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IN A PROJECTIVE PLANE OF ODD ORDER
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Abstract

In this paper we investigate the structure of a collineation group G of a finite projective plane fl
of odd order, assuming that G leaves invariant an oval £2 of n . We show that if G is nonabelian
simple, then G = PSL(2, q) for q odd. Several results about the structure and the action of G
are also obtained under the assumptions that n = 1 (4) and G is transitive on the points of ft.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): primary 51 E 15,
51 A 10; secondary 20 B 25.

1. Introduction

In a previous work [2] the authors consider a finite projective plane n of odd
order, endowed with a collineation group G which preserves an oval il and
acts primitively on its points. In this case II is Desarguesian of order q, Q is
a conic and G = PSL(2, q), with only one exception.

When one attempts to study the same problem under the weaker assump-
tion that G is transitive on Q, the situation appears to be much more involved.
Indeed, G may be solvable, fixing a point-line pair (actually, this happens in
the Desarguesian plane) and it seems very difficult to determine the action
of G on the whole plane.

On the other hand, for such an investigation it is essential to know which
simple groups can preserve an oval in a projective plane of odd order. Of
course, this subject may be interesting in itself. Here, we give a complete
answer to the question by showing the following theorem.
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[2] Collineation groups preserving an oval 157

THEOREM A. Let G be a collineation group of a projective plane II of odd
order. If G is nonabelian simple and leaves invariant an oval of n , then
G = PSL(2, q) for q odd and all involutions in G are homologies.

The proof does not need the classification of simple groups. Indeed the
authors [2] already proved that a group preserving an oval in a projective
plane of odd order must have 2-rank at most 3.

In Section 4 we deal with the case of a projective plane of order n = 1 (4)
and among other things, we prove the following theorem.

THEOREM B. Let G be a collineation group of a projective plane II of order
n = 1 (4) such that G preserves an oval SI, acts transitively on its points and
does not contain any nontrivial subgroup with the same properties. Then one
of the following holds.

(i) G = 0{G) • (T), where T is a suitable 2-element ofG.
(ii) II has order q(q + 1) - 1 or q(q - 1) - 1 according to whether G =

PSL{2,q) with q = 1 (4) or G S PSL(2,q) with tf = 3 (4) and there
is exactly one homology axis through each point of Si.

(iii) n is a desarguesian plane, SI is a conic and either
(a) II has order q with q ^ 5,9 and 29, and G acts on SI as PSL(2, q)
in its usual doubly transitive representation, or
(b) II has order 9 and G acts on Si as PSL(2,5) in its primitive rep-
resentation of degree 10.

All situations (i)—(iii) actually occur in a Desarguesian plane. When II is
Desarguesian of order 5 or 29, the case (ii) occurs for G = PSL(2,3) = AA

and G = PSL{2,5), respectively.
The analogous problem in a plane of order n = 3 (4) seems to be very

difficult. For similar investigations in a projective plane of even order see [1]
and [3].

2. Preliminary results

We shall use standard notation. The necessary background about projec-
tive planes may be found in [5].

Let II be a projective plane of odd order n. If H is a collineation group of
II, then F(H) denotes the substructure of n consisting of those points and
lines which are fixed by each element of H. We shall write F(a) instead of
F{{a)) for any a e H. A triangular group K of homologies of n is a Klein

https://doi.org/10.1017/S1446788700035308 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700035308


158 Mauro Biliotti and Gabor Korchmaros [3]

group of collineations of II whose involutions are homologies and such that
F(K) is a triangle.

We also recall that, following Hering [10], a collineation group G of n is
called irreducible if G does not fix any point, line or triangle of n and strongly
irreducible if G is irreducible and does not leave invariant any proper subplane
ofn.

For what concerns finite groups the reader is referred to [8] and [11]. For
simple groups see also [9]. In particular, the classification of the subgroups
of PSL{2, q) is assumed to be known (see [11, II, Hauptsatz 8.27]). Here we
only recall that a group G is said to be of 2-rank h if h is the maximum rank
of an abelian 2-subgroup of G.

