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Abstract
This article explores the relationship between Hessenberg varieties associated with semisimple operators with
two eigenvalues and orbit closures of a spherical subgroup of the general linear group. We establish the specific
conditions under which these semisimple Hessenberg varieties are irreducible. We determine the dimension of each
irreducible Hessenberg variety under consideration and show that the number of such varieties is a Catalan number.
We then apply a theorem of Brion to compute a polynomial representative for the cohomology class of each such
variety. Additionally, we calculate the intersections of a standard (Schubert) hyperplane section of the flag variety
with each of our Hessenberg varieties and prove that this intersection possesses a cohomological multiplicity-free
property.
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1. Introduction

Let n be a positive integer and let 𝐺 = 𝐺𝐿𝑛 (C). Given positive integers 𝑝, 𝑞 such that 𝑝+𝑞 = 𝑛, let K be
a Levi subgroup of the stabilizer in G of a p-dimensional subspace of C𝑛. So, 𝐾 � 𝐺𝐿𝑝 (C) ×𝐺𝐿𝑞 (C).
Then K is spherical. We examine coincidences between two well-studied classes of subvarieties in the
type A flag variety: Hessenberg varieties and K-orbit closures. We identify a collection of Hessenberg
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varieties, each equal to the closure of a single K-orbit. Leveraging the theory of K-orbits, we answer,
for this particular collection, questions that are difficult to settle for arbitrary Hessenberg varieties.

Let B be the Borel subgroup of G consisting of upper triangular matrices. The flag variety B = 𝐺/𝐵
has been studied extensively since the 1950s. More recently, Hessenberg varieties in B, which were
first studied due to their connection with numerical linear algebra, have been of interest to geometers,
representation theorists and combinatorialists.

We identify B with the collection of full flags

𝑉• = 0 < 𝑉1 < . . . < 𝑉𝑛−1 < 𝑉𝑛 = C𝑛

with dim𝑉𝑖 = 𝑖 for all 𝑖 ∈ [𝑛] := {1, . . . , 𝑛}. A Hessenberg vector is a weakly increasing sequence
m = (𝑚1, . . . , 𝑚𝑛) of integers satisfying 𝑖 ≤ 𝑚𝑖 ≤ 𝑛 for each 𝑖 ∈ [𝑛]. Given such m and any 𝑛 × 𝑛
matrix x, the associated Hessenberg variety is

Hess(x, m) := {𝑉• ∈ B | x𝑉𝑖 ≤ 𝑉𝑚𝑖 for all 𝑖 ∈ [𝑛]}.

While there have been more recent developments, the survey [AH20] by Abe and Horiguchi gives a
nice summary of the work on Hessenberg varieties and connections to various fields.

Despite their elementary definition, some basic questions about the structure of Hessenberg varieties
remain wide open. The ones of interest herein follow.

(A) What is the dimension of Hess(x, m)?
(B) For which matrices x and Hessenberg vectors m is Hess(x, m) irreducible?
(C) If Hess(x, m) is irreducible, can we describe cohomology class in 𝐻∗(B;Z) it represents?

Let us give an example illustrating that Questions (A) and (B) are subtle, in that their answers can
depend on the choice of matrix x when m is fixed.

Example 1. Consider the Hessenberg vector m = (2, 3, 4, . . . , 𝑛, 𝑛). If s is a regular semisimple matrix,
then by the work of De Mari, Procesi and Shayman in [MPS92], Hess(s, m) is isomorphic to the toric
variety associated to the fan of type 𝐴𝑛−1 Weyl chambers. In particular, Hess(s, m) is irreducible of
dimension 𝑛 − 1.

Example 2. Let m = (2, 3, 4, . . . , 𝑛, 𝑛) as in Example 1. For 𝑖 ∈ [𝑛 − 1], let 𝑤𝑖 ∈ S𝑛 be the unique
permutation satisfying

◦ 𝑤𝑖 (1) = 𝑖 + 1,
◦ 𝑤𝑖 (𝑛) = 𝑖, and
◦ 𝑤𝑖 ( 𝑗) > 𝑤𝑖 ( 𝑗 + 1) for 2 ≤ 𝑗 ≤ 𝑛 − 2.

We write 𝐸1𝑛 for the 𝑛 × 𝑛 elementary matrix whose only nonzero entry is in its first row and last
column. As shown by Tymoczko in [Tym06], Hess(𝐸1𝑛, m) is the union of the Schubert varieties 𝑋𝑤 𝑖 ,
from which it follows that Hess(𝐸1𝑛, m) has 𝑛− 1 irreducible components, each of dimension 1+

(𝑛−1
2
)
.

Remark 3. For a fixed Hessenberg vector m, there can be irreducible varieties Hess(x, m) and
Hess(y, m) of differing dimensions. For example, if 𝑚1 < 𝑛 and 𝑚 𝑗 = 𝑛 for 𝑗 > 1, then Hess(x, m) = B
if and only if x is scalar, while Hess(y, m) is irreducible of dimension dim(B) − (𝑛 − 𝑚1) whenever y
is regular.

The results on Hess(𝐸1𝑛, (2, 3, . . . , 𝑛, 𝑛)) discussed in Example 2 are worth further consideration.
The key point is that for each 𝑔 ∈ 𝐵, 𝐸1𝑛𝑔 = 𝜆𝑔𝐸1𝑛 for some 𝜆 ∈ C. That is, the Borel subgroup
B stabilizes the subspace spanned by 𝐸1𝑛 under the adjoint action. It follows directly that for every
Hessenberg vector m, Hess(𝐸1𝑛, m) is B-invariant and therefore a union of B-orbits. Thus, every
irreducible component of Hess(𝐸1𝑛, m) is a Schubert variety 𝑋𝑤 for some 𝑤 ∈ S𝑛. One can determine
which 𝑋𝑤 appear as such components for any given m; see [Tym06, AC16].
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We use the approach described in the previous paragraph to study Hess(x, m) when x is semisimple
with exactly two distinct eigenvalues. Given such x with eigenvalues 𝜆, 𝜇 of respective multiplicities
𝑝, 𝑞 (hence 𝑝 + 𝑞 = 𝑛), let 𝑌, 𝑍 be the associated eigenspaces. Thus, C𝑛 = 𝑌 ⊕ 𝑍 . The simultaneous
stabilizer K of Y and Z in G is isomorphic to 𝐺𝐿𝑝 (C) × 𝐺𝐿𝑞 (C), and it is straightforward to see that
Hess(x, m) is a union of K-orbits. It is well known (see, for example, [Wol69]) that K is spherical; that
is, K has finitely many orbits on B. We will use the classification and theory of K-orbits on B due to
Yamamoto [Yam97] and many others [MO90, Wys16, CU19] to address Questions (A), (B), (C) above
for Hessenberg varieties defined using such x.

Assume as above that the semisimple matrix x has exactly two distinct eigenvalues𝜆, 𝜇 with respective
multiplicities 𝑝, 𝑞, and fix a Hessenberg vector m. We observe that the isomorphism type of Hess(x, m)

depends only on p and q. Indeed, since Hess(𝑔−1x𝑔, m) = 𝑔Hess(x, m) for every 𝑔 ∈ 𝐺, we may
assume that x = (𝑥𝑖 𝑗 ) is diagonal with 𝑥𝑖𝑖 = 𝜆 for 𝑖 ∈ [𝑝] and 𝑥𝑖𝑖 = 𝜇 for 𝑝 < 𝑖 ≤ 𝑛. Moreover, it is
straightforward to show that for scalars 𝛼 ≠ 0 and 𝛽,

Hess(𝛼x + 𝛽𝐼, m) = Hess(x, m);

hence, 𝜆 and 𝜇 are irrelevant and our observation follows. So, there is no harm in writing x𝑝,𝑞 to denote
any such semisimple matrix x.

We summarize now our results on Hess(x𝑝,𝑞 , m). Our first result addresses Question (B).

Theorem 4 (See Corollaries 3.7 and 3.9 and Theorem 3.11 below). The following conditions on the
Hessenberg variety Hess(x𝑝,𝑞 , m) are equivalent.

1. Hess(x𝑝,𝑞 , m) is irreducible.
2. There is a Hessenberg vector (ℓ1, . . . , ℓ𝑞) of length q such that 𝑚𝑖 = ℓ𝑖 + 𝑝 for 𝑖 ≤ 𝑞 and 𝑚𝑖 = 𝑛 for

𝑞 < 𝑖 ≤ 𝑛.
3. Hess(x𝑝,𝑞 , m) is the closure of one of 1

𝑞+1
(2𝑞
𝑞

)
orbits of K on B. This collection of orbits is naturally

parameterized by 231-free permutations in S𝑞 .

There is a formula for the dimensions of K-orbits in a flag variety (see [Yam97, Section 2.3]).
This formula allows us to compute and write a nice formula for the dimension of any irreducible
Hess(x𝑝,𝑞 , m), thereby addressing Question (A) for this collection.

Corollary 5 (See Corollary 3.14 below). If m = (𝑚1, . . . , 𝑚𝑛) is a Hessenberg vector such that
Hess(x𝑝,𝑞 , m) is irreducible, then

dim Hess(x𝑝,𝑞 , m) =
𝑛∑
𝑖=1

(𝑚𝑖 − 𝑖).

Previous work on Question (C) addresses cases where x is regular. It is known that the class of any
regular Hessenberg variety depends only on the underlying Hessenberg vector [AFZ20]. Polynomial
representatives for the classes of regular Hessenberg varieties were first identified as specializations of
certain double Schubert polynomials [AT10, ITW20]. Even more recently, Nadeau and Tewari [NT21]
gave a combinatorial formula expressing each as a sum of Schubert polynomials in the special case of
m = (2, 3, . . . , 𝑛, 𝑛). Here, we consider certain cases in which x is not regular.

Let us state a more specific version of Question (C). The cohomology classes associated with the
Schubert varieties 𝑋𝑤 (𝑤 ∈ S𝑛) form a basis for 𝐻∗(B;Z). Let I be the ideal in 𝑅 := Z[𝑥1, . . . , 𝑥𝑛]
generated by constant-free symmetric polynomials. There is an isomorphism 𝜙 from 𝐻∗(B;Z) to 𝑅/𝐼
mapping the class associated to 𝑋𝑤 to the Schubert polynomial𝔖𝑤 . (This presentation of 𝐻∗(B;Z) is due
to Borel; see [Bor53] or [Man01].) Given any irreducible subvariety V of B, one can ask how to expand
the image 𝔖(V) under 𝜙 of the class associated to V as a linear combination of Schubert polynomials.
We obtain the following result for the collection of irreducible Hessenberg varieties introduced in the
statement of Theorem 4.
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Theorem 6 (See Corollary 4.15). Let 𝑋 := Hess(x𝑝,𝑞 , m) be an irreducible Hessenberg variety indexed
by a 231-free permutation 𝑤 ∈ S𝑞 . A polynomial representative of the class 𝔖(𝑋) of Hess(x𝑝,𝑞 , m) in
the integral cohomology ring of the flag variety is given by the following sum of Schubert polynomials

𝔖(𝑋) =
∑
(𝑢,𝑣)

𝔖𝑢𝑤0𝑣−1𝑤0 ,

where 𝑤0 is the longest element of S𝑛, 𝑦0 is the longest element of S𝑞 , and the sum is taken over all
pairs (𝑢, 𝑣) ∈ S𝑞 × S𝑞 such that 𝑤𝑦0 = 𝑢𝑣 and ℓ(𝑤𝑦0) = ℓ(𝑢) + ℓ(𝑣).

A key ingredient in our computations for Theorem 6 is the useful notion of the W-set associated
with a K-orbit O = 𝐾𝑉• in the flag variety. Loosely speaking, the W-set of O consists of permutations
that are obtained by multiplying the simple reflections that label the edges of certain saturated paths
in the weak order on the spherical variety 𝐺/𝐾; see Section 2.3 for more. The origins of W-sets
go back to the influential work of Richardson and Springer in [RS90], where the authors initiated a
systematic study of the (weak) Bruhat orders on the Borel orbit closures in symmetric varieties. This
development is generalized by Knop to all spherical homogeneous varieties in [Kno95]. Brion’s work
[Bri01] has brought to light a multitude of fascinating applications of W-sets to the geometry of K-
orbits. In particular, Brion used W-sets to describe certain deformations of K-orbits in flag varieties
to the unions of Schubert varieties; the results of Theorem 6 rest heavily on this work. More recently,
combinatorialists have used W-sets to develop Schubert calculus for (classical) symmetric spaces. There
is currently a fast-growing literature on this subject [WY17, WY14, HMP18, HM21, HMP22].

It follows directly from Theorem 6 that if Hess(x𝑝,𝑞 , m) is irreducible, then the polynomial
𝔖(Hess(x𝑝,𝑞 , m)) is a 0 − 1 sum of Schubert polynomials. In other words, when we express
𝔖(Hess(x𝑝,𝑞 , m)) as a linear combination of Schubert polynomials, all coefficients lie in {0, 1}. When-
ever a polynomial is a 0−1 sum of Schubert polynomials, we say the sum is multiplicity-free. Something
stronger is true. For 𝑖 ∈ [𝑛 − 1], we write 𝑠𝑖 for the transposition (𝑖, 𝑖 + 1) ∈ S𝑛.

Theorem 7 (See Theorem 4.20 below). If 𝑖 ∈ [𝑛−1] and Hess(x𝑝,𝑞 , m) is irreducible, then the product
𝔖𝑠𝑖𝔖(Hess(x𝑝,𝑞 , m)) is a multiplicity-free sum of Schubert polynomials.

Theorem 7, which is a consequence of Theorem 6 and Monk’s formula, gives insight into how
Hess(x𝑝,𝑞 , m) intersects certain Schubert varieties of codimension one in B.

Geometrically speaking, at the cycle level, the classical Monk’s formula ([Mon59, Theorem 3]) says
that the intersection of a Schubert variety 𝑋 ⊆ 𝐺/𝐵 with a Schubert divisor 𝑍 ⊂ 𝐺/𝐵 is a multiplicity-
free sum of Schubert divisors of X. Although Hess(x𝑝,𝑞 , m) has a flat degeneration to a union Y of
(many) Schubert varieties, it is not a B-stable subvariety of 𝐺/𝐵. In light of this fact, we find it rather
surprising that the cohomology class of the intersection of Hess(x𝑝,𝑞 , m) with Z is a 0 − 1 sum of the
classes of Schubert divisors in Y. It is unknown to us if this multiplicity-free phenomenon persists in all
cases of the intersection between Z and any K-orbit closure or any irreducible semisimple Hessenberg
variety in the flag variety.

It is natural to ask whether the methods used here and illustrated in Example 2 are more widely
applicable. The key idea is that if Hess(x, m) is invariant under the action of a spherical group H, then
known combinatorial descriptions of H-orbits allow for a detailed analysis of Hess(x, m) that is difficult
to carry out for arbitrary Hessenberg varieties. If a spherical subgroup H of G centralizes x (up to
multiplication by a scalar), then H indeed acts on Hess(x, m) for all m. However, this situation is rare.
If x is semisimple, then 𝐶𝐺 (x) is reductive. The reductive spherical subgroups of G are known (see
[Krä79],[Bri87],[Mik86]). These are the centralizers of the matrices x𝑝,𝑞 studied herein along with the
classical groups that act irreducibly on C𝑛. In the second case, the centralizer of every such classical
group consists of the scalar matrices, and if x is scalar, then Hess(x, m) = B for all m. There are
nilpotent matrices other than conjugates of 𝐸1𝑛 with spherical centralizers in G, but these are also rare.
The automorphism group of Hess(x, m) can be much larger than 𝐶𝐺 (x), but it seems challenging to
give a comprehensive and useful analysis of this phenomenon. On the other hand, in [MPS92], De Mari,
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Procesi and Shayman define Hessenberg varieties for arbitrary reductive groups. In Lie types other
than A, there are additional examples of reductive spherical subgroups centralizing nonscalar elements.
We will examine these examples in future work.

