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Abstract

The one-dimensional, non-linear theory of pulse propagation in large arteries is ex-
amined in the light of the analogy which exists with gas dynamics. Numerical evidence
for the existence of shock-waves in current one-dimensional blood-flow models is
presented. Some methods of suppressing shock-wave development in these models are
indicated.

1. Introduction

Since the publication of Lambert’s paper [9] on fluid flow in distensible vessels,
the one-dimensional, unsteady equations of arterial blood flow which are predic-
ted by this model have been the subject of much subsequent research. In
particular, it is apparently well known that an analogy exists between these
equations, the one-dimensional gas-dynamic equations, and those of first-order,
non-linear shallow-water theory (see, for example, [7] and [15]).

Lambert’s equations may easily be generalized to include such effects as the
tapering of the undeformed vessel along its length, the loss of blood from the
vessel into discrete side-branches, and the dissipative effect of certain types of
frictional forces. Indeed many researchers [2, 6, 14, 17, 18] have presented mod-
els in which provision is made for these effects, although the virtue of such
models may perhaps be questioned, since a certain amount of empiricism is
involved in the selection of the functions which are supposed to represent the
above effects.
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The one-dimensional blood-flow equations thus obtained form a system of
non-linear hyperbolic partial differential equations for the velocity and pressure
of the blood inside the vessel. In most instances, a numerical solution to this
system has then been sought using a form of the merhod of characteristics
apparently first devised by Hartree (see Lister [12]). Hartree’s method, also
called the method of specified time intervals [12], has the advantage of conveni-
ence over the natural method of characteristics, since interpolation is used to
ensure that the solution is obtained only at regular intervals in both time and
space.

Although Hartree’s method provides a simple and convenient solution to the
type of equations to be discussed in this paper, it must of course necessarily fail
in regions where shock discontinuities are present, being based, as it is, upon the
method of characteristics. With both of these methods, the correct treatment of
shocks may only proceed by the explicit introduction of ‘Rankine-Hugoniot’
jump conditions relating flow quantities on either side of the shock discontinu-
ity. However, the naive application of Hartree’s method to a system of hyper-
bolic partial differential equations often does not reveal the presence of a shock
within the region of interest. This is because the method produces a strong
numerical damping, the severity of which may be decreased by reducing the
spacing between mesh points in the numerical scheme.

This difficulty with the Hartree method was recently considered by Forbes [5]
in connection with current theories of aortic blood flow. It was suggested here
that the existence of a shock in these blood flow models had so far escaped
detection, because the Hartree method had been used with relatively coarse grid
spacing to solve the flow equations. By solving the same equations on a very fine
numerical mesh, so that the effects of numerical damping were greatly reduced,
Forbes demonstrated that the new results now possessed very large pressure and
velocity gradients at the beginning of each cardiac cycle. He conjectured that
this be taken as an indication that the true solution to the particular blood flow
equations under consideration predicts the formation of a shock in the aorta
quite close to the heart.

In the present paper, we re-examine the analogy between the one-dimensional
blood flow equations and unsteady gas-dynamics. A correct numerical solution
to the blood-flow problem is then presented, apparently for the first time. The
equations are solved by a two-step shock-capturing finite-difference technique,
and the results obtained leave no doubt as to the existence of a shock in the
aorta. As this situation obviously does not reflect the true behaviour of normally
functioning cardio-vascular systems, it would seem desirable that aortic blood
flow models be developed in which the possibility of shock formation is
excluded. Some methods for doing this are reviewed in the conclusion.
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2. The gas-dynamics analogy

The one-dimensional blood flow equations expressing mass continuity and
momentum conservation for blood moving with velocity u(x, f) in the x-direc-
tion in a tethered artery of cross-sectional area A(x, ) are

A, + (ud), =0 (1a)

and
u, + uu, + %px = 0, (1b)

where subscripts denote partial differentiation. These equations are supple-
mented by a constitutive relation of the form

A = A(p). (1c)
Here, p(x, ) refers to the blood pressure within the aorta and p is the blood
density. For the present, we disallow the outflow of blood from the aorta into
side-branches. Frictional effects and natural taper of the artery are also tempor-
arily ignored. Equations (1) may be derived from the full inviscid axi-symmetric
equations of motion under the long wave assumption, in which the ratio of a
typical arterial diameter to a typical length scale along the artery is assumed to
be very small. This technique is described in detail by Stoker [16] in his
derivation of the equations of shallow water theory.