Simple groups of 2-rank at most 3 are well known.

RESULT 2.1. Let G be a finite, nonabelian, simple group of 2-rank at most
3. Then either

(i) G = G2(q), 3D4(<7), 2G2(3"), PSL(2,S), PSU(3,&), Sz(8), Ml2, Ji.
ON, where q and n are odd, n > 1, and G has 2-rank 3, or

(ii) G = PSL(2,q) (q > 5), PSL(3,q), PSU(3,q2), PSU(3,42), A-,, Mu,
where q is odd, and G has 2-rank 2.

Moreover, G has only one class of involutions except when G = Mi2, in
which case G has two classes of involutions.

PROOF. See [9, Theorems 1.86 and 2.168], for assertions (i) and (ii). The
number of involution classes is well-known (for example, see [9] for G2{q)
and iD4(q), [12] for 2G2(3") and Sz(S), [15] for sporadic simple groups).

Now, we enumerate some known results about the ovals of II.
An oval SI of II is a set of n +1 points of II, no three of which are collinear.

A line / of II is called an external line, a tangent or a secant of Q according
to whether |/ n Q| = 0,1 or 2. Each point of II, not in Q, lies in either two
or no tangents of Cl and it is called an external point or an internal point,
respectively. For more details see [5].

Let G be a collineation group of II which leaves Q invariant.

RESULT 2.2. The following hold.
(1) Any perspectivity in G is an involutory homology and two distinct ho-

mologies in G have both distinct centres and distinct axes.
(2) IfK is a Klein subgroup ofG, then K contains an involutory homology

which induces an even permutation on Si.
(3) G does not contain any elementary abelian subgroup of order 8 gener-

ated by three homologies.
(4) G has 2-rank at most 3.
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For a proof see [2, Propositions 2.1, 2.3 and 2.4].

RESULT 2.3. If a is an involution ofG, then one of the following holds.

(1) a induces an odd permutation on Q. Moreover,
(a) if a is a (L, l)-homology, then L is an internal point and I is an
external line ofCl, or L is an external point and I is a secant ofQ,
according to whether n = 1 (4) or n = 3 (4),
(b) if a is a Baer collineation, then either Q, n F{a) = 0, or Q n F{a)
is an oval ofF(o) and >/n = 3 (4).

(2) a induces an even permutation on il. Moreover,
(a) if a is a (L, l)-homology, then L is an internal point and I is an
external line ofCl, according to whether n — 1 (4) or n = 3 (4).
(b) if a is a Baer collineation, then Q n F{a) is an oval ofF{a).

In addition, when a is a Baer collineation, the following hold:

(i) ifQ n F{a) = 0, then (n + l)/2 lines ofF(a) are secants ofCl, while
the remaining {^/n + l)2/2 lines are external to £2;

(ii) ifQ, n F(a) is an oval ofF{a), then no line ofF(a) is external to Q.

For a proof see [2, Proposition 2.2].

LEMMA 2.4. IfG is a Klein group and all involutions in G are homologies,
then G actsf.p.f on £1

PROOF. F{G) is a triangle, by Result 2.2(1), and each of its vertices is the
centre of an involutory homology. So, a vertex of F(G) cannot lie in Q by
Result 2.3, (l.a) and (2.a).

3. Simple groups preserving an oval

A collineation group leaving an oval invariant possesses the following re-
markable "local" property.

PROPOSITION 3.1. Let G be a collineation group of II leaving invariant an
oval Cl. Suppose that G contains a Klein group K and let S be the subgroup
ofG generated by all involutions lying in ^(K). Then either S centralizes an
involution in K or S = S*.

PROOF. Suppose that S does not centralize any involution in K. Then all
involutions in K are conjugate and hence K is a triangular group of homolo-
gies by Result 2.2, (1) and (2).
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Let P, Q, R be the vertices of F(K) and let p, q, r be their opposite sides.
JVG{K) permutes cyclically the sides of F(K) so that either all sides of F(K)
are secants of il or all sides of F(K) are external to Q, according to Result
2.3. The proof develops into the following steps.