Plan of the Paper

The content of the rest of the paper is as follows. After reviewing the requisite results in Section 2,
we prove Theorem 4 and Corollary 5 in Section 3. The proofs of Theorems 6 and 7 are the subject of
Section 4.

2. Notation and preliminaries

We review here various results and definitions that we will use below. We denote by Z+ the set of
positive integers. Let 𝑛 ∈ Z+. Let 𝐺 = 𝐺𝐿𝑛 (C) and let 𝐵 ≤ 𝐺 be the Borel subgroup consisting of
upper triangular matrices. The flag variety 𝐺/𝐵 will be denoted by B. We identify each coset 𝑔𝐵 ∈ B
with the flag

𝑉• = 0 < 𝑉1 < . . . < 𝑉𝑛−1 < 𝑉𝑛 = C𝑛

in which each 𝑉𝑖 is spanned by the first i columns of g.
Denote the symmetric group on [𝑛] by S𝑛. Let p and q be positive integers such that 𝑛 = 𝑝 + 𝑞. We

frequently consider below the smaller symmetric group S𝑞 , which we identify with the subgroup of S𝑛
stabilizing [𝑛] \ [𝑞] pointwise. For 𝑖 ∈ [𝑛 − 1], we write 𝑠𝑖 for the simple reflection (𝑖, 𝑖 + 1) ∈ S𝑛. A
reduced word for 𝑤 ∈ S𝑛 is any shortest possible representation

𝑤 = 𝑠𝑖1 𝑠𝑖2 . . . 𝑠𝑖ℓ

of w as a product of simple reflections. We call the set of simple reflections that appear in any reduced
expression of w the support of w and denote it by Supp(𝑤). For example, Supp(2143) = Supp(𝑠1𝑠3) =
{𝑠1, 𝑠3}.

The length ℓ(𝑤) of 𝑤 ∈ S𝑛 is the number of simple reflections appearing in any reduced word for w.
It is well known that

ℓ(𝑤) =| {𝑖 < 𝑗 | 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, 𝑤(𝑖) > 𝑤( 𝑗)} |

for all 𝑤 ∈ S𝑛. The longest elements of both S𝑛 and S𝑞 play a role below; to avoid confusion, we write
𝑤0 for the longest element of S𝑛 and 𝑦0 for the longest element of S𝑞 .

We say that 𝑤 ∈ S𝑛 avoids 312 (or is 312-free) if there do not exist 1 ≤ 𝑖 < 𝑗 < 𝑘 ≤ 𝑛 such that
𝑤( 𝑗) < 𝑤(𝑘) < 𝑤(𝑖) and define avoidance of 231 similarly. It is straightforward to show that w avoids
231 if and only if 𝑤−1 avoids 312.

2.1. Hessenberg varieties

A Hessenberg vector is a weakly increasing sequence

m = (𝑚1, . . . , 𝑚𝑛)

of integers satisfying 𝑖 ≤ 𝑚𝑖 ≤ 𝑛 for each 𝑖 ∈ [𝑛]. Given a matrix x ∈ 𝔤 := 𝔤𝔩𝑛 (C) and Hessenberg
vector m, we define the corresponding Hessenberg variety by

Hess(x, m) := {𝑉• ∈ B | x𝑉𝑖 ≤ 𝑉𝑚𝑖 for all 𝑖 ∈ [𝑛]}.

Given a Hessenberg vector m, we define 𝜋m to be the lattice path from the upper left corner to the lower
right corner of an 𝑛 × 𝑛 grid in which the vertical step in row i occurs in column 𝑚𝑖 . Since 𝑚𝑖 ≥ 𝑖, 𝜋m
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is a Dyck path; that is, the lattice path 𝜋m never crosses the diagonal connecting the two corners. We
write area(𝜋m) for the number of squares in the grid that lie below 𝜋𝑚 and strictly above the diagonal
and observe that

area(𝜋m) =
𝑛∑
𝑖=1

(𝑚𝑖 − 𝑖).

Herein, we examine Hessenberg varieties Hess(x𝑝,𝑞 , m) where x𝔭,𝑞 ∈ 𝔤 is semisimple with exactly two
distinct eigenvalues, one of multiplicity p and one of multiplicity q (so 𝑝+𝑞 = 𝑛). Since Hess(𝑔−1x𝑔, m) =
𝑔Hess(x, 𝑚) for all 𝑔 ∈ 𝐺 and all x ∈ 𝔤, we assume without loss of generality that

x𝑝,𝑞 = diag(𝜆1, . . . , 𝜆1︸������︷︷������︸
𝑝 times

, 𝜆2, . . . , 𝜆2︸������︷︷������︸
𝑞 times

),

for distinct 𝜆1, 𝜆2 ∈ C.
The centralizer of x𝑝,𝑞 in G is the subgroup 𝐾 � 𝐺𝐿𝑝 (C) ×𝐺𝐿𝑞 (C) consisting of all 𝑔 = (𝑔𝑖 𝑗 ) ∈ 𝐺

such that 𝑔𝑖 𝑗 = 0 if either 𝑖 ≤ 𝑝 < 𝑗 or 𝑗 ≤ 𝑝 < 𝑖. It is straightforward to confirm that if 𝑉• ∈

Hess(x𝑝,𝑞 , m) and 𝑔 ∈ 𝐾 , then

𝑔𝑉• := 0 < 𝑔𝑉1 < . . . < 𝑔𝑉𝑛−1 < C𝑛 ∈ Hess(x𝑝,𝑞 , m).

Thus, Hess(x𝑝,𝑞 , m) is a union of K-orbits on B.

2.2. K-orbits on the flag variety

The group K is known to have finitely many orbits on the flag variety B. These orbits are parameterized
by combinatorial objects called clans. Clans originated in work of Matsuki and Ōshima [MO90] to
parameterize symmetric subgroup orbits on complex flag manifolds of classical type. Their notation
has morphed with developments through subsequent works, notably by Yamamoto [Yam97] and then
Wyser [Wys16].

We define the set of clans as follows. Consider the set of all sequences

𝛾 = 𝑐1𝑐2 · · · 𝑐𝑛

such that
1. each 𝑐𝑖 lies in {+,−} ∪ Z+,
2. each element of Z+ appearing in 𝛾 appears exactly twice, and
3. if + and − appear, respectively, exactly s times and t times in 𝛾, then 𝑠 − 𝑡 = 𝑝 − 𝑞.
We define an equivalence relation on this set by identifying sequences 𝛾 = 𝑐1 . . . 𝑐𝑛 and 𝛿 = 𝑑1 . . . 𝑑𝑛 if
◦ 𝑑𝑖 = 𝑑 𝑗 ∈ Z+ whenever 𝑐𝑖 = 𝑐 𝑗 ∈ Z+, and
◦ 𝑑𝑖 = 𝑐𝑖 whenever 𝑐𝑖 ∈ {+,−}.

A (𝑝, 𝑞)-clan (or clan if 𝑝, 𝑞 are fixed) is an equivalence class of this relation. We identify a clan with
its unique representative 𝛾 satisfying
◦ if 𝑗 > 1 ∈ Z+ appears in 𝛾, then 𝑗 − 1 appears in 𝛾 and the first occurrence of 𝑗 − 1 is to the left of

the first occurrence of j,
and write Clan𝑝,𝑞 for the set of all such representatives. So, for example, 5++3−+35+ and 1++2−+21+
lie in the same (6, 3)-clan, and the second of these is our fixed representative for the equivalence class.
In general, if 𝛾 ∈ Clan𝑝,𝑞 , then there is some ℓ ∈ Z≥0 such that the integers appearing in 𝛾 are exactly
those in [ℓ], and if s entries of 𝛾 are plus signs and t entries are minus signs, then 𝑝 = ℓ + 𝑠 and 𝑞 = ℓ + 𝑡.

A flag 𝑉 (𝛾)• in B is associated with each clan 𝛾 in the next definition.

https://doi.org/10.1017/fms.2025.10063 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10063


Forum of Mathematics, Sigma 7

Definition 2.1. Let 𝑒1, . . . , 𝑒𝑛 be the standard basis for C𝑛. Given (𝑝, 𝑞)-clan 𝛾 = 𝑐1 . . . 𝑐𝑛, define
𝑣1, . . . , 𝑣𝑛 ∈ C𝑛 as follows.

◦ If 𝑐𝑖 is the 𝑘 𝑡ℎ occurrence of + in 𝛾 and exactly ℓ elements of [𝑞] have appeared at least once among
𝑐1, . . . , 𝑐𝑖−1, set 𝑣𝑖 = 𝑒𝑘+ℓ .

◦ If 𝑐𝑖 is the 𝑘 𝑡ℎ occurrence of − in 𝛾 and exactly ℓ elements of [𝑞] have appeared twice among
𝑐1, . . . , 𝑐𝑖−1, set 𝑣𝑖 = 𝑒𝑝+𝑘+ℓ .

◦ Say 𝑐𝑖 = 𝑐 𝑗 = 𝑘 ∈ [𝑞] for some 𝑖 < 𝑗 , with exactly r occurrences of + appearing in 𝑐1 · · · 𝑐𝑖−1,
exactly s occurrences of − appearing in 𝑐1 · · · 𝑐 𝑗−1, and exactly u elements of [𝑞] appearing twice in
𝑐1 · · · 𝑐 𝑗 . Then set 𝑣𝑖 = 𝑒𝑘+𝑟 + 𝑒𝑝+𝑠+𝑢 and 𝑣 𝑗 = 𝑒𝑘+𝑟 − 𝑒𝑝+𝑠+𝑢 .

For 𝑖 ∈ [𝑛], set

𝑉 (𝛾)𝑖 := C{𝑣 𝑗 | 𝑗 ≤ 𝑖}

and define

𝑉 (𝛾)• := 0 < 𝑉 (𝛾)1 < . . . < 𝑉 (𝛾)𝑛−1 < C𝑛 ∈ B.

We observe that, for arbitrary 𝛾, each vector 𝑣𝑖 used to construct 𝑉 (𝛾)• is either a standard basis
vector or of the form 𝑒𝑟 ± 𝑒𝑠 with 𝑟 ∈ [𝑝] and 𝑝 < 𝑠 ≤ 𝑛.

Example 2.2. Say 𝑝 = 5, 𝑞 = 3, and 𝛾 = +1 + −2 + 21. Then 𝑣1 = 𝑒1, 𝑣2 = 𝑒2 + 𝑒8, 𝑣3 = 𝑒3, 𝑣4 = 𝑒6,
𝑣5 = 𝑒4 + 𝑒7, 𝑣6 = 𝑒5, 𝑣7 = 𝑒4 − 𝑒7, and 𝑣8 = 𝑒2 − 𝑒8.

Definition 2.3. Given a (𝑝, 𝑞)-clan 𝛾, we set

O𝛾 := 𝐾𝑉 (𝛾)•,

so O𝛾 is the K-orbit on B containing 𝑉 (𝛾)•.

Lemma 2.4 (Matsuki–Ōshima [MO90]). Each K-orbit on B contains a unique flag 𝑉 (𝛾)•; therefore,
each K-orbit on B is of the form O𝛾 for some 𝛾 ∈ Clan𝑝,𝑞 . Furthermore, O𝛾 = O𝛿 for 𝛾, 𝛿 ∈ Clan𝑝,𝑞
if and only if 𝛾 = 𝛿.

Definition 2.5. Given 𝛾, 𝜏 ∈ Clan𝑝,𝑞 we write 𝛾 ≤ 𝜏 whenever O𝛾 ⊆ O𝜏 . We call the partial order ≤
the inclusion order on Clan𝑝,𝑞 .

We now present a result of Wyser [Wys16] characterizing the inclusion order. Given a clan 𝛾 =
𝑐1𝑐2 · · · 𝑐𝑛, we define

1. 𝛾(𝑖;+) to be the total number of plus signs and pairs of equal natural numbers occurring among
𝑐1 · · · 𝑐𝑖 ,

2. 𝛾(𝑖;−) to be the total number of minus signs and pairs of equal natural numbers occurring among
𝑐1 · · · 𝑐𝑖 , and

3. 𝛾(𝑖, 𝑗) to be the number of pairs of equal numbers 𝑐𝑠 = 𝑐𝑡 ∈ Z+ with 𝑠 ≤ 𝑖 < 𝑗 < 𝑡.

Example 2.6. If 𝛾 = +1 + −2 + 21 as in Example 2.2 above, then

(𝛾(𝑖;+))𝑛𝑖=1 = (1, 1, 2, 2, 2, 3, 4, 5),

(𝛾(𝑖;−))𝑛𝑖=1 = (0, 0, 0, 1, 1, 1, 2, 3),
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and

(𝛾(𝑖, 𝑗))𝑛𝑖, 𝑗=1 =

	










�

0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 0
0 0 0 0 1 1 1 0
0 0 0 0 0 2 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

��
.

Theorem 2.7 (Wyser). Let 𝛾 and 𝜏 be (𝑝, 𝑞)-clans. Then 𝛾 ≤ 𝜏 if and only if all three inequalities

1. 𝛾(𝑖;+) ≥ 𝜏(𝑖;+),
2. 𝛾(𝑖;−) ≥ 𝜏(𝑖;−), and
3. 𝛾(𝑖, 𝑗) ≤ 𝜏(𝑖, 𝑗)

hold for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑛.

The unique maximum element of Clan𝑝,𝑞 in the inclusion order is

𝛾0 := 12 · · · 𝑞 + · · · + 𝑞 · · · 21.

(There are 𝑝 − 𝑞 plus signs appearing in 𝛾0.) The K-orbit O𝛾0 is open and dense in B.

Example 2.8. We have

(𝛾0 (𝑖;+))𝑛𝑖=1 = (0, . . . , 0︸���︷︷���︸
𝑞 times

, 1, 2, . . . , 𝑝),

(𝛾0 (𝑖;−))𝑛𝑖=1 = (0, . . . , 0︸���︷︷���︸
𝑝 times

, 1, 2, . . . , 𝑞),

and

𝛾0 (𝑖, 𝑗) =

⎧⎪⎪⎨⎪⎪⎩
𝑖 if 𝑖 ∈ [𝑞], 𝑗 ∈ [𝑝],
𝑞 if 𝑖, 𝑗 ∈ [𝑝]\[𝑞],
𝑝 + 𝑞 − 𝑗 if 𝑖 ∈ {𝑞 + 1, . . . 𝑛}, 𝑗 ∈ {𝑝 + 1, . . . , 𝑛}.

Finally, if 𝑖 ∈ [𝑞] and 𝑗 ∈ {𝑝 + 1, . . . , 𝑛}, then 𝛾0 (𝑖, 𝑗) = min{𝑛 − 𝑗 , 𝑖}.

The following statement, which we record here for use in the next section, follows directly from the
definition of the statistic 𝛾(𝑖, 𝑗).

