and suppose G = Lnj I;(H;). Then H= L"J I,(HNH;) and
i=1 i=1
H = I,(H N H,) for some i. Hence G = I;(H,) for some i.
We prove now a weaker version of Theorem A.

Lemma 2.4. Let G={ay,...,a,, h), where A=(a,,...,a,)¢ is abelian. Then
GeX.

Proof. If G/A is finite, the result follows easily from 2.3.

Assume G/A = (h) infinite. We prove, by induction on n, that if G = Iz(H,)U
Ic(H)U. .. UI;(H,)UA, then G = I(H,), for some je{1,...,n}. Obviously we can
assume H;A > A, for every i, and so |G : H;A| is finite. Without loss of generality, we may
assume G =HA=H,A=...=H,A. Then H;NA<G, foreveryie{1,...,n}.

We show that G/(ANH,N...NH,) is polycyclic; then G/(ANH,N...NH,) is
almost I. P. by a result of Rhemtulla and Wehrfritz [7], and G € X.

By a theorem of Lennox and Wiegold [S, Theorem B], it suffices to prove that
({a,h)(ANH N...NH)/(ANH,N...NH,) is polycyclic for every a € A. Hence,
without loss of generality, we can assume A = (a)°.

First, we show that G/(H; N A) is polycyclic, for some je {1,..., n}.

For every i € N there exists a € N such that (ah')*e H,UH,U . ..U H,. Then there
are i, seN, s>1, such that h'a € I;(H;), h*a € l;(H) for the same je{l,...,n}.
Hence, for K suitable B eN, (h a)ﬂ’ hiFa"*™" . a"aeH; and (h“a)‘B =
RisBg B0 g € H;, from which a~'a™" .. a7""" g gt e AN H;. But s>
1, and so l(ﬂs -1) >1s(ﬁ —1). Therefore we have a"" "W e e H; ﬂA with a,
suitable integers, i < a; <i(Bs — 1), from which a""“ ™. . . a"""ae H,N A and & eH N
A, where f(h) is a polynomial over Z with leading coefﬁment and constant term equal to
1. Therefore G/(A N H;) is polycyclic [3]. Assume j = 1; then G/(A N H,) is polycyclic.

If n=1, the result follows. Assume n>1. Let 1=/=<n be maximum such that
G/(ANH, N...NH) is polycyclic. Assume for a contradiction ! <n. Write B=AN
HN...NH and let geG-(AUI;(H,)U...Ulz(H,-\)). Thus g=ch®, for some
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ceA,seZ, s#0. Put K=B(g), then from B < H, it follows K N I;(H;)= B for every
l=i=l, and K=BUIx(H,, ,NK)U...UIx(H,NK). Notice that B is finitely gen-
erated as a K-group. By induction, K = Ix(H; N K) for some j<n, and K = [x(H, N K)
since g ¢ AUIG(H,)... Ulg(H,-,). Arguing as before we get ({(b,g)(BNH,))/(BN
H,) polycyclic for every b'e B, and then ({b,dh)(B N H,))/(BNH,) is polycyclic for
every d € A. Hence ({(b,x)(BNH,))/(BN H,) is polycyclic for every b € B, x € G and
G/(BNH,) is polycyclic by a theorem of Lennox and Wiegold [5, Theorem B],
contradicting the maximality of /.

Now we can prove Theorem A.

Proof of Theorem A. Suppose A =G, A abelian, G/A € X, and for a contradiction
Ge¢X.

Let n be the least integer >1 such that G = LnJ Ic(H), H;=G, but G # 15(H,) for
anyie{l,...,n}. =
First remark that we may assume

1) G=\UJIg(H), G#Ig(H) for any ie{l,...,n}, G=AH,=...=AH, A=
i=1
n—{
(Y H,.\, where 1 =l =n. Moreover AN H;<G, for any i.
i=1

For, if I;(AH,)# G, then replace H, by AH,; if I;(AH,) = G, then replace G by
AH, and for i#1, replace H; by AH,N H;. Observe that LnJIAHI(AH,ﬂHi)=AH, N
i=1

UJ Io(H;) = AH,, and, by our minimal choice of n, Ly (AH,(\H,)# AH, for any i.
i=1

Furthermore the given normal abelian subgroup A is still contained in the new G, H,; = A
or AH,=G, and, in both cases. ANH,;<IG. There exists i€{1l,...,n} such that
I6(AH;) = G, because G/A € X. We may assume i =1 and G = AH,.

Now suppose we have made the adjustment for the first r subgroups H,, . .. , H, and
for the group G such that:

(*) A is contained in the new G, either H;=A or AH,=G, forany 1=i=<r.

Remark that then A N H;<IG, forany 1 =i=<r.