(1) If a and p are two distinct involutory homologies in JfciK) - K, then
either |a/?| — 2 or |a/?| = 3 according to whether the centres of a and /? lie
in the same side or in two distinct sides of F(K).

Let A and B be the centres of a and fi respectively.
Suppose that A and B lie in the same side, say p, of F(K). Since both a and

/? interchange the vertices Q and R and their axes pass through P, a/} fixes
F{K) pointwise. By [5, Proposition 4.2.6], (a/?) acts semiregularly on the
points of II different from P and not lying in p. So, (a/?) acts semiregularly
on the points of r different from P and Q and hence \afi\\ n - 1. If r is a
secant of fl, rnil is an orbit of length 2 of (afi) which is distinct from {P, Q}
by Lemma 2.4. Therefore, |a/?| = 2. If r is an external line of il then each
side of F(K) is external to Q. Therefore, (a/?) acts semiregularly on Q, and
hence \afi\\ n + 1. We then have that |«jff| = 2 since \afi\\ n - 1, as we already
showed.

Now, suppose that A and B lie in two distinct sides, say p and q, of ft.
Both afta and /?a/? are involutory homologies in JfciK) - K whose centres
lie in the line AB. Since these centres must lie in the third side r of Cl, they
both coincide with the point mAB. Thus, afla = flafi by Result 2.2(1) and
hence \afi\ = 3.

(2) Jfc(K) - K contains exactly six involutory homologies.
Now JPG{K) — K must contain some involutory homology since otherwise

S = K, contrary to our assumption that no involution in K is centralized
by S. Let a be an involutory homology in J^iK) - K whose centre A lies
in p. The side p must contain the centre of another involutory homology
P e Jfc{K)-K since the involutory (Q, #)-homology does not fix A. Suppose
that p contains the centre C of a third involutory homology y e ^c(A^) - K,
different from a and fi. Then (a, /?, y) is an elementary abelian group of order
4 by (1) and Result 2.2 (3). Nevertheless, (a,fi,y) centralizes the involutory
(.P,/?)-homology v since it fixes the axis of v. This contradicts Result 2.2
(3) since (a, /?, y, v) would be an elementary abelian group of order 8. Since
^G(AT) is transitive on the sides of F(K) our assertion is proved.

Using (1) and (2) it is easily seen that the set D consisting of the six
involutions in JVG{K.) — K verifies the following conditions:

(a) all involutions in D are conjugate;
(b) \afi\ = 2 or 3 for each a,0 e D;
(c) three pairwise different elements of D never generate a 2-group;
(d) Co{a) # a for each aeD.
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By a result of Fisher [6], (D) = S4. It is easily seen that (D) contains K
and hence S = 54.

Throughout the rest of this section we assume that G is a nonabelian simple
group which leaves invariant an oval Q, of II.

PROPOSITION 3.2. G is an irreducible collineation group of II.

PROOF. G contains a triangular group K of homologies by Result 2.2 (2)
and by [7, Corollary 1]. Hence, G cannot fix a point P e f i b y Lemma 2.4.

Suppose that G fixes a point P $ il. The group K must contain an homol-
ogy a with the centre P. Since a is the unique homology with that centre, it
is central in G. This is a contradiction, being G simple.

So, G does not fix any point and, dually, G does not fix any line.
If G leaves invariant a triangle A, then G must fix A pointwise because G

is simple. This has been already excluded.

LEMMA 3.3. The cases G s PSU(3, a1) or A7 cannot occur.

PROOF. All involutions in G are homologies by Results 2.1 and 2.2(2). Let
K be a Klein subgroup of G.

Suppose that G = PSU(3,q2). The group S generated by all involutions
in ^G(AT) has order 6(q + l)2/d, where d = (3,<7 + 1), and is transitive on
the vertices (the sides) of F(K) (see [14, Theorem 3]). By Proposition 3.1
we should have S = S4. So, we have a contradiction.