Lemma 2.9. Let 𝛾 ∈ Clan𝑝,𝑞 . For all 𝑖 > 1, 𝛾(𝑖, 𝑗) − 𝛾(𝑖 − 1, 𝑗) ∈ {0, 1} with 𝛾(𝑖, 𝑗) − 𝛾(𝑖 − 1, 𝑗) = 1
if and only if there exists 𝑡 > 𝑗 such that 𝑐𝑖 = 𝑐𝑡 .

2.3. The weak order

We now recall a formula of Brion for the cohomology class of a K-orbit closure O𝛾 from [Bri01]. While
there is a version of Brion’s result for orbits of arbitrary spherical subgroups, we state here the result for
the special case of the spherical subgroup 𝐾 = 𝐺𝐿𝑝 (C) × 𝐺𝐿𝑞 (C) in 𝐺𝐿𝑛 (C).

First, we require some terminology. Let Δ denote the subset of simple roots in the root system of
𝔤𝔩𝑛 (C) specified by our choice of Borel subgroup B. In particular, we have

Δ = {𝜖𝑖 − 𝜖𝑖+1 | 𝑖 ∈ [𝑛 − 1]},
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where 𝜖𝑖 : 𝔤𝔩𝑛 (C) → C is defined by 𝜖𝑖 (x) = x𝑖,𝑖 . For each 𝛼𝑖 := 𝜖𝑖 − 𝜖𝑖+1 ∈ Δ , let 𝑃𝑖 be the minimal
parabolic subgroup defined by 𝑃𝑖 := 𝐵 � 𝐵𝑠𝑖𝐵. Consider the canonical projection map 𝜋𝑖 : 𝐺/𝐵 →

𝐺/𝑃𝑖 . For each 𝛾 ∈ Clan𝑝,𝑞 , the pull-back 𝜋−1
𝑖 (𝜋𝑖 (O𝛾)) contains a unique dense K-orbit, which we

denote by 𝑠𝑖 · O𝛾 . Notice that there might be more than one simple transposition giving the same K-
orbit. Although this is not essential for the definition of our weak order, it will be important for us to
keep track of these different simple transpositions. The weak order on the set of K-orbits is the transitive
closure of the relation defined by

O𝛾 ≺ O𝜏 ⇔ 𝜏 ≠ 𝛾 and O𝜏 = 𝑠𝑖 ·O𝛾 for some 𝑖 ∈ [𝑛 − 1] . (1)

We also write 𝛾 � 𝜏 to denote the weak order on the set Clan𝑝,𝑞 . We claim that 𝛾 ≤ 𝜏 whenever 𝛾 � 𝜏.
Indeed, it suffices to show this claim under the assumption that 𝛾 � 𝜏 is a cover relation. We observe
that if O𝛾 ≺ O𝜏 , then there is some 𝑖 ∈ [𝑛 − 1] such that

O𝛾 ⊆ 𝜋−1
𝑖 (𝜋𝑖 (O𝛾)) = O𝜏 .

The claim follows. The clan 𝛾0 is the unique maximal element of Clan𝑝,𝑞 with respect to both the weak
order and inclusion order.

We form an (oriented) graph on the vertex set Clan𝑝,𝑞 with edges 𝛾 → 𝜏 whenever (1) holds for
some 𝑠𝑖 , 𝑖 ∈ [𝑛 − 1]. In this case, we label the edge as follows:

𝛾
𝑠𝑖
−−→ 𝜏.

As we mentioned before, there can be more than one simple transposition 𝑠𝑖 with 𝑖 ∈ [𝑛 − 1] giving the
same cover relation in (1). Hence, an edge of our directed graph may have multiple labels. We will use
these labels in Section 4.

Given a directed path

𝑃 : 𝛾 = 𝛾1
𝑠𝑖1
−−−→ 𝛾2

𝑠𝑖2
−−−→ 𝛾3 · · ·

𝑠𝑖ℓ
−−−→ 𝛾ℓ+1 = 𝛾0

from 𝛾 to 𝛾0, we define 𝑤(𝑃) := 𝑠𝑖1 𝑠𝑖2 · · · 𝑠𝑖ℓ ∈ S𝑛.

Definition 2.10. For each 𝛾 ∈ Clan𝑝,𝑞 , the W-set of the K-orbit O𝛾 is

𝑊 (𝛾) := {𝑤(𝑃) | 𝑃 a labeled directed path from 𝛾 to 𝛾0} ⊆ S𝑛.

We can now state Brion’s formula [Bri01, Theorem 6].

Theorem 2.11 (Brion). Let 𝛾 ∈ Clan𝑝,𝑞 . The K-orbit closure O𝛾 has rational singularities and admits
a flat degeneration to the reduced subscheme⋃

𝑤 ∈𝑊 (𝛾)

𝐵𝑤0𝑤𝐵/𝐵 ⊂ B.

In particular, we have

[O𝛾] =
∑

𝑤 ∈𝑊 (𝛾)

[𝐵𝑤0𝑤𝐵/𝐵] (2)

in the integral cohomology ring of B.

Remark 2.12. Let us denote by B(𝐺/𝐾) the set of all B-orbit closures in a spherical homogeneous
space 𝐺/𝐾 , where G is a complex connected reductive algebraic group, and K is a spherical subgroup
of G. (As usual, T, B and W stand for a maximal torus in G, a Borel subgroup containing T in G, and
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• • • • • • • •

1 2 3 4 5 6 7 8

+ + − +

Figure 1. The matching for clan 𝛾 = +1 + −2 + 21.

the Weyl group of G, respectively.) For 𝑌 ∈ B(𝐺/𝐾), the W-set of Y consists of 𝑤 ∈ 𝑊 such that the
natural quotient morphism 𝜋𝑌 ,𝑤 : 𝐵𝑤𝐵 ×𝐵 𝑌 → 𝐺/𝐾 is surjective and generically finite. It turns out
that, by [Bri01, Lemma 5], this definition is equivalent to a generalization of our Definition 2.10 to the
setup of spherical homogeneous spaces.

Let 𝑑 (𝑌, 𝑤) denote the degree of 𝜋𝑌 ,𝑤 . It turns out that this number is always a power of 2, [Bri01,
Lemma 5 (iii)]. The real geometric usefulness of this integer is explained by Brion in [Bri01, Theorem 6].
In particular, the cohomology class corresponding to Y in 𝐻∗(𝐺/𝐵,Z) is given by

[𝑌 ] =
∑

𝑤 ∈𝑊 (𝑌 )

𝑑 (𝑌, 𝑤) [𝐵𝑤0𝑤𝐵/𝐵] .

In our special case, where 𝐾 = 𝐺𝐿𝑝 (C) ×𝐺𝐿𝑞 (C), the work of Vust [Vus90] implies that each of these
degrees is equal to 1, implying our identity (13). It also implies the vanishing of all higher cohomology
spaces for the restrictions of effective line bundles from 𝐺/𝐵 to Y.

We now recall a combinatorial description for the weak order on Clan𝑝,𝑞 used in the work of the first
author, Joyce and Wyser [CJW16]. This description is most easily stated in terms of charged matchings.
A matching on [𝑛] is a finite graph on the vertex set [𝑛] such that each vertex is either isolated or
adjacent to precisely one other vertex. A charged matching is a matching with an assignment of a + or
− charge to each isolated vertex.

The set of (𝑝, 𝑞)-clans is in bijection with the set of all charged matchings on [𝑛] having 𝑝 − 𝑞 more
+’s than −’s. Explicitly, we obtain a matching from a clan 𝛾 = 𝑐1𝑐2 · · · 𝑐𝑛 by connecting i and j by an
arc whenever 𝑐𝑖 = 𝑐 𝑗 ∈ Z+ and recording all signed entries as charges on isolated vertices. We identify
the set of (𝑝, 𝑞)-clans with charged matchings throughout, but particularly in Section 4 below.

Example 2.13. The matching associated to the (5,3)-clan 𝛾 = +1 + −2 + 21 appears in Figure 1.

From [CJW16, Section 2.5], we get that the weak order on clans is the transitive closure of the
covering relations

𝛾
𝑠𝑖
−−→ 𝛾′,

where we obtain 𝛾′ from 𝛾 according to one of the following moves on the corresponding charged
matchings, each of which is illustrated in Figure 2 below.

◦ Types IA1 and IA2: Switch the endpoint of a strand with an adjacent sign so as to lengthen the strand.
◦ Type IB: Create a crossing from two disjoint strands at consecutive vertices.
◦ Types IC1 and IC2: Create a nested pair of strands by uncrossing the ends of two crossing strands at

consecutive vertices.
◦ Type II: Replace a pair of consecutive, opposite charges with a strand of length 1.

An astute reader will note that [CJW16] actually studies the opposite weak order on Clan𝑝,𝑞 , so our
Figure 2 reverses the covering relations as presented in Figure 2.5 of that reference.
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• •

±

𝑖 𝑖 + 1
• •

±

𝑖 𝑖 + 1

Type IA1
−−−−−−−−−−→

• •

±

𝑖 𝑖 + 1
• •

±

𝑖 𝑖 + 1

Type IA2
−−−−−−−−−−→

• •

𝑖 𝑖 + 1
• •

𝑖 𝑖 + 1

Type IB
−−−−−−−−→

• •

𝑖 𝑖 + 1
• •

𝑖 𝑖 + 1

Type IC1
−−−−−−−−−−→

• •

𝑖 𝑖 + 1
• •

𝑖 𝑖 + 1

Type IC2
−−−−−−−−−−→

• •

𝑖 𝑖 + 1
• •

𝑖 𝑖 + 1

± ∓

Type II
−−−−−−−−→

Figure 2. Cover relations of the weak order on Clan𝑝,𝑞 .

3. Irreducible Hessenberg varieties Hess(x𝑝,𝑞 , m)

In this section, we classify all irreducible Hessenberg varieties of the form Hess(x𝑝,𝑞 , m) and prove
Theorem 4 from the Introduction. To begin, we identify the K-orbits that are contained in Hess(x𝑝,𝑞 , m).

Proposition 3.1. The K-orbit O𝛾 associated to the (𝑝, 𝑞)-clan 𝛾 = 𝑐1𝑐2 · · · 𝑐𝑛 lies in Hess(x𝑝,𝑞 , m) if
and only if 𝑚𝑖 ≥ 𝑗 whenever 𝑐𝑖 = 𝑐 𝑗 ∈ Z+ with 𝑖 < 𝑗 .

Proof. It suffices to determine which clans 𝛾 satisfy 𝑉 (𝛾)• ∈ Hess(x𝑝,𝑞 , m), where 𝑉 (𝛾) is the flag
representative of O𝛾 specified in Definition 2.1 above. We observe first that each 𝑒𝑖 is an eigenvector
for x𝑝,𝑞 and that if 𝑣𝑖 ∈ {𝑒𝑟 + 𝑒𝑠 , 𝑒𝑟 − 𝑒𝑠} with 𝑟 ∈ [𝑝] and 𝑝 < 𝑠 ≤ 𝑛, then C{𝑣𝑖 , x𝑝,𝑞𝑣𝑖} = C{𝑒𝑟 , 𝑒𝑠}.
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Thus, 𝑉 (𝛾)𝑖 + x𝑝,𝑞𝑉 (𝛾)𝑖 is spanned by those standard basis vectors 𝑒𝑘 such that one of

(A) there is some 𝑗 ∈ [𝑖] with 𝑣 𝑗 = 𝑒𝑘 , or
(B) there is some 𝑎 ∈ [𝑖] with 𝑣𝑎 = 𝑒𝑟 + 𝑒𝑠 and 𝑘 ∈ {𝑟, 𝑠}

holds. On the other hand, the standard basis vector 𝑒𝑘 is an element of 𝑉 (𝛾)𝑚𝑖 if and only if one of

(A’) there is some 𝑗 ∈ [𝑚𝑖] with 𝑣 𝑗 = 𝑒𝑘 , or
(B’) there is some 𝑏 ∈ [𝑚𝑖] with 𝑣𝑏 = 𝑒𝑟 − 𝑒𝑠 and 𝑘 ∈ {𝑟, 𝑠}

holds. Indeed, if there is no 𝑗 ∈ [𝑚𝑖] with 𝑣 𝑗 = 𝑒𝑘 , then 𝑒𝑘 ∈ 𝑉 (𝛾)𝑚𝑖 if and only if there are 𝑎, 𝑏 ∈ [𝑚𝑖]

with 𝑣𝑎 = 𝑒𝑟 + 𝑒𝑠, 𝑣𝑏 = 𝑒𝑟 − 𝑒𝑠 and 𝑘 ∈ {𝑟, 𝑠}. In this case, 𝑎 < 𝑏 and 𝑐𝑎 = 𝑐𝑏 by definition of the flag
𝑉 (𝛾)•.

For each i, we have 𝑉 (𝛾)𝑖 ≤ 𝑉 (𝛾)𝑚𝑖 since 𝑚𝑖 ≥ 𝑖. Thus, 𝑉 (𝛾) ∈ Hess(x𝑝,𝑞 , m) if and only if
𝑉 (𝛾)𝑖 + x𝑝,𝑞𝑉 (𝛾)𝑖 ≤ 𝑉 (𝛾)𝑚𝑖 for all i. Suppose 𝑒𝑘 ∈ 𝑉 (𝛾)𝑖 + x𝑝,𝑞𝑉 (𝛾𝑖), so we are in either Case (A) or
Case (B) from above. In Case (A), the vector 𝑒𝑘 is also an element of 𝑉 (𝛾)𝑚𝑖 by (A’) since 𝑖 ≤ 𝑚𝑖 .

In Case (B), there exists 𝑎 ∈ [𝑖] such that 𝑣𝑎 = 𝑒𝑟 + 𝑒𝑠 , and we have C{𝑒𝑟 , 𝑒𝑠} ≤ 𝑉 (𝛾)𝑖 + x𝑝,𝑞𝑉 (𝛾𝑖)
with 𝑘 ∈ {𝑟, 𝑠}. By definition of the flag𝑉 (𝛾), there exists some 𝑏 > 𝑎 such that 𝑐𝑎 = 𝑐𝑏 and 𝑣𝑏 = 𝑒𝑟−𝑒𝑠 .
By (B’), C{𝑒𝑟 , 𝑒𝑠} ≤ 𝑉 (𝛾)𝑚𝑖 if and only if 𝑏 ∈ [𝑚𝑖] – that is, if 𝑏 ≤ 𝑚𝑖 . The proposition follows. �

As any Hess(x𝑝,𝑞 , m) is a union of K-orbits, the next proposition follows immediately from the
definitions.

Proposition 3.2. The Hessenberg variety Hess(x𝑝,𝑞 , m) is irreducible if and only if, among the clans
corresponding to K-orbits contained in Hess(x𝑝,𝑞 , m), there is a unique maximal one with respect to
the inclusion order.

Let us specify two particular clans 𝜎 and 𝜏 in Clan𝑝,𝑞 by

𝜎 := + + · · · +︸����︷︷����︸
𝑝 times

− − · · · −︸����︷︷����︸
𝑞 times

and

𝜏 := − − · · · −︸����︷︷����︸
𝑞 times

+ + · · · +︸����︷︷����︸
𝑝 times

.

Observe that 𝜎(𝑖;−) = 0 for 𝑖 ≤ 𝑝 and 𝜏(𝑖;+) = 0 for 𝑖 ≤ 𝑞. Under our assumption that 𝑝 ≥ 𝑞, the next
claim follows.