If I;(AH,,,)# G, then replace H,,, by AH,,, and observe that (*) is satisfied for
H,., as well. If Ic(AH,,,) =G, then replace G by G, =AH, ., and H; by H,NAH, ., for
all ii If i=r+1, then H,,, satisfies (*); if i=r and AH;=G, then AHNAH, =
A(HNAH,,|)=G; if i=rand A=H,, then A=<H;NAH,,,. Hence (*) holds for H;,
forany i=r+1.

Thus we have made the adjustment for the first r + 1 subgroups H,,...,H,,, to
satisfy (*). Continue this process until r = n. As a result of the above adjustment we may
assume (I).

Write M= AN () H..
i=1

Passing, if necessary, to the quotient group G/M, we have, without loss of
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generality,
an AN H=1
i=1

The next step is to show that
(III) A is periodic.

If not, then let (a) be infinite, a € A. By (II), (a) N H;=1 for some i, say i =1.
Also, by minimality of n, there exists h € H, such that h ¢ LZJZIG(Hi). Let H=(a,h).
Clearly H = ‘_LnJl Iy,(H;NH) and H # I,(H; N H) for any i. Bult: by Lemma 24, He X, a

contradiction.
Now, let T be a subset of {1,...,n} of largest cardinality such that AK ~ G, where
K=MH. Foranyj¢T,let K,=KNH,. By (1), |T|=1. Pick any a € A.

ieT
For each g € K — | I5(K;) some power g™ of g centralizes @ modulo H; N A for some
i¢T

jeT. For, if |({a‘®)(H; N A))/(H;N A)| ==, then ag” ¢ I;(H,) for any non-zero integer
r. If this happens for all j e T, then ag”, ag’ € I;(H,) forsome i ¢ T, r, s €N, r #s. From
this we get a contradiction to g ¢ .UTIG(K")'
i¢
Let C;=(g e K |[a,g] € H;). Then K~LJTKiU_LJTC,, and KNA=<C,forall jeT.
i¢ je

Since AK~G, AK/A~G/AeX and so K/(KNA)=AK/AeX. Hence either (AN
K)K; ~ K for some i ¢ T (alternative (s£)) or C; ~ K for some j € T (alternative (%)).

If («) holds, then A(ANK)K;,~AK~G, so that AK;~ G, contradicting the
maximality of the set T.

So assume (9B). For each a € A, let T, be the subset of T such that C; = C;(a) ~ K for
allie T,. Then T, #. Foreachje T, let E;= {a € A such that j ¢ T,}. Observe that if a,
bekE;, then ab e E;, for T, 2 T, N T,. Also a € E; if and only if a™! €E;. Thus E;<A,
and A= UTE,-. Furthermore E;<1G, for any jeT. By B. H. Neumann’s result

J€
|A:E;|<|T|, for some je T, say |A:E,|<|T| (and 1€ T). Then for any ge K, a € A, we
have [a,g’| € E,, for some s >0, and, for a suitable r>0, [a,g",g"] € H N A: thus, if
la|=k, then [a,g™]e H NA. Therefore E,=A, so that for any ae€A, any geKk,
g" € Cy(a) for some r >0, and hence [g", a] € H, N A, so that some suitable power of ag
lies in H,. This gives AK c I;(H,) and G = I;(H,), a contradiction.

Then G € X.

Now assume G locally soluble, we prove that G € X. By Lemma 2.1 it suffices to
show that every 2-generator subgroup of G is in X. Thus, without loss of generality, we
can assume G soluble, and the result follows easily by induction on the derived length.

CoRrOLLARY 2.5. Let G be a finitely generated soluble group.
If G=Ig(H)VUI;(H)V...Ulz(H,), with H,, H,,...,H, subgroups of G, then
|G : Hy| is finite for some i€ {1,...,n}.
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Proof. We have G = I;(H;), for some i € {1,...,n}, and, by a result of J. Lennox
[4], |G : H}| is finite.

3. Groups covered by isolators of finitely many abelian subgroups.

Proof of Theorem B. We argue by induction on n. Obviously the result is true for
n =1; assume n > 1, and, for a contradiction, I;(H;) gg I5(H;), for any i.

First we show that we may assume "
1) H;NH;=1, fori#]j.

For, if T=G and T &€ I;(H;) for any i, then for every (h,k), h#k, TN
(Hy, H.) & I5(H,) for any i. In fact, if T N (H,, H,) c I5(H;) for some i, then T N H,,
TNH,cl;(H;) with either i#h or i#k. Assume for example i#h. Then T =
U I-(T N H;) and, by induction, T = I (T N H,) c I5(H,) for some s, a contradiction.

J#h

Now write X = () (H;, H;). Then it is easy to see that X & I,(H; N X) for any i,

|sisjsn
and we can assume G =X, so that ;N H;<]G for any i #j. Put Y= [ (H,NH).
1=<i#j=<n

Then Y<IG and Y is soluble. If G/Y clg(H;Y/Y) for some je{1,...,n}, then
G ~H;Y. But H;Y is soluble, thus, by Theorem A, H;Y~H,NH;Y for some se€
{1,...,n} and G ~ H,, a contradiction. Then we can assume Y =1 and (I) holds.