Now suppose that G = Aj. In this case the group S is of type (E4 x ZT,)SI

and again, it is transitive on the vertices (the sides) of F{K) (see [4, Appendix
3] and also recall that A7 < PSU(3,52)). This contradicts Proposition 3.1.

LEMMA 3.4. The cases G = PSL(3, q), Mu or Mn cannot occur.

PROOF. Again, G contains involutory homologies by Result 2.2(2).
Let G = PSL(3,q). By [13, Theorem C], G contains non-trivial elations,

contrary to Result 2.2(1).
The group G is strongly irreducible on the subplane of II generated by the

centres and the axes of involutory homologies in G (see [10, Lemmas 3.3 and
3.5]). So, G?Mn or Mn by [15].

We notice that the same technique of Lemma 3.3 could be essentially used
also in the proof of Lemma 3.4.

Now, we can prove Theorem A.

PROOF OF THEOREM A. Suppose that n = 3 (4).
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t

A 2-group of collineations of II is cyclic, dihedral, semidihedral, or a gen-
eralized quaternion group (see [5, Proposition 4.2.4]). As G is simple, a
Sylow 2-subgroup of G is dihedral or semidihedral (see [9, Section 1]). By
the Gorenstein-Walter and Alperin-Brauer-Gorenstein theorems [9] we then
have that

G s PSL(2,q) (q odd, q > 5), PSL(3,q) (for q = 3 (4)),
PSU(3,q2) (for q = 1 (4)), A7 o rM, , .
Suppose that n = 1 (4).
By Result 2.2(3) and (4), either G has 2-rank 2 or G has 2-rank 3 and

possesses more than one class of involutions. By Result 2.1 we then have
that

G^PSL{2,q) (q > 5), PSL(3,q), PSU(3,q2), PSU(3,42), A7,
Miu where q is odd, or G = M12.

By Lemmas 3.3 and 3.4 we have to consider only the case G = PSU{3,42).
Note that the homology axes in G are secants of Q, by Result 2.3(2.a). Let
P be any point of fl which is fixed by the involutory homology a. CG{O)
contains a subgroup C of index two fixing P. By Lemma 2.4, the group
C cannot contain any involution different from a and commuting with a.
Nevertheless, in the case under consideration, a Sylow 2-subgroup T of G
contains a Klein group K such that each element in K is a square in T (see
for example [12]). So, we have a contradiction. This completes the proof.

4. Transitive groups

The study of collineation groups acting transitively on the points of an
invariant oval seems to be rather difficult. Here we give only some partial
results.

Throughout this section we suppose that the plane II has order n = 1 (4).

LEMMA 4.1. Let P be a p-group of collineations ofYl which preserves an
oval Q. Ifp is odd and P acts f.p.f. on Q then one of the following holds

(j) F(P) = {L, 1}, where L is an internal point and I an external line of
Q.

(jj) F{P) is a subplane whose points are internal to £1 and whose lines are
external to Q.

Furthermore, if a is an involutory collineation of n which preserves Q,
induces an even permutation on Q and normalizes P, then a is a homology
andF{P) is as in (j).
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PROOF. Clearly, P can fix only internal points and external lines of Q since
it acts f.p.f. on £1. Furthermore, p\n + 1. So, [p, n(n - l)/2) = 1 and hence P
fixes at least one internal point L and one external line / of 01. Suppose that P
fixes an external line m of Q different from /. Then P fixes Inm. Futhermore,
P fixes at least two other points both on / and m, being (p, n) = (p, n - 1) = 1.
Hence, F(P) is a subplane. The same holds if P fixes an internal point of Q
different from L.