Lemma 3.3. If 𝛾 = 𝑐1𝑐2 · · · 𝑐𝑛 ∈ Clan𝑝,𝑞 such that 𝜎 ≤ 𝛾 and 𝜏 ≤ 𝛾, then all of

(a) 𝑐𝑖 = 𝑖 for each 𝑖 ∈ [𝑞],
(b) 𝑐𝑖 = + for 𝑞 < 𝑖 ≤ 𝑝, and
(c) {𝑐𝑖 | 𝑝 < 𝑖 ≤ 𝑝 + 𝑞} = [𝑞]

hold. In particular, if O𝛾 = Hess(x𝑝,𝑞 , m) for some Hessenberg vector m, then 𝛾 satisfies all three
conditions.

Proof. As each of O𝜎 and O𝜏 lies in O𝛾 , we have

◦ 𝛾(𝑖;−) ≤ 𝜎(𝑖;−) = 0 for 𝑖 ≤ 𝑝 and
◦ 𝛾(𝑖;+) ≤ 𝜏(𝑖;+) = 0 for 𝑖 ≤ 𝑞

by Theorem 2.7. These conditions imply that 𝛾 cannot contain any signs or pairs of positive integers
within the first q entries and cannot contain any minus signs or pairs of positive integers within the first p
entries. Since 𝛾 contains at most q natural number pairs, conditions (a) and (b) now follow. Condition (c)
follows from (a) and (b) and the fact that 𝛾 is a clan. The last statement of the lemma follows immediately,
as both O𝜎 and O𝜏 lie in Hess(x𝑝,𝑞 , m) for every Hessenberg vector m by Proposition 3.1. �
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We can rewrite condition (c) from Lemma 3.3 as

(c’) there is some 𝑤 ∈ S𝑞 such that 𝑐𝑝+𝑖 = 𝑤(𝑖) for each 𝑖 ∈ [𝑞].

Given a clan 𝛾 satisfying (a),(b) and (c’), we write 𝛾𝑤 for 𝛾. Thus, for each 𝑤 ∈ S𝑞 , we obtain a unique
clan 𝛾𝑤 = 𝑐𝑤1 𝑐𝑤2 · · · 𝑐𝑤𝑛 defined by

◦ 𝑐𝑤𝑖 = + for all 𝑞 < 𝑖 ≤ 𝑝, and
◦ 𝑐𝑤𝑖 = 𝑐𝑤

𝑝+𝑤−1 (𝑖)
= 𝑖 for all 𝑖 ∈ [𝑞].

Note that 𝛾0 = 𝛾𝑦0 where 𝑦0 is the longest permutation in S𝑞 . In fact, the collection of all such (𝑝, 𝑞)-
clans forms is precisely the inclusion-interval [𝛾𝑒, 𝛾0] in Clan𝑝,𝑞 .

Lemma 3.4. Let 𝛾𝑒 = 12 · · · 𝑞 + · · · + 12 · · · 𝑞 be the clan corresponding to the identity in S𝑞 . If 𝛾𝑒 ≤ 𝛾,
then 𝛾 = 𝛾𝑤 for some 𝑤 ∈ S𝑞 . In particular, 𝛾𝑤 (𝑖;+) = 𝛾0 (𝑖;+) and 𝛾𝑤 (𝑖;−) = 𝛾0 (𝑖;−) for all i, and
𝛾𝑤 (𝑖, 𝑗) = 𝛾0 (𝑖, 𝑗) whenever 𝑖, 𝑗 ∈ [𝑝] or 𝑖, 𝑗 ∈ {𝑝 + 1, . . . , 𝑛}.

Proof. We observe that both 𝜎 ≤ 𝛾𝑒 and 𝜏 ≤ 𝛾𝑒. Thus, 𝛾 satisfies each of the conditions (a), (b) and (c’)
by Lemma 3.3, and the first assertion of the lemma is proved. To prove the second, we observe that the
equality of the various statistics holds in the case of 𝑤 = 𝑒; cf. Example 2.8. The general case now follows
since 𝛾0 (𝑖;−) ≤ 𝛾𝑤 (𝑖;−) ≤ 𝛾𝑒 (𝑖;−), 𝛾0 (𝑖;+) ≤ 𝛾𝑤 (𝑖;−) ≤ 𝛾𝑒 (𝑖;+), and 𝛾𝑒 (𝑖, 𝑗) ≤ 𝛾𝑤 (𝑖, 𝑗) ≤ 𝛾0 (𝑖, 𝑗)
by Theorem 2.7 in all cases. �

The inclusion order on the clans in the interval [𝛾𝑒, 𝛾0] is greatly simplified. Indeed, the only case
in which the statistics appearing in Theorem 2.7 can differ is when considering 𝛾𝑤 (𝑖, 𝑗) with 𝑖 ∈ [𝑞]
and 𝑗 ∈ {𝑝 + 1, 𝑝 + 2, . . . , 𝑛}. In that situation, we obtain the following.

Lemma 3.5. For all 𝑤 ∈ S𝑞 and all 𝑖 ∈ [𝑞], 𝑗 ∈ {𝑝 + 1, . . . , 𝑛},

𝛾𝑤 (𝑖, 𝑗) =
��{𝑤−1 (1), . . . , 𝑤−1 (𝑖)

}
∩ { 𝑗 − 𝑝 + 1, . . . , 𝑞}

��
=
��{𝑘 ≤ 𝑖 | 𝑤−1 (𝑘) > 𝑗 − 𝑝

}��.
Proof. We have a pair 𝑠 < 𝑡 such that 𝑠 ≤ 𝑖 < 𝑗 < 𝑡 and 𝑐𝑤𝑠 = 𝑐𝑤𝑡 if and only if 𝑡 = 𝑤−1 (𝑠) + 𝑝 by
definition of 𝛾𝑤 . �

Example 3.6. Consider (5, 3)-clans 𝛾𝑤 = 123 + +213 and 𝛾𝑤′ = 123 + +132. For the clan 𝛾𝑤 ,
𝑤(1) = 2, 𝑤(2) = 1, and 𝑤(3) = 3, while for 𝛾𝑤′ , we have 𝑤′(1) = 1, 𝑤′(2) = 3, and 𝑤′(3) = 2. The
definition of 𝛾(𝑖; 𝑗) and straightforward calculation give us that

(𝛾𝑤 (𝑖, 𝑗))
𝑛
𝑖, 𝑗=1 =

	










�

0 1 1 1 1 1 0 0
0 0 2 2 2 1 0 0
0 0 0 3 3 2 1 0
0 0 0 0 3 2 1 0
0 0 0 0 0 2 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

��
(𝛾𝑤′ (𝑖, 𝑗))𝑛𝑖, 𝑗=1 =

	










�

0 1 1 1 1 0 0 0
0 0 2 2 2 1 1 0
0 0 0 3 3 2 1 0
0 0 0 0 3 2 1 0
0 0 0 0 0 2 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

��
.

Moreover, it also follows from Lemma 3.5 that

𝛾𝑤 (1, 6) = 1 = |{1}| 𝛾𝑤 (1, 7) = 0 𝛾𝑤 (1, 8) = 0
𝛾𝑤 (2, 6) = 1 = |{1}| 𝛾𝑤 (2, 7) = 0 𝛾𝑤 (2, 8) = 0
𝛾𝑤 (3, 6) = 2 = |{1, 3}| 𝛾𝑤 (3, 7) = 1 = |{3}| 𝛾𝑤 (3, 8) = 0
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and,

𝛾𝑤′ (1, 6) = 0 𝛾𝑤′ (1, 7) = 0 𝛾𝑤′ (1, 8) = 0
𝛾𝑤′ (2, 6) = 1 = |{2}| 𝛾𝑤′ (2, 7) = 1 = |{2}| 𝛾𝑤′ (2, 8) = 0
𝛾𝑤′ (3, 6) = 2 = |{2, 3}| 𝛾𝑤′ (3, 7) = 1 = |{2}| 𝛾𝑤′ (3, 8) = 0.

Therefore, the statistics from Theorem 2.7 only differ for these clans when (𝑖, 𝑗) is either (1, 6) or (2, 7).

Our work above tells us that if Hess(x𝑝,𝑞 , m) is the closure of a single K-orbit, then that K-orbit is
equal to O𝛾𝑤 for some 𝑤 ∈ S𝑞 .

Corollary 3.7. Let m = (𝑚1, . . . , 𝑚𝑛) be a Hessenberg vector. If there is some clan 𝛾 such that
Hess(x𝑝,𝑞 , m) = O𝛾 , then 𝛾 = 𝛾𝑤 for some 𝑤 ∈ S𝑞 . Furthermore, (𝑚1 − 𝑝, 𝑚2 − 𝑝, . . . , 𝑚𝑞 − 𝑝) is a
Hessenberg vector of length q and 𝑚𝑖 = 𝑛 for all 𝑖 ≥ 𝑞.

Proof. It follows immediately from Lemma 3.3 that 𝛾 = 𝛾𝑤 for some 𝑤 ∈ S𝑞 . By Proposition 3.1, for
each 𝑖 ∈ [𝑞], we have 𝑚𝑖 ≥ 𝑝 + 𝑤−1 (𝑖). Thus, for each 𝑖 ∈ [𝑞],

𝑝 + 𝑤−1 (𝑖) ≤ 𝑚𝑖 ≤ 𝑝 + 𝑞 ⇔ 𝑤−1 (𝑖) ≤ 𝑚𝑖 − 𝑝 ≤ 𝑞.

It follows that (𝑚1 − 𝑝, 𝑚2 − 𝑝, . . . , 𝑚𝑞 − 𝑝) is a sequence of positive integers satisfying 𝑚𝑖 − 𝑝 ≤ 𝑞; it
is also weakly increasing since m is. Moreover, for each 𝑖 ∈ [𝑞],

𝑚𝑖 − 𝑝 ≥ max{𝑤−1 ( 𝑗) | 𝑗 ≤ 𝑖} ≥ 𝑖.

This concludes the proof. �

It follows from Corollary 3.7 that there are at most Cat𝑞 = 1
𝑞+1

(2𝑞
𝑞

)
Hessenberg vectors m of length

𝑝 + 𝑞 such that Hess(x𝑝,𝑞 , m) is a K-orbit closure as there are Cat𝑞 Hessenberg vectors of length q.
We aim to show that there are exactly Cat𝑞 such m, and classify the set of Cat𝑞 clans 𝛾 such that
Hess(x𝑝,𝑞 , m) = O𝛾 .

Lemma 3.8. Assume 𝑢 ∈ S𝑞 and m is a Hessenberg vector such that O𝛾𝑢 ⊆ Hess(x𝑝,𝑞 , m). If there
exist 𝑖 < 𝑗 < 𝑘 such that 𝑢−1(𝑖) > 𝑢−1(𝑘) > 𝑢−1( 𝑗), then there is some 𝑤 ∈ S𝑞 such that 𝛾𝑢 ≤ 𝛾𝑤 and
O𝛾𝑤 ⊆ Hess(x𝑝,𝑞 , m).

Proof. Let w be obtained from u by switching j and k. Direct examination shows that for all 𝑎, 𝑏 ∈ [𝑛],
all of 𝛾𝑤 (𝑎;+) ≤ 𝛾𝑢 (𝑎;+), 𝛾𝑤 (𝑎;−) ≤ 𝛾𝑢 (𝑎;−) and 𝛾𝑤 (𝑎, 𝑏) ≥ 𝛾𝑢 (𝑎, 𝑏) hold. Thus, 𝛾𝑢 ≤ 𝛾𝑤 by
Theorem 2.7. Assume for contradiction that there exist 𝑎, 𝑏 ∈ [𝑛] with 𝑎 < 𝑏 and 𝑠 ∈ [𝑞] such that
𝑐𝑤𝑎 = 𝑐𝑤𝑏 = 𝑠 and 𝑏 > 𝑚𝑎. By the definition of the clan 𝛾𝑤 , 𝑎 ∈ [𝑞] and 𝑏 = 𝑝 + 𝑤−1 (𝑎). Since
O𝛾𝑢 ⊆ Hess(x𝑝,𝑞 , m), it must be that 𝑎 ∈ { 𝑗 , 𝑘} and so 𝑏 ∈ {𝑝 + 𝑤( 𝑗), 𝑝 + 𝑤(𝑘)}. However,

𝑚𝑎 > 𝑚𝑖 ≥ 𝑝 + 𝑢−1(𝑖) = 𝑝 + 𝑤−1 (𝑖) > 𝑝 + max{𝑤−1( 𝑗), 𝑤−1 (𝑘)} ≥ 𝑏,

giving the desired contradiction. �

Corollary 3.9. Let 𝑤 ∈ S𝑞 . If there is some Hessenberg vector m such that Hess(x𝑝,𝑞 , m) = O𝛾𝑤 , then
𝑤−1 avoids the pattern 312; hence, w avoids 231.

There are Cat𝑞 elements 𝑤 ∈ S𝑞 avoiding 231. Let

Clan231
𝑝,𝑞 := {𝛾𝑤 | 𝑤 ∈ S𝑞 , 𝑤 avoids 231}.

We prove below that this set of clans parameterizes irreducible semisimple Hessenberg varieties of the
form Hess(x𝑝,𝑞 , m). For each 𝑤 ∈ S𝑞 avoiding the pattern 231, define a length 𝑛 = 𝑝 + 𝑞 Hessenberg
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vector m(𝑤) by

m(𝑤)𝑖 :=

{
max

{
𝑤−1 (𝑘) + 𝑝 | 𝑘 ≤ 𝑖

}
𝑖 ≤ 𝑞,

𝑛 𝑖 > 𝑞.

Example 3.10. Consider the (5, 3)-clan 𝛾𝑤 = 123 + +213 from Clan231
𝑝,𝑞 . Then for 𝑖 ≤ 3, we have

m(𝑤)1 = max
{
𝑤−1 (𝑘) + 5 | 𝑘 ≤ 1

}
= max

{
𝑤−1 (1) + 5

}
= max{7} = 7

m(𝑤)2 = max
{
𝑤−1 (𝑘) + 5 | 𝑘 ≤ 2

}
= max

{
𝑤−1 (1) + 5, 𝑤−1 (2) + 5

}
= max{7, 6} = 7

m(𝑤)3 = max
{
𝑤−1 (𝑘) + 5 | 𝑘 ≤ 3

}
= max

{
𝑤−1 (1) + 5, 𝑤−1 (2) + 5, 𝑤−1 (3) + 5

}
= max{7, 6, 8} = 8.

For all 𝑖 > 3, m(𝑤)𝑖 = 8. Thus, the associated Hessenberg vector is

m(𝑤) = (7, 7, 8, 8, 8, 8, 8, 8).

Consider the (5, 3)-clan 𝛾𝑤′ = 123 + +132 from Clan231
𝑝,𝑞 . Then for 𝑖 ≤ 3, we have

m(𝑤′)1 = max
{
𝑤′−1 (𝑘) + 5 | 𝑘 ≤ 1

}
= max

{
𝑤′−1 (1) + 5

}
= max{6} = 6

m(𝑤′)2 = max
{
𝑤′−1 (𝑘) + 5 | 𝑘 ≤ 2

}
= max

{
𝑤′−1 (1) + 5, 𝑤′−1 (2) + 5

}
= max{6, 8} = 8

m(𝑤′)3 = max
{
𝑤′−1 (𝑘) + 5 | 𝑘 ≤ 3

}
= max

{
𝑤′−1 (1) + 5, 𝑤′−1 (2) + 5, 𝑤′−1 (3) + 5

}
= max{6, 8, 7} = 8.