Now we prove that

(I1) for every ie{1,...,n} and for every g € G, there exists o = a(i, g) € N such that

Letae H;, — (U IG(Hj)). Then, for some k, k, h <k, a®" and a*" are in I;(H,) for a

JFEL

suitable s € {1,...,n}. Hence, for some yeZ— {0}, we have (a")¢', (a")¥ ¢ H,, and
((@")*", (a”)*") is abelian. Thus (a”, (a?)*"™") is abelian, so that there exists je
{1,...,n} for which {a”,(a”y¥"") cls(H;). Obviously j=i, since a’elg(H;) and
H,NH;=1 for i #j, by (I). Then a®" " € I(H;) and obviously a*"™" ¢jU#IG(H,-). For any
,a8"™y c I(H;); hence

k

a,e H;, (¢, a8"™") abelian it follows, arguing as before, {(a*"”
the group H;/(H; N H§'™") is periodic. , )

Write X = (H;, H¥™"), then H; N H¥"™"<\X and writing X = X /(H; 0 H¥"™), we have
Xc ,L*) 1z(H;N X). It follows by induction that X < Iy((H; N X)(H,N H!"™")) for some
je{l,...,n}. From (H;NX)(H,NH®™) soluble it follows, by Theorem A,
(HNX)(HNH ")~ H N (H,NX)(HNHE™") for some ¢, hence X~H,NX.
Obviously the only possibility is ¢ =7 and (II) holds.

Now take a € H, — U Is(H;), b € H,— U I;(H;). Then, by (II), there is o € Z — {0}

i#1 i#2

such that (H,, H®") c I;(H,), so that, for some reZ— {0}, [a",b*]€e H, and, for
every se€Z, [a",b") =[a",b"]€ H,. Also, by (II), there exists k € Z— {0} such that
(Hy, HY") ¢ Is(H,), hence [a"™, b®] € Io(H,) and, for some s € Z — {0}, [a™, b°} € H,.
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Thus [a"™,b%]=[a"™, b =[a",b*]* e HHNH,=1, and (a™,b*) is abelian. Then
{a™ b*) c I5(H,), for some se{l,...,n}; from a e I;(H,) it follows s =1 and from
b € I;(H,), s =2, the final contradiction.

In order to prove Theorem C, we need the following easy Lemma:

LemMA 3.1. Let G be a group, G = Lnj Io(H;), where H=G, i=1,...,n. Assume
i=1
G = H; X H, for some j and some H < G. Then either G =\ I5(H,), or G = Ic(H,).

i#]
Proof. If G #\JI;(H,), there exists b € H;, b ¢\ I;(H;). For any a € H, consider
i#j i#j

the elements a™b, m € N. Then there exists s € {1, . .. ,n} such that a”b, a*b € I5(H,) for
h, keN, h#k. Then (a"b)? =a""b? e H, and (a*b)” = a*’bP e H,, for a suitable B eN
and aP*® e H. Thus ael;(H,) and b e is(H,), since a"b € lg(H,), then s=j and
G = I;(H;), as required.

THEOREM C. Let G be a group, H,,...,H, normal subgroups of G such that
G= L_Jl 1(H,).

Then G = Ig(H,) for some je {1,...,n}.

Proof. By induction on n we may assume G/H, c I,4,(H;H,/H,) for some j.
Let / = 1 be maximum such that

G/(H\N...NH)~HH .. .ONH)/(HN...O0H),

for some te{1,...,n}.

If / =n, then the result follows. Assume for a contradiction ! <n. Without loss of
generality we can assume t=/+1, so that G/(H,N...NH)~(H.,(H,N...N
H))/((HyN... NH). Write X=H_,(HN...NH), then X/(H,N...NH,,)=
Hy /(HiN. . .OH )X (H0...0OH)/(HiN...NH,.,), by Lemma 3.1 and by induc-
tion, we have X/(H,N...NH.,)~((H,NX)H,N...NH,)/(HN...NH,,,) for
somes€{l,...,n}. ThusG/(H,N...NH )~ (H(H,N...NH))/(HN...NH,)
because G ~ X, contradicting the maximality of /.

CoroLLARY 3.2(1). Let G be a group, H,, ..., H, subnormal subgroups of G such
that G =) Io(H,). Then G = I,(H,) for some j € {1,. .., n).
i=1
Proof. Denote by m; the subnormal defect of H;, for any i e {1,...,n}. We argue
by induction on the sum of the m;’s. By Theorem C, G =I;(H[) for some j. But

H;<<"7'HP, and H;NHP<™Hf for i#j. So Hf =lyc(H;NHf) for some i and
G = I;(H;), as required.
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