We have to prove the last assertion. Assume that a satisfies the required as-
sumptions. Then a must fix some line h in F(P). If a were a Baer collineation
then h should be a secant or a tangent of Q, by Result 2.3(2b) and (ii). This
is impossible. Therefore, a is a homology. When F(P) is a subplane the
axis m of a lies in F(P). Since m is a secant of £1 by Result 2.3(2.a), this
situation cannot occur.

Now we can prove the following

PROPOSITION 4.2. Let G be a collineation group of II which preserves an
oval Q. and acts transitively on its points. IfGo = GnMt Q has even order,
then Go contains involutory homologies.

PROOF. Suppose that all involutions in Go are Baer collineations. By [2,
Proposition 2.5], a Sylow 2-subgroup S of Go is cyclic. Thus, Go - O(G0) S
by the well-known result of Burnside (for example see [11, IV, Satz, 2.8]).

Since 0{GQ) < G, there exists a minimal normal subgroup M of odd order
in G. As G is transitive on Q, M acts f.p.f. on Q. Let a be an involution in
Go. By Lemma 4.1, a should be a homology and we have a contradiction.

Proposition 4.2 allow us to use Hering's theory [10] in studying collineation
groups G which are transitive on an oval and irreducible over the plane pro-
vided that 4\\G\. So, one of the main problems is to decide when G is
irreducible. Here we put forward the following conjecture.

CONJECTURE. A collineation group which preserves an oval Q, in a projec-
tive plane of odd order and acts transitively on the points of Q is irreducible
if and only if it is nonsolvable.

In the following, we give some results which seem to confirm this conjec-
ture.

PROPOSITION 4.3. Let G be a collineation group ofU which preserves an
oval Q, and acts transitively on its points. If G is not irreducible over II and
41|(/|, then one of the following holds.

(1) G fixes a point-line pair P, I of II. Furthermore,
(a) the Sylow 2-subgroups ofGo = Gn Alt £2 are cyclic or generalized
quaternion groups.
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(b) the group O(G) • (T), where T is a suitable 2-element ofG, is tran-
sitive on Q.

(2) G leaves invariant a triangle, U has order 5 and G = A4or S4.

Furthermore, all involutions in Go are homologies.

PROOF. Suppose that G fixes a point P.
If P is an external point of Q then G either fixes or interchanges the

tangents at Q through P. This is in contrast with the transitivity of G on Q.
So, P is an internal point of Cl.

An involution a € Go cannot be a Baer collineation since it fixes the point
P which is internal to Q. Likewise, a cannot be an homology with the centre
P (see Result 2.3). Therefore, all involutions in Go are homologies whose axes
pass through P and any two of them must generate a group of odd order. This
proves (l.a). Furthermore, by a result of Glauberman (see [7, Corollary 5.3]),
the involutions in Go generate a group H such that [H: O(H)] = 2. Since G
is transitive on Q, there is exactly one homology axis through each point of Q,
and the homology axes lie in the same orbit under O(H). So, 0{H) splits the
points of Q into two orbits of length (n + l)/2. Furthermore, there must be
an element T of G having order a power of two and interchanging the orbits
of O(H). Since 0{H) < O(G), we have (l.b).

The group G possesses a minimal normal subgroup M of odd order which
acts f.p.f. on Q since G is transitive on il. Furthermore, G contains involutory
homologies inducing even permutations on Si. Therefore, F{M) = {P, 1} for
an external line / of Q by Lemma 4.1. We must have F(G) = F{M) and (1)
is proved.

Dually, the same conclusion holds when G fixes a line.
Suppose that G leaves invariant a triangle A.
We may assume that G does not fix any element of A and that none of the

sides of A is a tangent of Q. If the sides of A are secants of Q then II has
order 5 in view of the transitivity of G on Q. Thus, n is Desarguesian and
the oval Q. is left invariant by the group PGL(2,5) which contains exactly
the subgroups A* and S* acting on the points of Q in the required manner.