Gas Dynamics Analogy
Equations (1) may be made formally identical to the equations of unsteady
gas dynamics by a simple change of variable. Defining

p =pA (2a)
and
5= [, (2b)
equations (la) and (1b) become
ﬁ( + (ﬁu)x =0 (33)
and
u, + uu, + %ﬁx = 0. (3b)
Equation (Ic) takes the form
p = p(p). (3¢c)

The similarity to gas dynamics and shallow-water theory is made complete if
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(3c) may be written

b= Kp” @
for suitable real numbers K and y. Equation (4) imposes the following restric-
tions on the area-pressure relation (Ic¢):

_ y—1p—p* 1/(y=1)
A(p) _[—y Ko7 ] fory s 1, (5a)
and
_ p*
A(p) = A(p*)exp[p Kpp ] fory = 1. (5b)

The quantity p* is a constant having the dimensions of pressure. We note that
the area-pressure relation used by Lambert [9] may be recovered by substituting
the values y =3, K = Eh(w/p)"/? and p* = Eh(m/A,)'/? in equation (5a),
where E is the Young’s Modulus of the arterial wall, A is its thickness, and A, is
its cross-sectional area for a particular reference pressure.

Conservation Form

For the purposes of numerical analysis, the system of equations (1) is often
required in conservation form. However, there are many ways in which this may
be done, and so the form chosen must be that one in which essential physical
information about the system is correctly represented. For example, a possible
conservation form of equations (1a) and (1b) is

4, + (uA)x =0
and

u,+(—;—u2+%) = Q. (6)

The numerical studies of Kivity and Collins [8] are based upon equations written
in this form. However, we suggest that (6) is an incorrect conservation form of
equations (1), because the shock conditions corresponding to (6) are not physi-
cally sensible, and are not analogous to those of gas dynamics, under the
transformations (2a) and (2b). The correct conservation form of equations (la)
and (1b) 1s

A, + (ud), =0

and
(ud), + (u2A +1 4 dp) =0 )
p x
Note that equations (7) preserve the analogy with gas dynamics.
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Shock Conditions

The shock conditions may be obtained from equations (7) by the Weak
Solution method (see Lax [10]). In terms of the variables defined by equations
(2), we have

-

P10 = b0, (8a)
and

P+ f)lvlz =p, + i’zvg’ (8b)
where 1 and 2 denote conditions on either side of the shock, and v is the velocity
relative to the shock speed V, that is,

v,=V—-u fori=1,2. )

Our shock conditions (8) are identical with those of Beam [3], who obtained
them from purely physical arguments.

Solutions to equations (8) may be formulated in terms of a dimensionless
quantity F, analogous to the Mach number of gas-dynamics or the Froude
number of shallow water theory, which is defined as

v

In the special case in which equation (4) is assumed to hold, equations (8) and
(10) may be combined to yield

(10)

A vy+1 N
(?) - (?)(1 + YF?) + yF2 = 0. (11)
P P
One solution of this equation is clearly the case of uniform flow, 5, = p,. In the
case y = 2, an exact analogy is obtained with shallow water theory, and the
solution to equation (11) is the well-known Bélanger formula

py 1

72-=-2—[\/(l+8F,2)— ]. (12)

Py

The quantities v, and p, may then be obtained from equations (8a) and (4).

3. Numerical results

In a naturally tapering artery in which frictional effects and the outflow of
blood into side-branches are now both assumed to be present, the equations of
mass and momentum conservation become

94 = o(uAd) _
at+ o +y¢y=0 (13a)
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and
ou du 1 dp

-5;+ua+;a=f, (l3b)

where ¢ and f are functions chosen to model the effects of blood outflow and

frictional forces respectively. Equations (13) are again supplemented by a
relation of the type

A = A(p, x). (14)

In this study, as in Forbes [5], we shall employ the formulae adopted by

Anliker, Rockwell and Ogden [2]. For the speed c(p, x) at which a disturbance
travels in the artery, they obtained the empirical relationship

c(p, x) = (cg + ¢, p)(1 + nx). (15)
Then, by making use of the definition of c,
A 1/2
c(p, x)=| ——— s 16
¢ = sz 72 | (16)
the following area-pressure relationship was determined:
P — Po
A(p, x) = Ag(x)ex , 17a
(pr ) = Ao o T e | (172)
where
_ 2
Ay(x) = 4.63 exp(—0.045x) cm®, x € 54cm (17b)
0.41 exp(—0.089(x ~ 54)) cm?, x > 54 cm.