For all 𝑖 > 3, m(𝑤′)𝑖 = 8. Thus, the associated Hessenberg vector is

m(𝑤′) = (6, 8, 8, 8, 8, 8, 8, 8).

We can now state the main theorem of this section.
Theorem 3.11. For each 𝑤 ∈ S𝑞 avoiding the pattern 231, the Hessenberg variety Hess(x𝑝,𝑞 , m(𝑤))
is irreducible and equal to the closure of the K-orbit O𝛾𝑤 . Furthermore, every irreducible Hessenberg
variety defined using the semisimple matrix x𝑝,𝑞 is of this form.

Our proof of Theorem 3.11 requires the following technical lemma.
Lemma 3.12. Let 𝑤 ∈ S𝑞 be 231-free and m = m(𝑤) the associated Hessenberg vector defined above.
Let 𝑖 ∈ [𝑞] such that 𝑤−1(𝑖) + 𝑝 < 𝑚𝑖 . Then for all j with 𝑤−1 (𝑖) + 𝑝 ≤ 𝑗 < 𝑚𝑖 , 𝛾𝑤 (𝑖 − 1, 𝑗) = 𝑚𝑖 − 𝑗 .
Proof. By Lemma 3.5, 𝛾𝑤 (𝑖 − 1, 𝑗) =

��{𝑘 < 𝑖 | 𝑤−1 (𝑘) > 𝑗 − 𝑝
}��. By definition of the Hessenberg

vector m, there exists 𝑎 < 𝑖 such that 𝑚𝑖 = 𝑤−1 (𝑎) + 𝑝. Our assumptions imply that

𝑗 < 𝑚𝑖 = 𝑤−1 (𝑎) + 𝑝 ⇒ 𝑗 − 𝑝 < 𝑤−1(𝑎) and 𝑤−1 (𝑖) < 𝑤−1 (𝑎).

Let 𝑘 ∈ {1, 2, . . . , 𝑞} such that 𝑗 − 𝑝 < 𝑤−1 (𝑘) ≤ 𝑤−1(𝑎). Note that 𝑗 − 𝑝 < 𝑤−1(𝑘) implies
𝑤−1 (𝑖) < 𝑤−1 (𝑘) and 𝑘 ≠ 𝑖.

If 𝑘 > 𝑖, then 𝑤−1 (𝑘) < 𝑤−1 (𝑎) and 𝑤−1 contains 𝑤−1 (𝑎)𝑤−1(𝑖)𝑤−1(𝑘) as a subsequence, contra-
dicting the fact that 𝑤−1 is 312-free. Thus, we must have 𝑘 < 𝑖. This shows that{

𝑘 ∈ [𝑞] | 𝑗 − 𝑝 < 𝑤−1 (𝑘) ≤ 𝑤−1 (𝑎)
}
⊆
{
𝑘 < 𝑖 | 𝑤−1 (𝑘) > 𝑗 − 𝑝

}
.

The sets are actually equal, since

𝑤−1 (𝑎) = max
{
𝑤−1 (1), . . . , 𝑤−1(𝑖)

}
.

We conclude 𝛾𝑤 (𝑖 − 1, 𝑗) = 𝑤−1 (𝑎) − ( 𝑗 − 𝑝) = 𝑚𝑖 − 𝑗 , as desired. �
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Proof of Theorem 3.11. By Proposition 3.2, Corollary 3.7 and Corollary 3.9, every irreducible Hes-
senberg variety defined using x𝑝,𝑞 is equal to O𝛾𝑤 for some 𝛾𝑤 ∈ Clan231

𝑝,𝑞 . To complete the proof,
we show that Hess(x𝑝,𝑞 , m(𝑤)) = O𝛾𝑤 . It follows immediately from the definition of the Hessenberg
vector m(𝑤) and Proposition 3.1 that O𝛾𝑤 ⊂ Hess(x𝑝,𝑞 , m(𝑤)). It therefore suffices to show that if
O𝛾 ⊂ Hess(x𝑝,𝑞 , m(𝑤)) for some 𝛾 = 𝑐1𝑐2 · · · 𝑐𝑛 ∈ Clan𝑝,𝑞 , then 𝛾 ≤ 𝛾𝑤 .

By Theorem 2.7 and Lemma 3.4, we must prove 𝛾(𝑖, 𝑗) ≤ 𝛾𝑤 (𝑖, 𝑗) for all 𝑖 ∈ [𝑞] and 𝑗 ∈

{𝑝 + 1, . . . , 𝑛}. Seeking a contradiction, suppose 𝛾(𝑖, 𝑗) > 𝛾𝑤 (𝑖, 𝑗). We may assume i is minimal with
respect to this property. We write m = m(𝑤) throughout to simplify notation.

Consider first the case 𝑖 = 1. Note that 𝛾(1, 𝑗), 𝛾𝑤 (1, 𝑗) ∈ {0, 1}, so we must have 𝛾(1, 𝑗) = 1 and
𝛾𝑤 (1, 𝑗) = 0. The latter implies 𝑤−1 (1) + 𝑝 ≤ 𝑗 by Lemma 3.5. On the other hand, 𝛾(1, 𝑗) = 1 implies
by Lemma 2.9 that there exists 𝑡 > 𝑗 such that 𝑐1 = 𝑐𝑡 . Now 𝑚1 = 𝑤−1 (1) + 𝑝 < 𝑡, contradicting the
assumption that O𝛾 ⊂ Hess(x𝑝,𝑞 , m).

Now, assume 𝑖 > 1. We have both 𝛾(𝑖 − 1, 𝑗) ≤ 𝛾𝑤 (𝑖 − 1, 𝑗) and 𝛾(𝑖, 𝑗) > 𝛾𝑤 (𝑖, 𝑗). By Lemma 2.9,
this can only be the case if

𝛾(𝑖, 𝑗) − 𝛾(𝑖 − 1, 𝑗) = 1, (3)

and

𝛾𝑤 (𝑖, 𝑗) − 𝛾𝑤 (𝑖 − 1, 𝑗) = 0. (4)

We may furthermore conclude that

𝛾(𝑖 − 1, 𝑗) = 𝛾𝑤 (𝑖 − 1, 𝑗) (5)

since otherwise, 𝛾(𝑖 − 1, 𝑗) < 𝛾𝑤 (𝑖 − 1, 𝑗) and

𝛾(𝑖, 𝑗) = 𝛾(𝑖 − 1, 𝑗) + 1 ≤ 𝛾𝑤 (𝑖 − 1, 𝑗) = 𝛾𝑤 (𝑖, 𝑗),

contradicting our assumption that 𝛾(𝑖, 𝑗) > 𝛾𝑤 (𝑖, 𝑗).
By Lemma 2.9, equation (3) implies that there exists 𝑡 > 𝑗 such that 𝑐𝑖 = 𝑐𝑡 . From equation (4), we

get that ��{𝑤−1 (1), . . . , 𝑤−1 (𝑖)
}
∩ { 𝑗 − 𝑝 + 1, . . . , 𝑞}

�� =��{𝑤−1 (1), . . . , 𝑤−1 (𝑖 − 1)
}
∩ { 𝑗 − 𝑝 + 1, . . . , 𝑞}

��
so 𝑤−1 (𝑖) ≤ 𝑗 − 𝑝, implying 𝑤−1 (𝑖) + 𝑝 ≤ 𝑗 .

If 𝑚𝑖 = 𝑤−1 (𝑖) + 𝑝, then we have 𝑚𝑖 < 𝑡, a contradiction to O𝛾 ⊂ Hess(x𝑝,𝑞 , m). We obtain the
same contradiction if 𝑗 ≥ 𝑚𝑖 so we may now assume both 𝑚𝑖 > 𝑤−1 (𝑖) + 𝑝 and 𝑗 < 𝑚𝑖 . By Lemma
3.12 and equation (5), 𝛾(𝑖 − 1, 𝑗) = 𝑚𝑖 − 𝑗 . This implies there are precisely 𝑚𝑖 − 𝑗 pairs (𝑎 < 𝑏) such
that 𝑎 ≤ 𝑖 − 1 < 𝑗 < 𝑏 and 𝑐𝑎 = 𝑐𝑏 . As O𝛾 ⊆ Hess(x𝑝,𝑞 , m), we have 𝑏 ≤ 𝑚𝑎 ≤ 𝑚𝑖 in each case.
There are only 𝑚𝑖 − 𝑗 values b such that 𝑗 < 𝑏 ≤ 𝑚𝑖 , and each such position in the clan 𝛾 is occupied by
𝑐𝑏 for one of the pairs counted by 𝛾(𝑖 − 1, 𝑗). This forces 𝑡 > 𝑚𝑖 , another contradiction. We conclude
Hess(x𝑝,𝑞 , m) = O𝛾𝑤 , as desired. �

The dimension of the K-orbit O𝛾 associated to 𝛾 = 𝑐1𝑐2 · · · 𝑐𝑛 ∈ Clan𝑝,𝑞 is

dimO𝛾 = ℓ(𝛾) +
𝑝(𝑝 − 1)

2
+

𝑞(𝑞 − 1)
2

,

where

ℓ(𝛾) :=
∑

𝑐𝑖=𝑐 𝑗 ∈N
𝑖< 𝑗

( 𝑗 − 𝑖 − |{𝑘 ∈ N | 𝑐𝑠 = 𝑐𝑡 = 𝑘 for 𝑠 < 𝑖 < 𝑡 < 𝑗}| )
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by [Yam97]. We apply this formula to compute the dimension of the irreducible Hessenberg variety
Hess(x𝑝,𝑞 , m(𝑤)). We require the following technical lemma.

Lemma 3.13. Given 𝑤 ∈ S𝑛, define a sequence h = h(𝑤) := (ℎ1, . . . , ℎ𝑛) by

ℎ𝑖 := max{𝑤(𝑘) | 𝑘 ≤ 𝑖}.

If w is 312-free, then

ℓ(𝑤) =
𝑛∑
𝑖=1

(ℎ𝑖 − 𝑖).

Proof. Write 𝑤 = 𝑤(1) . . . 𝑤(𝑛) in one-line notation and find k such that 𝑤(𝑘) = 𝑛. If 𝑛 > 1, let 𝑤′ be
obtained from w by erasing n from the given one-line representation and let h′ be obtained from 𝑤′ as
h was obtained from w. For 𝑖 ∈ [𝑛], set

inv𝑖 (𝑤) :=| { 𝑗 > 𝑖 | 𝑤( 𝑗) < 𝑤(𝑖)} |,

and define inv𝑖 (𝑤′) similarly.
We will show by induction on n that inv𝑖 (𝑤) = ℎ𝑖 − 𝑖 for every i, from which the lemma follows. The

case 𝑛 = 1 is trivial. Assume 𝑛 > 1. We observe that if 𝑖 ≥ 𝑘 , then 𝑤 𝑗 < 𝑤𝑖 for all 𝑗 > 𝑖 (since w is
312-free); hence, inv𝑖 (𝑤) = 𝑛 − 𝑖 = ℎ𝑖 − 𝑖. If 𝑖 < 𝑘 , then

inv𝑖 (𝑤) = inv𝑖 (𝑤′) = ℎ′𝑖 − 𝑖 = ℎ𝑖 − 𝑖,

the second equality following from the inductive hypothesis. �

Recall that 𝜋m(𝑤) denotes the Dyck path associated with the Hessenberg vector m(𝑤) as in Section 2.
Our work above shows that dim Hess(x𝑝𝑞 , m(𝑤)) is given by the area of 𝜋m(𝑤) .

Corollary 3.14. For each 𝑤 ∈ S𝑞 avoiding the pattern 231, the Hessenberg variety Hess(x𝑝,𝑞 , m(𝑤))
is irreducible of dimension

dim Hess(x𝑝,𝑞 , m(𝑤)) = ℓ(𝑤) + 𝑝𝑞 +
𝑝(𝑝 − 1)

2
= area(𝜋m(𝑤) ). (6)

Proof. Recall 𝑐𝑤𝑖 = 𝑐𝑤𝑗 ∈ N if and only if 𝑗 = 𝑤−1 (𝑖) + 𝑝. Keeping also in mind that ℓ(𝑤) = ℓ(𝑤−1),
we therefore have

|{𝑘 ∈ N | 𝑐𝑠 = 𝑐𝑡 = 𝑘 for 𝑠 < 𝑖 < 𝑡 < 𝑤−1(𝑖) + 𝑝}| = |{𝑠 < 𝑖 | 𝑤−1 (𝑠) < 𝑤−1 (𝑖)}|,

and thus,∑
𝑖∈[𝑞]

|{𝑘 ∈ N | 𝑐𝑠 = 𝑐𝑡 = 𝑘 for 𝑠 < 𝑖 < 𝑡 < 𝑗}| = ℓ(𝑤0) − ℓ(𝑤−1) =
𝑞(𝑞 − 1)

2
− ℓ(𝑤).

We now obtain

ℓ(𝛾𝑤 ) =
∑
𝑖∈[𝑞]

(
𝑤−1 (𝑖) − 𝑖 + 𝑝

)
−

∑
𝑖∈[𝑞]

|{𝑘 ∈ N | 𝑐𝑠 = 𝑐𝑡 = 𝑘 for 𝑠 < 𝑖 < 𝑡 < 𝑗}|

= 𝑝𝑞 −

(
𝑞(𝑞 − 1)

2
− ℓ(𝑤)

)
= ℓ(𝑤) + 𝑝𝑞 −

𝑞(𝑞 − 1)
2

.

As dim Hess(x𝑝,𝑞 , m(𝑤)) = dimO𝛾𝑤 by Theorem 3.11, this proves the first equality in (6).
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To prove the second, we observe first that if m(𝑤) = (𝑚1, . . . , 𝑚𝑛), then

area(𝜋𝑚(𝑤) ) =
𝑛∑
𝑖=1

(𝑚𝑖 − 𝑖)

= 𝑝𝑞 +

𝑞∑
𝑖=1

max{𝑤−1(𝑘) | 𝑘 ≤ 𝑖} −

𝑞∑
𝑖=1

𝑖 + 𝑝𝑛 −
𝑛∑

𝑖=𝑞+1
𝑖

= 𝑝2 + 2𝑝𝑞 −

(
𝑝 + 𝑞 + 1

2

)
+

(
𝑞 + 1

2

)
+

𝑞∑
𝑖=1

max{𝑤−1(𝑘) | 𝑘 ≤ 𝑖} −

𝑞∑
𝑖=1

𝑖

= 𝑝𝑞 +
𝑝(𝑝 − 1)

2
+

𝑞∑
𝑖=1

max{𝑤−1(𝑘) | 𝑘 ≤ 𝑖} −

𝑞∑
𝑖=1

𝑖.

We complete the proof by applying Lemma 3.13 to 𝑤−1. �

Remark 3.15. It follows from Corollary 3.14 and the seminal work [MPS92] of De Mari, Procesi and
Shayman on Hessenberg varieties that if Hess(x𝑝,𝑞 , m) is irreducible and s is an 𝑛×𝑛 regular semisimple
matrix, then

dim Hess(x𝑝,𝑞 , m) = dim Hess(s, m).

Indeed, in the case of a regular semisimple element s, it is easy to see from [MPS92, Theorem 6] that
the dimension of Hess(s, m) is precisely the area of 𝜋m.