If the sides of A are external to Q, let Go (A) be the subgroup of Go fixing
A pointwise. An involution in Go cannot be a Baer collineation since it fixes
external lines of Q. An involution in Go (A) cannot be an homology since
its axis should be one of the sides of A which are external to Q, (see Result
2.3). Therefore, G0(A) has odd order and G0/G0(A) < 53. If G0(A) ^ (1),
G contains a minimal normal subgroup of odd order and hence, by Lemma
4.1, F{G) consists of a point-line pair, contrary to our assumption. The case
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(?o(A) = (1) and Go = S3 may be excluded in the same manner. So, the case
under consideration cannot occur.

When G is solvable, G cannot be irreducible over II. Namely, we have

PROPOSITION 4.4. Let G be a collineation group of TI which preserves an
oval Cl and acts transitively on its points. IfG is solvable and 4\\G\, then
either the case (I) or the case (2) of Proposition 4.3 occurs and all involutions
in Go are homologies.

PROOF. Suppose that G possesses a minimal normal subgroup M of odd
order. M acts f.p.f. on Q. because G is transitive on Q. By Lemma 4.1, the
involutions in Go are homologies and F(M) = {L, / } , where L is an internal
point and / an external line of Q. We must have F{G) = F(M) and hence
the case (1) of Proposition 4.3 occurs.

Now, assume that every minimal normal subgroup of G has even order.
Since Go < G, there exists a minimal normal subgroup M of G contained in
Go.

The case \M\ = 2 cannot occur. Indeed, the unique involution in M would
fix some point on Q, contrary to the transitivity assumption. So, \M\ = 4
and M is a triangular group of homologies as easily follows from Result 2.2.
Thus, G leaves invariant F(M) and we have the case (2) of Proposition 4.3.

For "minimal" transitive groups we have the following

COROLLARY 4.5. Let Gbea collineation group of II which preserves an oval
Cl, acts transitively on its points and does not contain any nontrivial subgroup
with the same properties. If4\\G\, then G is solvable if and only if it is not
irreducible over II.

PROOF. If G is solvable then G cannot be irreducible by Proposition 4.4.
Suppose that G is not irreducible. By Proposition 4.3, either G = 0{G) • (T),
where r is an element of G of order 2r, with r > 2, or Go = G n AltQ =
O(G) • (a) for an homology a and G — Go • (T) for a suitable element of order
2 of G. So, G is solvable.

Another corollary to Proposition 4.3 is the following

COROLLARY 4.6. With the same assumptions of Proposition 4.3 suppose
that the case (1) holds for G. If none of the elements of odd order of G is
planar, then GQ = (7 n Alt fi is a Frobenius group.
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PROOF. We may regard Go as acting on the pencil 3 consisting of the
secants of Q through the fixed point P. Clearly, Go is transitive on S. Fur-
thermore, a nontrivial element of odd order of Go cannot fix two distinct
lines of S. Indeed, it should fix at least four points on Q, and hence it would
be planar.

Suppose that a centre A of an involutory homology a e Go lies on a line
b of S. Then a centralizes the unique involutory homology of Go with the
axis b. This contradicts Proposition 4.3 (l.a). So, an involutory homology
in Go fixes exactly one line of 2. It follows that an element of even order of
Go cannot fix two distinct lines of 3 .

Therefore Go acts on 3 as a Frobenius group.

The rest of this section is devoted to the study of those groups which are
transitive on an oval and irreducible over the plane.

LEMMA 4.7. Let G be a collineation group of II which preserves an oval fl
and acts transitively on its points. IfG is irreducible over II and 4||G|, then
one of the following holds:

(i) M <G< Aut(Af);
(ii) G = Go x K, where Go = G n Alt Q, K has order 2 and M < Go <

Aut(M);

for a suitable nonabelian simple group M.

PROOF. G contains involutory homologies by Proposition 4.2. By [10,
Lemmas 3.3 and 5.3], the centres and the axes of homologies in G generate
a subplane Z of II and G is strongly irreducible over Z. Suppose that Z =
II. By [10, Theorem 5.5], either we have (i) or the unique minimal normal
subgroup M of G is elementary abelian of order 9 and G/M < Aut(M). The
latter possibility cannot occur since G would be solvable, in contrast with
Proposition 4.4.