The values of the constants ¢, ¢,, n, p, are given in their paper [2]. The subscript
x in equation (16) now implies that the indicated differentiation is done holding
this variable constant. By curve-fitting experimental data, Anliker et al. [2]
found for the outflow function ¢,

Sax
Y(p — Pc)(l-l + COS(W)), x €70 cm
v(» — p)(1.1)exp(-0.08(x — 70)), x > 70 cm,

¥(p, x) = (18)

where again the numerical values of the constants y, p. may be found in [2].
Finally, the function fis assumed to be given by the Poiseuilie formula,

flu, A) = —8‘771’% , (19)

where » is the kinematic viscosity of blood. The aorta was chosen to be 100 cm
long, and at the heart (x = 0) a known volume flow rate similar to that used by
Anliker et al. [2] was specified. The distal boundary condition was satisfied by
utilizing the concept of peripheral resistance [2].
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The system of equations (13) and (14) is solved by a two-step Lax—Wendroff
finite-difference scheme. When written in the correct conservation form, equa-
tions (13) become

94 U
—a—t- + —a—x— +y=0 (203)
and
aUu oV
Tt+_€)_x+B_0’ (20b)
with
U= ud, (21a)
V=u+ X, (21b)
33
B-——(a—x)p"l'u\l/‘Af, (21C)
and
1 pr
=5 4.0 &. (22)
The function JC may be evaluated from equation (17a), giving
¢+ ¢ p 1 1
=4 0 loex( )[—ex— - E , 23
o) wop P\ op)| B P(-B) — E(B) (23)
where
D = p(co + ¢, po)(1 + nx)?, (24a)
and
1] 1 P — Dy
b= p| - s } 240
Dic (c+ ¢,p) (24b)

The function £, is the exponential integral, and may be evaluated with sufficient
accuracy for our purpose from the rational approximation formulae given in
Abramowitz and Stegun [1].

The first step of the Lax-Wendroff procedure involves the determination of
the functions 4 and U at the intermediate time level 1 = (m + 3)At from the
following finite-difference approximations to equations (20):

1
ATV~ (A + A7 m m
i 2 i i+1 (j’ — Ui 1 m
] + HAx + 5(‘Pi+l +¢7)=0 (25a)
EAI
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and

1
Ui —sUr+u%)  ym _ym
2 F o (B |+ B™) =0. (25b)

-;—At

Here, Ax and At are the spacings between mesh-points in the space and time
directions. Equations (25) are to be solved for the functions A7} ,‘2/ 1=
A((i + 5)Ax, (m + 3)A and U742 = U + 3)Ax, (m + A). '

In the second step of the Lax—Wendroff scheme, the functions 4 and U are
obtained at the grid points x = iAx for the next whole time level 1 = (m + 1)Ar
from the formulae

Aim+| - Aim Um+|/2 Um+1/2

i+1/2 i—1/2 Lom Y2 4 ymt1f2
At Ax +E( I+T/ l T/{) 0 (26&)

and
m+1 _ m Vm+l/2 _ Vm+l/2

U: v U: + i+1/2 o i—1/2 ( ‘,:-:-/l 2 4 ‘mT/l{z) 0. (26b)
Thus the solution is marched forward in time from the mth to the (m + 1)th
time level by the application of step one followed by step two. The solution is
started by specifying values of 4 and U at ¢ = 0. The proximal and distal
boundary conditions are treated by a second-order Hartree scheme; at the
proximal boundary x = O this procedure is entirely satisfactory, since shock-
waves have not yet formed at this point. At the distal boundary, the application
of the Hartree scheme is again satisfactory, for although this scheme is unable to
correctly cope with shock discontinuities, in the present problem the shocks are
so weak by the time they reach the far boundary that no significant inaccuracies
result from ignoring them.

In Figs 1 and 2, we present pressure-time and velocity-time profiles for a
single cardiac cycle, obtained by the two-step Lax—Wendroff procedure, with
Ax = 0.25 cm, Ar = 0.000125 sec. These results are compared with the at-
tempted solution to the same problem using the first-order Hartree scheme of
[5], (shown as dashed lines in Figs 1 and 2.), for the same values of Ax and At.
The computation was started with the quiescent initial conditions p = 25 mm
Hg and ¥ = 0 cm/sec throughout the entire aorta.