4. W-sets and cohomology classes

We turn our attention to computing the W-sets introduced in Section 2.3 above for the clans 𝛾𝑤 with
𝑤 ∈ S𝑞 . Our work below shows that the restriction of the weak order to the interval [𝛾𝑒, 𝛾0] in
Clan𝑝,𝑞 can be identified with the two-sided weak order on S𝑞 (see Theorem 4.2 below). As a result,
we give a concrete formula for the class [O𝛾𝑤 ] and, in particular, the class of any Hessenberg variety
Hess(x𝑝,𝑞 , m(𝑤)). Finally, as an application of our results, we prove that the product of [O𝛾𝑤 ] with
any Schubert divisor is a multiplicity-free sum of Schubert polynomials.

Recall that left weak order ≤𝐿 on the symmetric group S𝑞 is the partial order defined by the covering
relations

𝑤 <𝐿 𝑠𝑖𝑤 where 𝑖 ∈ [𝑛 − 1] is such that 𝑤−1(𝑖) < 𝑤−1 (𝑖 + 1).

The left multiplication by 𝑠𝑖 interchanges the order of i and 𝑖 + 1 in the one-line notation for w. For
example, 51324 <𝐿 52314. Similarly, the right weak order ≤𝑅 on S𝑞 is the partial order defined by the
covering relations

𝑤 <𝑅 𝑤𝑠𝑖 where 𝑖 ∈ [𝑛 − 1] is such that 𝑤(𝑖) < 𝑤(𝑖 + 1).

The right multiplication by 𝑠𝑖 interchanges the entries in positions i and 𝑖 + 1 of the one-line notation
for w. For example, 51324 <𝑅 53124.

We call the partial order � on S𝑞 that is generated by the covering relations of both of the left and
the right weak orders the two-sided weak order on S𝑞 .

Example 4.1. In Figure 3, we depict the two-sided weak order on S4. The blue (double) edges correspond
to the cover relations that are admitted by both of the orders ≤𝐿 and ≤𝑅. The ordinary edges correspond
to a covering relation of either ≤𝑅 or ≤𝐿 , but not both. Our figure shows that the two-sided weak order on
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Figure 3. The two-sided weak order on S4.

S4 is not isomorphic to the Bruhat (i.e., inclusion) order; for example, 𝑠1𝑠2𝑠1 = 3214 ≤ 𝑠2𝑠1𝑠3𝑠2 = 3412
in Bruhat order, but Figure 3 shows that 3214 is not below 3412 in the two-sided weak order.

The first main result of this section is the following theorem.

Theorem 4.2. The restriction of the weak order on the interval of clans

[𝛾𝑒, 𝛾0] = {𝛾𝑤 | 𝑤 ∈ S𝑞}

is isomorphic to the two-sided weak order on S𝑞 .

To begin, we prove that the restriction of the weak order to the interval [𝛾𝑒, 𝛾0] is generated by only
two of the cover relations described in Section 2.3 (cf. Figure 2).

Lemma 4.3. Every cover relation of the weak order in the interval [𝛾𝑒, 𝛾0] is of type IC1 or IC2.

Proof. Let 𝛾𝑤 = 𝑐1𝑐2 · · · 𝑐𝑛 ∈ Clan𝑝,𝑞 for some 𝑤 ∈ S𝑞 . We have by definition that

𝑐1 · · · 𝑐𝑝 = 12 · · · 𝑞 + · · · +,

and furthermore that no − signs occur in 𝛾𝑤 . This implies that the cover relations of types IA1, IA2
and II do not occur in the restriction of the weak order on Clan𝑝,𝑞 to [𝛾𝑒, 𝛾0]. Note also that no cover
relation of type IB can occur among the clans in [𝛾𝑒, 𝛾0] since all arcs are either nested or crossing as
there is an arc connecting 𝑖 < 𝑗 if and only if 𝑗 = 𝑤−1 (𝑖) + 𝑝. This finishes the proof of our assertion. �

By the lemma, to analyze the weak order on [𝛾𝑒, 𝛾0], it is enough to consider cover relations of type
IC1 and IC2. The following example illustrates a cover relation of each type.
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• • • • • • •••••

1 2 3 4 5 6 1110987

+

𝛾𝑤𝑠2 := 12345 + 53124

𝑠8
−−−→• • • • • • •••••

1 2 3 4 5 6 1110987

+

𝛾𝑤 = 12345 + 51324

Figure 4. A cover relation of type IC2.

• • • • • • •••••

1 2 3 4 5 6 1110987

+

𝛾𝑠1𝑤 := 12345 + 52314

𝑠1
−−−→• • • • • • •••••

1 2 3 4 5 6 1110987

+

𝛾𝑤 = 12345 + 51324

Figure 5. A cover relation of type IC1.

Example 4.4. Let 𝑝 = 6 and 𝑞 = 5. Let 𝑤 = 51324 ∈ S5. Figure 4 depicts the cover relation of type
IC2 obtained by uncrossing the (dashed) arcs in the charged matching for 𝛾𝑤 with right endpoints 8 and
9, creating a nested pair. Note that the resulting matching corresponds to the clan 𝛾𝑤𝑠2 , and we have
𝑤 = 51324 <𝑅 𝑤𝑠2 = 53124.

Similarly, we may apply a cover relation of type IC1 to 𝛾𝑤 by swapping the (dashed) arcs with
left endpoints 1 and 2, creating a nested pair. This is depicted in Figure 5. The resulting matching
corresponds to clan 𝛾𝑠1𝑤 , and we have 𝑤 = 51324 <𝐿 𝑠1𝑤 = 52314.

In the example above, we saw that each covering relation was of the form 𝛾𝑤 ≺ 𝛾𝑤′ for 𝑤, 𝑤′ ∈ S5
such that 𝑤 ≺ 𝑤′ in the two-sided weak order on S5. This holds in greater generality and brings us to
the proof of Theorem 4.2.

Proof of Theorem 4.2. By Lemma 4.3, the covering relations of the weak order on [𝛾𝑒, 𝛾0] are given
by either a Type IC1 covering relation or by a Type IC2 covering relation.

Now, a covering relation of Type IC1 on clans in [𝛾𝑒, 𝛾0] is of the form

𝛾𝑤 = 𝑐1 · · · 𝑐𝑤−1 (𝑖)+𝑝 · · · 𝑐𝑤−1 (𝑖+1)+𝑝 · · · 𝑐𝑛
𝑠𝑖
−−→ 𝛾′ = 𝑐1 · · · 𝑐𝑤−1 (𝑖+1)+𝑝 · · · 𝑐𝑤−1 (𝑖)+𝑝 · · · 𝑐𝑛, (7)

for some 𝑖 ∈ [𝑞 − 1] such that 𝑤−1(𝑖) < 𝑤−1 (𝑖 + 1). Since the resulting clan is obtained from 𝛾𝑤 by
interchanging i and 𝑖 + 1 in the one-line notation for w, we see that 𝛾′ = 𝛾𝑠𝑖𝑤 . Similarly, a covering
relation of type IC2 on clans in [𝛾𝑒, 𝛾0] is of the form

𝛾𝑤 = 𝑐1 · · · 𝑐𝑖𝑐𝑖+1 · · · 𝑐𝑛
𝑠𝑖
−−→ 𝛾′ = 𝑐1 · · · 𝑐𝑖+1𝑐𝑖 · · · 𝑐𝑛, (8)

for some 𝑖 ∈ {𝑝 + 1, . . . , 𝑛 − 1} such that 𝑤(𝑖 − 𝑝) < 𝑤(𝑖 − 𝑝 + 1). In this case, we have 𝛾′ = 𝛾𝑤𝑠𝑖−𝑝
since the resulting clan is obtained by interchanging the entries in the positions 𝑖 − 𝑝 and 𝑖 − 𝑝 + 1 in the
one-line notation for w. In conclusion, we see that, for 𝑤, 𝑣 ∈ S𝑞 , if the clan 𝛾𝑤 is covered by the clan
𝛾𝑣 in the weak order, then w is covered by v in either the right weak order or the left weak order on S𝑞 .

We proceed to prove the converse statement. Let 𝑤, 𝑣 ∈ S𝑞 be two permutations. Let 𝛾𝑤 =
𝑐𝑤1 𝑐𝑤2 · · · 𝑐𝑤𝑛 denote the (unique) clan corresponding to w, which is defined by
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◦ 𝑐𝑤𝑖 = + for all 𝑞 < 𝑖 ≤ 𝑝, and
◦ 𝑐𝑤𝑖 = 𝑐𝑤

𝑝+𝑤−1 (𝑖)
= 𝑖 for all 𝑖 ∈ [𝑞].

Let 𝛾𝑣 denote the unique clan corresponding to v, defined in a similar manner. Now, we assume that w
is covered by v in the left weak order on S𝑞 . Hence, 𝑠𝑖𝑤 = 𝑣 holds for some 𝑖 ∈ [𝑞 − 1]. After writing w
and 𝑠𝑖𝑤 in their one-line notations, we see that the covering relation 𝑤 ≤𝐿 𝑣 corresponds to the covering
relation in (7). Likewise, if w is covered by v in the right weak order in such a way that 𝑤𝑠𝑖 = 𝑣 for
some 𝑖 ∈ [𝑞 − 1], then the covering relation in (8) holds. Hence, we proved that 𝛾𝑤 � 𝛾𝑣 if and only if
𝑤 ≤𝐿 𝑣 or 𝑤 ≤𝑅 𝑣, as desired. �

Corollary 4.5. The restriction of the weak order to Clan231
𝑝,𝑞 is isomorphic to the restriction of the

two-sided weak order on S𝑞 to all 231-free permutations.

Remark 4.6. It is well known that the right weak order on the set of 231-free permutations is isomorphic
to the Tamari lattice [Dra14, Theorem 1.2]. It is also well known that the Bruhat (i.e., inclusion) order
on the set of 231-free permutations is isomorphic to the opposite of the Dyck path lattice [BBFP05].

Example 4.7. Let 𝑝 = 𝑞 = 3. Figure 6 shows the weak order on [𝛾123, 𝛾321] ⊂ Clan3,3 with all covering
relations and corresponding clan written underneath each charged matching. The circled matching
corresponds to the clan 𝛾231. By removing this matching, we obtain the Hasse diagram of the two-sided
weak order on Clan231

3,3 .

With a precise description of the weak order on [𝛾𝑒, 𝛾0] ⊂ Clan𝑝,𝑞 in hand, we turn our attention
to computing the W-sets 𝑊 (𝛾𝑤 ) for each 𝑤 ∈ S𝑞 . Using Brion’s Theorem 2.11, we can use this set to
obtain polynomial representatives of the cohomology classes [O𝛾𝑤 ] for each 𝑤 ∈ S𝑞 . If w avoids 231,
then we obtain, by our work in the previous section, a polynomial representative for the cohomology
class of the semisimple Hessenberg variety Hess(x𝑝,𝑞 , m𝑤 ).

We begin with a lemma whose proof is evident.

Lemma 4.8. The map 𝜑 : S𝑛 → S𝑛 defined by 𝜑(𝑣) = 𝑤0𝑣
−1𝑤0 for all 𝑣 ∈ S𝑛 is an anti-involution. In

other words, we have 𝜑2 = 𝑖𝑑, and for all 𝑣, 𝑤 ∈ S𝑛 we have 𝜑(𝑣𝑤) = 𝜑(𝑤)𝜑(𝑣).

Since the map 𝜑 defined in Lemma 4.8 is an anti-involution, it is a bijection. We are interested in the
restriction of 𝜑 to the subgroup S𝑞 := 〈𝑠1, . . . , 𝑠𝑞−1〉 ↩→ S𝑛. Recall that the support Supp(𝑤) of w is
the set of all simple reflections that arise in any reduced word for w.

Lemma 4.9. The restriction of 𝜑 to S𝑞 induces a bijection 𝜑 : S𝑞 →
〈
𝑠𝑝+1, . . . , 𝑠𝑛−1

〉
. Furthermore,

ℓ(𝑣) = ℓ(𝜑(𝑣)) for all 𝑣 ∈ 𝑆𝑞 and Supp(𝑢) ∩ Supp(𝜑(𝑣)) = ∅ for all 𝑢, 𝑣 ∈ S𝑞 .

Proof. Since 𝜑(𝑠𝑖) = 𝑤0𝑠𝑖𝑤0 = 𝑠𝑛−𝑖 for all 𝑖 ∈ [𝑛−1], the first assertion of the lemma is obvious. Next,
if 𝑠𝑖1 · · · 𝑠𝑖𝑟 is a reduced expression for 𝑣 ∈ S𝑞 , then 𝑠𝑛−𝑖1 · · · 𝑠𝑛−𝑖𝑟 is a reduced expression of 𝑤0𝑣𝑤0. In
particular,

𝑣 = 𝑠𝑖1 · · · 𝑠𝑖𝑟 ⇒ 𝜑(𝑣) = 𝑠𝑛−𝑖𝑟 𝑠𝑛−𝑖𝑟−1 · · · 𝑠𝑛−𝑖1 ,

so ℓ(𝜑(𝑣)) = ℓ(𝑣). Finally, Supp(𝑢) ⊆ {𝑠1, . . . , 𝑠𝑞−1} and Supp(𝜑(𝑣)) ⊆ {𝑠𝑝+1, . . . , 𝑠𝑛−1}. Since
𝑞 ≤ 𝑝, we obtain the final assertion. �

With these observations in place, we define a map that will allow us to compute 𝑊 (𝛾𝑤 ) in Theo-
rem 4.12 below.

Lemma 4.10. The map

S𝑞 × S𝑞 → S𝑛, (𝑢, 𝑣) ↦→ 𝑢𝜑(𝑣) (9)

is injective. Furthermore, ℓ(𝑢𝜑(𝑣)) = ℓ(𝑢) + ℓ(𝑣) for all 𝑢, 𝑣 ∈ S𝑞 .
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• • • • • •

1 2 3 4 5 6

123123

• • • • • •

1 2 3 2 1 3

123213

• • • • • •

1 2 3 4 5 6

123132

• • • • • •

1 2 3 4 5 6

123231

• • • • • •

1 2 3 4 5 6

123312

• • • • • •

1 2 3 4 5 6

123321

𝑠1, 𝑠4 𝑠2, 𝑠5

𝑠5 𝑠4

𝑠2, 𝑠4 𝑠1, 𝑠5

𝑠1𝑠2

Figure 6. Weak order graph on [𝛾123, 𝛾321] ⊂ Clan3,3.

Proof. Recall from Lemma 4.9 that 𝜑 maps S𝑞 =
〈
𝑠1, . . . , 𝑠𝑞−1

〉
to

〈
𝑠𝑝+1, . . . , 𝑠𝑛−1

〉
and note that the

intersection of these subgroups is the trivial group since 𝑞 ≤ 𝑝. Thus, if 𝑢1, 𝑢2, 𝑣1, 𝑣2 ∈ S𝑞 such that
𝑢1𝜑(𝑣1) = 𝑢2𝜑(𝑣2), then

𝑢−1
2 𝑢1 = 𝜑(𝑣2)𝜑(𝑣1)

−1 ∈ S𝑞 ∩
〈
𝑠𝑝+1, . . . , 𝑠𝑛−1

〉
= 〈𝑒〉

⇒ 𝑢1 = 𝑢2 and 𝜑(𝑣1) = 𝜑(𝑣2),

and injectivity of the map follows. Since Supp(𝑢) ∩ Supp(𝜑(𝑣)) = ∅, any reduced word for 𝑢𝜑(𝑣)
is the product of a reduced word of u in S𝑞 and a reduced word for 𝜑(𝑣) in

〈
𝑠𝑝+1, . . . , 𝑠𝑛−1

〉
. Thus,

ℓ(𝑢𝜑(𝑣)) = ℓ(𝑢) + ℓ(𝜑(𝑣)) = ℓ(𝑢) + ℓ(𝑣), as desired. �
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For each 𝑤 ∈ S𝑞 we define the set

S (𝑤) := {(𝑢, 𝑣) ∈ S𝑞 × S𝑞 | 𝑤 = 𝑢𝑣 and ℓ(𝑤) = ℓ(𝑢) + ℓ(𝑣)}.