Now, suppose that Z ^ n . Then the following hold.

(1) fini = 0.
(2) There is exactly one line of Z through each point of Q and this line

is the axis of an involutory homology.
(3) The kernel K of the representation of G on Z has order at most 2.

(1) follows from the transitivity of G on Q.
(2) Go contains involutory homologies whose axes are secants of Q by

Proposition 4.2. By (1) and the transitivity of G on Q, we have (2).
(3) Suppose that K £ (1). Using (2) it is easily seen that an element of

odd order of K fixes Q. pointwise and hence it is the identity. So, \K\ = 2h

and K is a cyclic group by [2, Proposition 2.5]. The unique involution a in
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K cannot fix any point on Q, since it is central in G. Therefore, a induces an
odd permutation on Q and hence \K\ = 2.

When K = (1) we have (i) by [10, Theorem 5.5]. Otherwise, G = Go x K.
The group GQ is faithful and strongly irreducible over Z since G and GQ act
on Z in the same manner. Thus, M <Go< Aut(M) for a nonabelian simple
group M, again by [10, Theorem 5.5] and by Proposition 4.4.

Now, we make use of Theorem A to obtain the following result.

THEOREM 4.8. Let G be a collineation group ofll which preserves an oval
£2 and acts transitively on its points. IfG is irreducible over n and 4\\G\, then
G is strongly irreducible over II and M <G < Aut(Af), where M = PSL(2, q).
Furthermore, M is transitive on the points ofil and one of the following holds:

(1) n has order q(q + 1) - 1 or q(q - 1) - 1 according to whether M =
PSL(2, q) with q = 1 (4) or M = PSL(2, q) with q = 3 (4) and there
is exactly one homology axis through each point ofQ.

(2) n is a Desarguesian plane, il is a conic and either
(a) II has order q and M acts on SI as PSL(2, q) in its usual doubly
transitive representation, or
(b) n has order 9 and M acts on Q as PSL(2,5) in its primitive
representation of degree 10.

PROOF. We use the same notation of Lemma 4.7. We have that M =
PSL(2, q), q odd, by Theorem A. First, we shall prove that the subplane Z
coincides with II.

Suppose that Z ^ II. As we already showed in Lemma 4.7, the axes of
homologies in M lie in Z, Q and X have no common points and each point
of £1 belongs to the axis of exactly one homology in M.

Assume that q = 1 (4), q ^ 9. Let a, ft be two involutions in M which
generate a dihedral group D of order q + 1. The axes of a and ft intersect in
a point P which lies in Z and is fixed by D. Since D is a maximal subgroup
of M—we suppose q ^ 9—and M is f.p.f. on Z by [10, Theorem 5.5], the
point P belongs to an orbit of length |A/|/|Z)| = q(q - l)/2. Furthermore, the
centres of homologies in M lie in an orbit of length q(q + l)/2 contained in
Z because the centralizer of an involution in M is dihedral of order q - 1.
Thus, Z has at least q2 points and hence Z has order m > q. On the other
hand, it is easily seen that n = q(q + 1) - 1 and hence m < q - 1 by Brack's
Theorem because n is not a square. So, we have a contradiction.

Suppose that q = 9. If Z contains a point P such that Mp > D, where D is
dihedral of order 10, then MP = PSL(2,5). So, Mp contains a Klein group
K such that JVMP(K) = A4. This is a contradiction. Indeed, K is a triangular
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group of homologies and the vertices of F(K) are cyclically permuted by A4.
Therefore, A4 must be f.p.f. on II.

When q = 3 (4), q ^ 7, 11, we obtain a contradiction as in the case q = 1
(4), q £ 9. Here D is dihedral of order q-\.

Lastly, if q = 7 or 11 and Mp > D for some point P e E, then A/> = 54
or PSL(2,5), respectively. In both cases we obtain a contradiction as in the
case q = 9.