The existence of a fully-developed shock wave in the aorta is made unambigu-
ous in Figs 1 and 2; by the time the original signal from the heart has reached
the position x = 50 cm, it has steepened to form a shock of significant strength.
As expected, the actual shock velocity is somewhat greater than that of the
iso-energetic disturbance obtained by the Hartree method, and consequently,
the disturbance arrives at an earlier time than is predicted by the Hartree
scheme.
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The structure of the second, dicrotic, pulse in these wave-forms is also of some
interest. An examination of the results obtained by the Hartree method would
seem to suggest that this second pulse is just a simple, smooth undulation in
pressure and velocity with time. However, the Lax—Wendroff method again
reveals the existence of at least one small shock within this pulse.
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Fig. 1. Pressure-time profiles for the first cardiac cycle at the positions x = 0, 20, 50, 80, 100 cm
along the aorta as predicted by the one-dimensional blood flow model. The solid curve is the result
obtained from the Lax—Wendroff method, and the dashed curve is the result given by the Hartree
scheme.
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Fig. 2. Velocity-time profiles for the first cardiac cycle at the positions x = 0, 20, 50, 80, 100 cm
along the aorta as predicted by the one-dimensional blood flow model. The solid curve is the result
obtained from the Lax-Wendroff method, and the dashed curve is the result given by the Hartree
scheme.
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Fig. 3. Velocity-time profile for the third cardiac cycle at the position x = 80 cm. The solid curve
has been obtained by the Lax—Wendroff scheme, and the dashed curve by the Hartree method.
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As distinct from the transient waveforms displayed in Figs 1 and 2, where a
single pulse from the heart was observed as it propagated into a quiescent aorta,
we consider now the possibility of shock-waves occurring in the steady state
waveform. By the term “steady state” we refer to a situation in which any one
cardiac cycle is indistinguishable from the one which follows it, so that all
knowledge of the initial conditions is lost. This state is clearly of the greater
interest to physiologists. Unfortunately, it is not feasible to compute a large
number of cardiac cycles with the Lax—Wendroff method, employing the fine
numerical grid-spacing used in Figs 1 and 2, as the amount of computing time
required becomes prohibitive; for instance, the calculation of the single cardiac
cycle shown in Figs 1 and 2 required almost an hour on a CDC CYBER 173
machine. However, we have calculated a total of three cardiac cycles, as in [5],
starting with the same quiescent initial conditions as before, but employing the
somewhat coarser grid spacing Ax = 0.5 cm, Ar = 0.00025 sec. In Fig. 3, the
velocity waveform at the position x = 80 cm along the aorta for the third
cardiac cycle has been computed by both the Lax-Wendroff and Hartree
schemes. Although the graph obtained by the Lax-Wendroff method now
clearly suffers from the effects of numerical inaccuracy, such as overshoot in the
vicinity of shocks, it is nonetheless evident that the shock-waves, although
reduced somewhat in strength, are still present. Of course, it has not been proved
that the results for the third cardiac cycle are necessarily indicative of the
behaviour of the steady state, or even that a steady situation should exist.
However, numerical experiments employing the Lax—Wendroff method with
rather coarse grid-spacing, so that many cycles may be computed, tend to
suggest an approach to a steady state, of which the third cycle may be seen as
representative.

4. Conclusions

The non-dissipative system of blood-flow equations (1) bears a direct analogy
to the equations of unsteady gas-dynamics in one dimension. This means that,
for certain forms of the area-pressure relation (lc), any compression-like dis-
turbance applied to the system must ultimately steepen and form a shock. This
is analogous to Earnshaw’s paradox in gas-dynamics (see Birkhoff [4]).

The inclusion of dissipative effects such as those represented by the functions
¢y and f in equations (13) undoubtedly restricts the conditions under which
shocks may develop. However, the possibility of shock formation is by no means
excluded, and the governing equations must therefore be solved by a technique
capable of coping with shocks should they arise. Indeed, in a model such as that
proposed by Anliker er al. [2), it is clear that shocks are necessarily present in the
solution. This is apparently true even in the case of the steady-state waveform.
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Of course, the prediction of aortic shock waves by a model such as that
examined in this paper in no way implies that these are actually to be expected
in nature, since the model in this paper does not take into account rapid changes
with length scales of the order of an arterial diameter. Investigations of the
actual structure of the predicted rapid changes would need to include all
appropriate small scale effects ignored in the long wave model.

The appearance of shock discontinuities in the solution is a consequence of
the long wave assumption implicit in the statement of the one-dimensional
equations of motion, and so the effects of shocks may presumably be reduced by
returning to a two-dimensional formulation of the problem. Even when the
blood is considered to be an inviscid fluid, the two-dimensional model provides
dissipative mechanisms not present in the one-dimensional approximation, so
that it is possible that the discontinuity predicted by the one-dimensional
equations may appear in the two-dimensional formulation as a smooth transi-
tion followed by a train of non-linear waves, similar to the undular bore of
hydraulics.

It is also possible to suppress the formation of shock discontinuities while still
restricting attention to a one-dimensional formulation of the problem. If the
arterial wall is permitted to exhibit visco-elastic behaviour, the resultant system
of differential equations is parabolic in character, rather than hyperbolic, and so
discontinuous solutions are not admissible [8].

Finally, the properties of the blood within the vessel give rise to additional
dissipative effects, which also act to prevent the formation of discontinuities. If
the blood in the aorta is considered to be a Newtonian fluid, then its motion is
governed by the Navier-Stokes equations, which do not admit discontinuous
solutions. A model incorporating viscosity has been presented by Ling and
Atabek [11], although the Navier-Stokes equations of motion are again sim-
plified by means of the long wave approximation.

NoOTE ADDED IN PROOF. The editor has drawn the author’s attention to the
book by Pedley [13], in which one-dimensional non-linear pulse-propagation
theories are discussed. Although the failure of Hartree’s method in shock regions
is recognized, the correct computation of the shock is not attempted.
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