Note that S (𝑒) = {(𝑒, 𝑒)} and S (𝑠𝑖) = {(𝑒, 𝑠𝑖), (𝑠𝑖 , 𝑒)}.

Example 4.11. If 𝑞 = 3 and 𝑤 = 312 = 𝑠2𝑠1, then S (𝑤) = {(𝑒, 𝑠2𝑠1), (𝑠2, 𝑠1), (𝑠2𝑠1, 𝑒)}.

Recall that 𝑦0 ∈ S𝑞 denotes the longest element. The second main theorem of this section describes
the W-sets of clans 𝛾𝑤 concretely using the set S (𝑤𝑦0).

Theorem 4.12. For all 𝑤 ∈ S𝑞 , the restriction of the map (9) from Lemma 4.10 to S (𝑤𝑦0) ⊆ S𝑞 × S𝑞
induces a bijection

𝜓𝑤 : S (𝑤𝑦0) → 𝑊 (𝛾𝑤 ), 𝜓𝑤 (𝑢, 𝑣) := 𝑢𝜑(𝑣).

In particular, the W-set of the clan 𝛾𝑤 is 𝑊 (𝛾𝑤 ) = {𝑢𝜑(𝑣) | (𝑢, 𝑣) ∈ S (𝑤𝑦0)}.

Proof. We argue first that 𝜓𝑤 (𝑢, 𝑣) ∈ 𝑊 (𝛾𝑤 ) for all (𝑢, 𝑣) ∈ S (𝑤𝑦0). Given (𝑢, 𝑣) ∈ S (𝑤𝑦0), let
𝑢 = 𝑠𝑎1 𝑠𝑎2 · · · 𝑠𝑎𝑟 and 𝑣 = 𝑠𝑏1 𝑠𝑏2 · · · 𝑠𝑏𝑡 be reduced words for u and v, respectively. By assumption,

𝑤𝑦0 = 𝑠𝑎1 𝑠𝑎2 · · · 𝑠𝑎𝑟 𝑠𝑏1 𝑠𝑏2 · · · 𝑠𝑏𝑡

is a reduced word for 𝑤𝑦0. Manipulating this expression and using the fact that 𝑦0𝑠𝑖𝑦0 = 𝑠𝑞−𝑖 for all i
implies

𝑠𝑎𝑟 · · · 𝑠𝑎2 𝑠𝑎1𝑤𝑠𝑞−𝑏𝑡 · · · 𝑠𝑞−𝑏2 𝑠𝑞−𝑏1 = 𝑦0

with ℓ(𝑦0) = ℓ(𝑤) + 𝑟 + 𝑡. In particular, this expression yields a chain of length 𝑟 + 𝑡 in the two-sided
weak order on S𝑞:

𝑤
𝑠𝑎1
−−→ 𝑠𝑎1𝑤

𝑠𝑎2
−−−→ 𝑠𝑎2 𝑠𝑎1𝑤 → · · ·

𝑠𝑎𝑟
−−−→ 𝑠𝑎𝑟 · · · 𝑠𝑎2 𝑠𝑎1𝑤 = 𝑢−1𝑤

𝑠𝑞−𝑏𝑡
−−−−−→ 𝑢−1𝑤𝑠𝑞−𝑏𝑡 → · · ·

𝑠𝑞−𝑏2
−−−−−→ 𝑢−1𝑤𝑠𝑞−𝑏𝑡 · · · 𝑠𝑞−𝑏2

𝑠𝑞−𝑏1
−−−−−→ 𝑦0.

In this chain, left multiplication by 𝑠𝑎𝑘 is a cover in the left weak order on S𝑞 and corresponds to a cover
of type IC1 on clans. This cover of type IC1 on clans is labeled by the simple reflection 𝑠𝑎𝑘 ∈ S𝑛. Right
multiplication by 𝑠𝑏𝑘 is a cover in the right weak order on S𝑞 and corresponds to a cover of type IC2
on clans. This cover of type IC2 on clans is labeled by the simple reflection 𝑠𝑛−𝑏𝑘 = 𝜑(𝑠𝑏𝑘 ) ∈ S𝑛. By
Theorem 4.2 and definition of the W-set, it follows that

𝑢𝜑(𝑣) = 𝑠𝑎1 𝑠𝑎2 · · · 𝑠𝑎𝑟 𝑠𝑛−𝑏𝑡 · · · 𝑠𝑛−𝑏2 𝑠𝑛−𝑏1 ∈ 𝑊 (𝛾𝑤 ),

as desired.
To complete the proof, it suffices by Lemma 4.10 to show that 𝜓𝑤 is surjective. We proceed by

induction on the nonnegative integer ℓ(𝑤𝑦0) = ℓ(𝑦0) − ℓ(𝑤). If ℓ(𝑤𝑦0) = 0, then 𝑤 = 𝑦0, 𝑊 (𝛾𝑤 ) =
𝑊 (𝛾0) = {𝑒}, and S (𝑤𝑦0) = S (𝑒) = {(𝑒, 𝑒)}. Thus, our claim holds trivially in this case.

Suppose now that 𝑤 ∈ S𝑞 such that ℓ = ℓ(𝑤𝑦0) > 0 and 𝜓𝑤′ is surjective for all 𝑤′ ∈ S𝑞 such that
ℓ(𝑤′𝑦0) = ℓ − 1. Since the W-set of 𝛾𝑤 is obtained by multiplying the labels of the weak order cover
relations along a saturated path from 𝛾𝑤 to 𝛾0, if 𝑥 ∈ 𝑊 (𝛾𝑤 ), there exists 𝑤′ ∈ S𝑞 and 𝑥 ′ ∈ 𝑊 (𝛾𝑤′ )

such that 𝛾𝑤
𝑠𝑖
−−→ 𝛾𝑤′ and 𝑥 = 𝑠𝑖𝑥

′. By Theorem 4.2, 𝑤′ is a cover of w in the two-sided weak order
on S𝑞 , so ℓ(𝑤′) = ℓ(𝑤) + 1. This in turn implies ℓ(𝑤′𝑦0) = ℓ(𝑤𝑦0) − 1 = ℓ − 1, and the induction
hypothesis implies that there exists (𝑢, 𝑣) ∈ S (𝑤′𝑦0) such that 𝑥 ′ = 𝑢𝜑(𝑣).

There are two possible cases to consider: the cover 𝛾𝑤 ≺ 𝛾𝑤′ is either of type IC1 or IC2. If
𝛾𝑤

𝑠𝑖
−−→ 𝛾𝑤′ is a cover in the weak order on clans of type IC1, then the proof of Theorem 4.2 implies
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𝑖 ∈ [𝑞 − 1] and 𝑤′ = 𝑠𝑖𝑤. Our assumptions also yield

ℓ(𝑥) = ℓ(𝑥 ′) + 1 ⇒ ℓ(𝑠𝑖𝑢𝜑(𝑣)) = ℓ(𝑢𝜑(𝑣)) + 1
⇒ ℓ(𝑠𝑖𝑢) + ℓ(𝑣) = ℓ(𝑢) + ℓ(𝑣) + 1
⇒ ℓ(𝑠𝑖𝑢) = ℓ(𝑢) + 1, (10)

where the second implication follows from Lemma 4.10. This shows (𝑠𝑖𝑢, 𝑣) ∈ S (𝑤𝑦0) since 𝑠𝑖𝑢𝑣 =
𝑠𝑖𝑤

′𝑦0 = 𝑤𝑦0 and

ℓ(𝑤′𝑦0) = ℓ(𝑢) + ℓ(𝑣) ⇒ ℓ(𝑦0) − ℓ(𝑤) − 1 = ℓ(𝑢) + ℓ(𝑣) ⇒ ℓ(𝑤𝑦0) = ℓ(𝑠𝑖𝑢) + ℓ(𝑣)

by (10) above. Now 𝑥 = 𝑠𝑖𝑢𝜑(𝑣) = 𝜓𝑤 (𝑠𝑖𝑢, 𝑣), so 𝜓𝑤 is surjective in this case.
If 𝛾𝑤

𝑠𝑖
−−→ 𝛾𝑤′ is a cover in the weak order on clans of type IC2, then the proof of Theorem 4.2

implies 𝑖 ∈ {𝑝 + 1, . . . , 𝑛 − 1} and 𝑤′ = 𝑤𝑠𝑖−𝑝 with ℓ(𝑤′). Note that 𝑠𝑖 commutes with 𝑢 ∈ S𝑞 and
recall that 𝑠𝑖 = 𝜑(𝑠𝑛−𝑖). Thus,

𝑥 = 𝑠𝑖𝑥
′ = 𝑠𝑖𝑢𝜑(𝑣) = 𝑢𝑠𝑖𝜑(𝑣) = 𝑢𝜑(𝑠𝑛−𝑖)𝜑(𝑣) = 𝑢𝜑(𝑣𝑠𝑛−𝑖) (11)

by Lemma 4.8. Our assumptions also imply

ℓ(𝑥) = ℓ(𝑥 ′) + 1 ⇒ ℓ(𝑢𝜑(𝑣𝑠𝑛−𝑖)) = ℓ(𝑢𝜑(𝑣)) + 1
⇒ ℓ(𝑢) + ℓ(𝑣𝑠𝑛−𝑖) = ℓ(𝑢) + ℓ(𝑣) + 1
⇒ ℓ(𝑣𝑠𝑛−𝑖) = ℓ(𝑣) + 1, (12)

where the first implication follows from (11) and the second from Lemma 4.10. This shows (𝑢, 𝑣𝑠𝑛−𝑖) ∈
S (𝑤𝑦0) since 𝑢𝑣𝑠𝑛−𝑖 = 𝑤′𝑦0𝑠𝑛−𝑖 = 𝑤′𝑠𝑖−𝑝𝑦0 = 𝑤𝑦0 and

ℓ(𝑤′𝑦0) = ℓ(𝑢) + ℓ(𝑣) ⇒ ℓ(𝑦0) − ℓ(𝑤) − 1 = ℓ(𝑢) + ℓ(𝑣) ⇒ ℓ(𝑤𝑦0) = ℓ(𝑢) + ℓ(𝑣𝑠𝑛−𝑖)

by (12) above. Using (11), we conclude 𝑥 = 𝜓𝑤 (𝑢, 𝑣𝑠𝑛−1) so 𝜓𝑤 is indeed surjective. �

Example 4.13. Let 𝑞 = 4 and 𝑤 = 3214 = 𝑠1𝑠2𝑠1 ∈ S4. Then 𝑤𝑦0 = 4123 = 𝑠3𝑠2𝑠1 and

S (𝑤𝑦0) = S (𝑠3𝑠2𝑠1) = {(𝑠3𝑠2𝑠1, 𝑒), (𝑠3𝑠2, 𝑠1), (𝑠3, 𝑠2𝑠1), (𝑒, 𝑠3𝑠2𝑠1)},

so, according to Theorem 4.12, the W-set of 𝛾3214 is

{𝑠3𝑠2𝑠1, 𝑠3𝑠2𝑠3+𝑝, 𝑠3𝑠3+𝑝𝑠2+𝑝, 𝑠3+𝑝𝑠2+𝑝𝑠1+𝑝}.

The interested reader can also confirm this using Theorem 4.2 and the poset pictured in Figure 3. Each
element of the W-set is obtained from a saturated chain in the poset connecting 3214 to 𝑦0 = 4321.
Covers arising from the right weak order (respectively, left weak order) on S𝑞 labeled by 𝑠𝑖 correspond
to covers in the weak order on clans labeled by 𝑠𝑖+𝑝 (respectively 𝑠𝑖). Note that there are more chains
than elements of the W-set, as two chains can yield the same reduced word.

We apply the results of Theorem 4.12 to compute the cohomology class of each K-orbit closure
O𝛾𝑤 . We make use of Borel’s description of the integral cohomology ring 𝐻∗(𝐺𝐿𝑛/𝐵,Z) as the ring
of coinvariants; that is,

𝐻∗(𝐺𝐿𝑛/𝐵,Z) � Z[𝑥1, . . . , 𝑥𝑛]/𝐼,

where I is the ideal generated by the symmetric polynomials without a constant term. It is a well-
known fact that the Schubert polynomial 𝔖𝑤 is a polynomial representative for the cohomology class
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[𝐵𝑤0𝑤𝐵/𝐵]. For a more detailed definition of Schubert polynomials, see [LS82, Man01]. Combining
Theorem 4.12 with Brion’s Theorem 2.11 now yields the following.

Proposition 4.14. For all 𝑤 ∈ S𝑞 , the cohomology class of the closure of the K-orbit O𝛾𝑤 is represented
by the polynomial

𝔖(𝛾𝑤 ) :=
∑

(𝑢,𝑣) ∈S (𝑤𝑦0)

𝔖𝑢𝜑 (𝑣) =
∑

(𝑢,𝑣) ∈S (𝑤𝑦0)

𝔖𝑢𝔖𝜑 (𝑣) .

Proof. By Theorem 2.11, the polynomial representative of the cohomology class of O𝛾𝑤 is given by
the formula

𝔖(𝛾𝑤 ) :=
∑

𝑥∈𝑊 (𝛾𝑤 )

𝔖𝑥 ,

where 𝔖𝑥 is the Schubert polynomial indexed by the permutation 𝑥 ∈ S𝑛. By Theorem 4.12, each
𝑥 ∈ 𝑊 (𝛾𝑤 ) can be written 𝑥 = 𝑢𝜑(𝑣) for a unique (𝑢, 𝑣) ∈ S (𝑤𝑦0). The result now follows immediately,
as u and 𝜑(𝑣) have disjoint supports by Lemma 4.9, so 𝔖𝑢𝜑 (𝑣) = 𝔖𝑢𝔖𝜑 (𝑣) (see, for example, [Man01,
Corollary 2.4.6].) �

The following is now immediate from Theorem 3.11.

Corollary 4.15. For all 𝑤 ∈ S𝑞 avoiding the pattern 231, the polynomial representative of the coho-
mology class of Hessenberg variety Hess(x𝑝,𝑞 , m(𝑤)) is given by

𝔖(Hess(x𝑝,𝑞 , m(𝑤))) =
∑

(𝑢,𝑣) ∈S (𝑤𝑦0)

𝔖𝑢𝔖𝜑 (𝑣) .

Example 4.16. Let 𝑞 = 3. For the permutation 𝑤 = 123 ∈ S3, the W-set of 𝛾123 is

{𝑠1𝑠2𝑠1, 𝑠𝑝+1𝑠𝑝+2𝑠𝑝+1, 𝑠1𝑠2𝑠𝑝+2, 𝑠2𝑠1𝑠𝑝+1, 𝑠1𝑠𝑝+2𝑠𝑝+1, 𝑠2𝑠𝑝+1𝑠𝑝+2}.