Therefore G is strongly irreducible over II.
Let H be the subset of M consisting of all involutory homologies in M.

Since M is normal in G and G is transitive on Q, each point of Q, must lie in
the axis of some homology in H. All involutions in H are conjugate under
M. Furthermore, the axis / of any homology a e H is fixed by an element
of M which interchanges the points P, Q e L n Q. Indeed, by Lemma 2.4,
CC(CT) cannot fix P since it contains a Klein group. Therefore, M is transitive
on the points of Q.

We notice that if a point P € Q lies in the axis of exactly one involutory
homology a e M, then no involutory homology in G, different from a, can
have the axis through P. Indeed it would be forced to centralize a, contrary
to Lemma 2.4.

For any involutory homology a e M, we denote by C{a) a subgroup of
CM{O) such that C(a) contains no Klein groups and [CM{O): C{a)] = 2. If
/ is the axis of a and P e / n f l , then it is easily seen that the stabilizer of P
in CM{O) is a group of type C(o).

If q = 3 (4) and ffi, Oi are two distinct involutory homologies in M then
C(<7i) and C(o2) are cyclic groups of order (q + l ) /2. We have that either
(C(ai),C(<72)) = A/ or (C(CTI),C(CT2)) = ^4, &t or A5. By Lemma 2.4, the
axes of a\ and 02 cannot intersect in a point of Q. So, we have (1) for q = 3
(4).

Suppose that 0 = 1 (4). Again, let O\,o-i be two distinct involutory ho-
mologies in M. In this case C{ax) and C{oi) are cyclic groups of order
{q - l ) /2 . One can prove that if {C{o\),C((72)) is different from M and
contains no Klein groups, then either {C{o\), Cfa)) = ^{P) where P is a
Sylow p-subgroup of M for q = ph, or (C(cr1),C(CT2)> = S3 and q - 5. In
both cases, (C(<TI ), C(a2)) is a maximal subgroup of M. So, if the axes of <j\
and <r2 intersect in a point Q of Q, then either MQ = JfciP) or q = 5 and
A/Q = S3. As in [2, Main Theorem], we have (2).

Clearly, if there are exactly one homology axis through each point of il,
we have (1).

EXAMPLE 4.9. The case (1) of Theorem 4.8 actually occurs.
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Let II be the Desarguesian plane of order 29. Then n admits a collineation
group F = PSL(2,29) which preserves a conic Q and acts on the points
of £2 in its usual doubly transitive representation. F possesses a subgroup
M = PSL(2,5). Let P be any point of ft. Since \FP\ = 14 • 29, \M\ = 60
and |ft| = 30, we have that \M n .F>| = 2 and M is transitive on Q. Clearly,
each point of Q contains the axis of exactly one homology in M because

PROOF OF THEOREM B. When 4\\G\ we have (i). If 4||(r| and G is not
irreducible, then we have (i) by Proposition 4.3(1.b), provided n has order
different from 5. When n has order 5, we may have also G = A4 = PSL(2,3)
by Proposition 4.3(2), and the case (ii) occurs.

When 4||G| and G is irreducible we have (ii) or (iii) by Theorem 4.8.
Notice that in the case (1) of Theorem 4.8, the group M is minimal transitive
on ft. Indeed, any transitive subgroup of M must contain all involutory
homologies in M and hence it coincides with M. In case (2.a), a direct
inspection of the subgroups of PSL{2, q),q=\ (4), shows that M is minimal
transitive on ft for all q ^ 5, 9 or 29. For q = 5, PSL(2, q) contains the
subgroup A4 which is minimal transitive on ft. For q = 9 or 29, PSL(2, q)
contains a subgroup isomorphic to PSL(2,5) which is minimal transitive on
ft. This leads to the case (2.b) or to Example 4.9.

When 4f |G| and G is transitive on ft, G must contain only involutions
which induce odd permutations on ft. In this case we have not been able to
obtain any significant information about the structure and the action of G.
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