It follows from Corollary 4.15 that the polynomial representative of the cohomology class for the
Hessenberg variety Hess(x𝑝,3, m(123)) is

𝔖𝑠1𝑠2𝑠1 +𝔖𝑠𝑝+1𝑠𝑝+2𝑠𝑝+1 +𝔖𝑠1𝑠2𝑠𝑝+2 +𝔖𝑠2𝑠1𝑠𝑝+1 +𝔖𝑠1𝑠𝑝+2𝑠𝑝+1 +𝔖𝑠2𝑠𝑝+1𝑠𝑝+2 .

Applying a similar calculation to the permutation 𝑤 = 213 ∈ S3 gives us the polynomial

𝔖𝑠2𝑠1 +𝔖𝑠2𝑠𝑝+2 +𝔖𝑠𝑝+2𝑠𝑝+1 ,

representing the cohomology class for the Hesseberg variety Hess(x𝑝,3, m(213)), as the W-set of 𝛾213
is {𝑠2𝑠1, 𝑠2𝑠𝑝+2, 𝑠𝑝+2𝑠𝑝+1}.

Our final goal is to understand the intersection of the closure of the orbit corresponding to the clan
𝛾𝑤 with a ‘basic hyperplane of 𝐺𝐿𝑛/𝐵’. Here, by a basic hyperplane of 𝐺𝐿𝑛/𝐵, we mean the Schubert
divisor 𝑋𝑠𝑖𝑤0 , and 𝑖 ∈ [𝑛 − 1]. Such an intersection is succinctly expressed in the cohomology ring by
Monk’s formula [Man01, Theorem 2.7.1].

Lemma 4.17 (Monk’s formula). For all 𝑢 ∈ S𝑛 and all 𝑚 ∈ [𝑛 − 1],

𝔖𝑠𝑚𝔖𝑢 =
∑

𝑗≤𝑚<𝑘

ℓ(𝑢𝑡 𝑗𝑘)=ℓ (𝑢)+1

𝔖𝑢𝑡 𝑗𝑘 ,

where 𝑡 𝑗𝑘 is the transposition in S𝑛 that interchanges j and k and leaves every other number fixed.
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Example 4.18. Let 𝑞 = 3. We know from Example 4.16 that the cohomology class for the Hessenberg
variety Hess(x𝑝,3, m(123)) is represented by

𝔖𝑠1𝑠2𝑠1 +𝔖𝑠𝑝+1𝑠𝑝+2𝑠𝑝+1 +𝔖𝑠1𝑠2𝑠𝑝+2 +𝔖𝑠2𝑠1𝑠𝑝+1 +𝔖𝑠1𝑠𝑝+2𝑠𝑝+1 +𝔖𝑠2𝑠𝑝+1𝑠𝑝+2 . (13)

Now, let us use Monk’s formula to understand the product 𝔖𝑠𝑚𝔖(𝛾123) for all 𝑚 < 𝑛 = 6.
Monk’s formula tells us that the product of 𝔖𝑠𝑚 with each term appearing in (13) is a 0 − 1 sum of

Schubert polynomials. Moreover, we note that the sum of these products (which constitutes the product
𝔖𝑠𝑚𝔖(𝛾123)) remains a 0 − 1 sum of Schubert polynomials.

Multiplying by 𝔖𝑠1 gives us

𝔖𝑠3𝑠1𝑠2𝑠1 +𝔖𝑠1𝑠𝑝+1𝑠𝑝+2𝑠𝑝+1 +𝔖𝑠1𝑠2𝑠1𝑠𝑝+2 +𝔖𝑠𝑝+1𝑠3𝑠2𝑠1+

𝔖𝑠3𝑠2𝑠1𝑠𝑝+1 +𝔖𝑠2𝑠1𝑠𝑝+2𝑠𝑝+1 +𝔖𝑠2𝑠1𝑠𝑝+1𝑠𝑝+2 +𝔖𝑠1𝑠2𝑠𝑝+1𝑠𝑝+2 .

Multiplying by 𝔖𝑠2 gives us

𝔖𝑠3𝑠1𝑠2𝑠1 +𝔖𝑠2𝑠3𝑠1𝑠2 +𝔖𝑠2𝑠𝑝+1𝑠𝑝+2𝑠𝑝+1 +𝔖𝑠3𝑠1𝑠2𝑠𝑝+2+

𝔖𝑠𝑝+1𝑠3𝑠2𝑠1 +𝔖𝑠3𝑠2𝑠1𝑠𝑝+1 +𝔖𝑠1𝑠2𝑠1𝑠𝑝+1 +𝔖𝑠2𝑠1𝑠𝑝+2𝑠𝑝+1+

𝔖𝑠1𝑠2𝑠𝑝+2𝑠𝑝+1 +𝔖𝑠1𝑠2𝑠𝑝+1𝑠𝑝+2 +𝔖𝑠𝑝+1𝑠𝑝+2𝑠3𝑠2 +𝔖𝑠3𝑠2𝑠𝑝+1𝑠𝑝+2 .

Multiplying by 𝔖𝑠3 gives us

𝔖𝑠2𝑠1𝑠3𝑠2 +𝔖𝑠1𝑠2𝑠1𝑠3 +𝔖𝑠𝑝+1𝑠𝑝+2𝑠𝑝+1𝑠3 +𝔖𝑠𝑝+1𝑠3𝑠𝑝+2𝑠𝑝+1+

𝔖𝑠3𝑠𝑝+1𝑠𝑝+2𝑠𝑝+1 +𝔖𝑠3𝑠1𝑠2𝑠𝑝+2 +𝔖𝑠1𝑠2𝑠3𝑠𝑝+2 +𝔖𝑠𝑝+1𝑠3𝑠2𝑠1+

𝔖𝑠3𝑠𝑝+1𝑠2𝑠1 +𝔖𝑠𝑝+1𝑠2𝑠1𝑠3 +𝔖𝑠2𝑠1𝑠3𝑠𝑝+1 +𝔖𝑠𝑝+2𝑠𝑝+1𝑠1𝑠3+

𝔖𝑠3𝑠1𝑠𝑝+2𝑠𝑝+1 +𝔖𝑠3𝑠2𝑠𝑝+1𝑠𝑝+2 +𝔖𝑠2𝑠𝑝+1𝑠𝑝+2𝑠3 +𝔖𝑠2𝑠3𝑠𝑝+1𝑠𝑝+2 .

Multiplying by 𝔖𝑠4 gives us

𝔖𝑠𝑝+1𝑠1𝑠2𝑠1 +𝔖𝑠𝑝+1𝑠𝑝+2𝑠3𝑠𝑝+1 +𝔖𝑠3𝑠𝑝+1𝑠𝑝+2𝑠𝑝+1 +𝔖𝑠1𝑠2𝑠𝑝+2𝑠𝑝+1+

𝔖𝑠1𝑠2𝑠𝑝+1𝑠𝑝+2 +𝔖𝑠3𝑠2𝑠1𝑠𝑝+1 +𝔖𝑠2𝑠1𝑠3𝑠𝑝+1 +𝔖𝑠2𝑠1𝑠𝑝+2𝑠𝑝+1+

𝔖𝑠3𝑠1𝑠𝑝+2𝑠𝑝+1 +𝔖𝑠3𝑠2𝑠𝑝+1𝑠𝑝+2 +𝔖𝑠2𝑠3𝑠𝑝+1𝑠𝑝+2 +𝔖𝑠1𝑠𝑝+1𝑠𝑝+2𝑠𝑝+1 .

Multiplying by 𝔖𝑠5 gives us

𝔖𝑠3𝑠𝑝+1𝑠𝑝+2𝑠𝑝+1 +𝔖𝑠𝑝+2𝑠1𝑠2𝑠1 +𝔖𝑠1𝑠2𝑠𝑝+1𝑠𝑝+2 +𝔖𝑠2𝑠1𝑠𝑝+2𝑠𝑝+1+

𝔖𝑠2𝑠1𝑠𝑝+1𝑠𝑝+2 +𝔖𝑠1𝑠𝑝+1𝑠𝑝+2𝑠𝑝+1 +𝔖𝑠3𝑠2𝑠𝑝+1𝑠𝑝+2 +𝔖𝑠2𝑠3𝑠𝑝+1𝑠𝑝+2 .

We can use Monk’s formula to understand the product𝔖𝑠𝑚𝔖(𝛾𝑤 ) in general. In particular, we show
that the product 𝔖𝑠𝑚𝔖(𝛾𝑤 ) is always 0 − 1 sum of Schubert polynomials for all 𝑚 < 𝑛.

Remark 4.19. It is shown in [Bri05, Lemma 3.2.2] that a subvariety V of 𝐺/𝐵 whose cohomology
class is a 0-1 sum of Schubert classes gives a ‘multiplicity-free variety of G’ in the sense of Section 3.2
of the same reference. In turn, this property is useful for understanding the singularities (normality) of
the underlying variety; see [Bri05, Theorem 3.2.1]. Theorem 4.20 below tells us that the intersection of
Hess(x𝑝,𝑞 , m(𝑤)) with any Schubert divisor is multiplicity free.

Theorem 4.20. If 𝑚 ∈ [𝑛 − 1] and 𝑤 ∈ S𝑞 , then the product 𝔖𝑠𝑚𝔖(𝛾𝑤 ) is a multiplicity-free sum of
Schubert polynomials.
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Proof. It follows from Proposition 4.14 that

𝔖𝑠𝑚𝔖(𝛾𝑤 ) =
∑

(𝑢,𝑣) ∈S (𝑤𝑦0)

𝔖𝑠𝑚𝔖𝑢𝜑 (𝑣) .

We apply Monk’s formula to each product 𝔖𝑠𝑚𝔖𝑢𝜑 (𝑣) and obtain

𝔖𝑠𝑚𝔖𝑢𝜑 (𝑣) =
∑

𝑗≤𝑚<𝑘

ℓ(𝑢𝜑 (𝑣)𝑡 𝑗𝑘)=ℓ (𝑢)+ℓ (𝑣)+1

𝔖𝑢𝜑 (𝑣)𝑡 𝑗𝑘 .

We aim to show each summand appearing on the RHS above will not appear in the corresponding sum
for another pair from S (𝑤𝑦0).

Suppose there exist pairs (𝑢1, 𝑣1) and (𝑢2, 𝑣2) in S (𝑤) such that

𝑢1𝜑(𝑣1)𝑡 𝑗𝑘 = 𝑢2𝜑(𝑣2)𝑡 𝑗′𝑘′ (14)

for some 𝑗 , 𝑘, 𝑗 ′, 𝑘 ′ such that 𝑗 ≤ 𝑚 < 𝑘 and 𝑗 ′ ≤ 𝑚 < 𝑘 ′. To complete the proof, we show that (14)
implies 𝑢1 = 𝑢2 and 𝑣1 = 𝑣2.

Write 𝑥1 = 𝑢1𝜑(𝑣1) and 𝑥2 = 𝑢2𝜑(𝑣2) for the remainder of the proof. We begin with a few
observations. By construction, each permutation 𝑥𝑖 = 𝑢𝑖𝜑(𝑣𝑖) with 𝑖 ∈ {1, 2} satisfies

[𝑞] = {𝑥𝑖 (1), . . . , 𝑥𝑖 (𝑞)} (15)

and

𝑥𝑖 (𝑎) = 𝑎 for all 𝑞 + 1 ≤ 𝑎 ≤ 𝑝, (16)

and

[𝑛] \ [𝑝] = {𝑥𝑖 (𝑝 + 1), . . . , 𝑥𝑖 (𝑛)}. (17)

We obtain the one-line notation of 𝑥1𝑡 𝑗𝑘 from that of 𝑥1 by exchanging the entries in positions j and k
and similarly for 𝑥2𝑡 𝑗′𝑘′ . These observations imply that pairs 𝑗 < 𝑘 and 𝑗 ′ < 𝑘 ′ satisfying (14) must fall
into one of the following cases:

1. 𝑗 , 𝑗 ′ ∈ [𝑞], 𝑘, 𝑘 ′ ∈ [𝑛] \ [𝑞],
2. 𝑗 , 𝑗 ′, 𝑘, 𝑘 ′ ∈ [𝑞],
3. 𝑗 , 𝑗 ′, 𝑘, 𝑘 ′ ∈ {𝑞 + 1, . . . , 𝑝},
4. 𝑗 , 𝑗 ′ ∈ {𝑞 + 1, . . . , 𝑝} and 𝑘, 𝑘 ′ ∈ [𝑛] \ [𝑝], and
5. 𝑗 , 𝑗 ′, 𝑘, 𝑘 ′ ∈ [𝑛] \ [𝑝].

Note that cases (3) and (4) do not arise when 𝑝 = 𝑞.
We begin with Case (1). In this case, the equality (14) and equation (15) imply

{𝑘} = ([𝑛] \ [𝑞]) ∩ {(𝑥1𝑡 𝑗𝑘 )
−1(1), . . . , (𝑥1𝑡 𝑗𝑘 )

−1(𝑞)}

= ([𝑛] \ [𝑞]) ∩ {(𝑥2𝑡 𝑗′𝑘′ )
−1(1), . . . , (𝑥2𝑡 𝑗′𝑘′ )

−1(𝑞)} = {𝑘 ′}

so 𝑘 = 𝑘 ′. Similarly, using (14), (16) and (17), we have

{ 𝑗} = [𝑞] ∩ {(𝑥1𝑡 𝑗𝑘 )
−1(𝑞 + 1), . . . , (𝑥1𝑡 𝑗𝑘 )

−1(𝑛)}

= [𝑞] ∩ {(𝑥2𝑡 𝑗′𝑘′ )
−1(𝑞 + 1), . . . , (𝑥2𝑡 𝑗′𝑘′ )

−1(𝑛)} = { 𝑗 ′}

so 𝑗 = 𝑗 ′. Now (14) implies 𝑥1 = 𝑥2, and thus, 𝑢1 = 𝑢2 and 𝑣1 = 𝑣2 by Lemma 4.10. Case (4) follows
by similar reasoning, so we omit it to avoid repetition.
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Now suppose we are in the setting of Case (2). Then (14) becomes 𝑢1𝑡 𝑗𝑘𝜑(𝑣1) = 𝑢2𝑡 𝑗′𝑘′𝜑(𝑣2) since
𝑡 𝑗𝑘 and 𝑡 𝑗′𝑘′ commute with 𝜑(𝑣1) and 𝜑(𝑣2). By Lemma 4.9, we also know that both of the following sets

Supp(𝑢1𝑡 𝑗𝑘 ) ∩ Supp(𝜑(𝑣1)) and Supp(𝑢2𝑡 𝑗′𝑘′ ) ∩ Supp(𝜑(𝑣2))

are empty. Consequently, Supp(𝜑(𝑣1)) = Supp(𝜑(𝑣2)) implying that 𝜑(𝑣1) = 𝜑(𝑣2), and hence, 𝑣1 = 𝑣2
by Lemma 4.8. It now follows from the definition of the set S (𝑤𝑦0) that 𝑢1 = 𝑢2. Indeed, we have

𝑢1𝑣1 = 𝑤𝑦0 = 𝑢2𝑣2 and 𝑣1 = 𝑣2 ⇒ 𝑢1𝑣1 = 𝑢2𝑣1 ⇒ 𝑢1 = 𝑢2.

The proof of Case (5) is almost identical to that of (2), so we omit it to avoid repetition.
Finally, we consider Case (3). The equality (14) and equation (16) immediately imply that 𝑗 = 𝑗 ′ and

𝑘 = 𝑘 ′. Thus, 𝑥1 = 𝑥2, and we conclude 𝑢1 = 𝑢2 and 𝑣1 = 𝑣2 as before. This finishes the proof of our
theorem. �
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