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Abstract. We consider a finite-dimensional vector space W ⊂ KE over a field K and a set E. We
show that the set C(W) ⊂ 2E of minimal supports of W are the circuits of a matroid on E. When
the cardinality of K is large (compared to that of E), then the family of supports of W is a matroid.
Afterwards we apply these results to tropical differential algebraic geometry (tdag), studying the set
of supports of spaces of formal power series solutions Sol(Σ) of systems of linear differential equations
(ldes) Σ in variables x1 , . . . , xn having coefficients in K⟦t1 , . . . , tm⟧. If Σ is of differential type zero,
then the set C(Sol(Σ)) ⊂ (2Nm

)n of minimal supports defines a matroid on E = [n] ×Nm , and if
the cardinality of K is large enough, then the set of supports is also a matroid on E. By applying
the fundamental theorem of tdag (fttdag), we give a necessary condition under which the set of
solutions Sol(U) of a system U of tropical ldes is a matroid. We give a counterexample to the fttdag
for systems Σ of ldes over countable fields for which is not a matroid.

1 Introduction

A fundamental concept in tropical algebraic geometry is the tropicalization
trop(X , v) ⊆ (R ∪ {−∞})n of an algebraic variety X ⊂ Kn defined over a valued
field K = (K , v). Assume X is defined by an ideal I with constant coefficients (i.e.,
I ⊂ k[x1 , . . . , xn] where k ⊂ K is a field with trivial valuation v0 ∶ k �→ {−∞, 0}).
In this case, we may consider the K-points of X and tropicalize with respect to v
which yields a polyhedral fan trop(X , v). A classical result from tropical algebraic
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2 F. Aroca et al.

geometry states that trop(X , v) coincides with the Bergman fan B(X) [26, Theorem
9.6]. If X is a linear space, the Bergman fan can be obtained from its matroid
M(X) = ({1, . . . , n},C(X)) (see, e.g., [21, p. 165] or [2]). On the other hand, we
may consider the trivial valuation v = v0. Note that the set

v0(X) ∶= {(v0(p1), . . . , v0(pn)) ∈ {−∞, 0}n ∶ (p1 , . . . , pn) ∈ X},(1.1)

consists of all the supports of the points of X: it suffices to consider the identification
{−∞, 0}n ≅ 2[n] as the set of all the indicator functions of the subsets of [n]. In
general, we have v0(X) ⊆ trop(X , v0), and this inclusion may be proper; for example,
if X ⊂ F3

2 is the linear space spanned by {(0, 1, 1), (1, 0, 1)}, then

v0(X) ∪ {(0, 0, 0)} = trop(X , v0),

which says that (1.1) carries potentially more information than the matroid M(X).
We show that, if X ⊂ KE is a finite-dimensional vector space, then the above situation
cannot happen if the cardinality of K is large enough with respect to the cardinality
of the set E; that is, the set of supports v0(X) ⊂ 2E ≅ {0,−∞}E and the matroid
M(X) = (E ,C(X)) associated with X can be identified with each other via

(E ,C(X)) = M(X) v0(X) = (E , S(X)).
scrawls

circuits
(1.2)

To do this, we use the notion of infinite matroids under the cryptomorphisms of
circuits [7] and scrawls [6]. Up to our knowledge, this result is new in both cases when
E is finite and when E is infinite. While it is possible to obtain that M(X) = (E ,C(X))
is a matroid using the results of thin sums families and their associated thin sums
systems from [1], we offer an independent proof which has the advantage of being
more elementary. We believe that both proofs have their own advantages, so we have
decided to include both.

Our interest in this type of questions comes from the theory of tropical differential
algebraic (DA) geometry, where the tropicalization of the set of formal power series
solutions of systems of homogeneous linear differential equations appears as a set of
the form v0(X) ⊂ 2E , where E is infinite, as in (4.2). This is why in this article we
deal mainly with duals of representable matroids over an infinite set of labels E (see
Theorem 2.12), which are not representable in the usual sense (see Remark 2.13), but
we show that under the above hypothesis they do arise as the semigroup of the set of
supports of a vector space.

Also, we aim to further study the Boolean formal power series solutions of systems
of tropical homogeneous linear differential equations. This study was initiated in [15]
and it is a natural continuation for the tropical aspects of the DA theory of such
systems, following the development of classical tropical geometry.

1.1 Analogies between classical and tropical DA geometry

The theory of tropical DA geometry was initiated by Grigoriev [15], the fundamental
theorem was proved by Aroca, Garay, and Toghani in [3], and is becoming an
established active field of research with several contributions, such as [12, 13, 16, 21].
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Infinite matroids in tropical differential algebra 3

Since the beginning, a natural question arose: which concepts of classical tropical
algebraic geometry over a valued field (K , v) can be generalized to the differential
setting? More specifically, can tropical DA geometry be regarded as an infinite version
of classical tropical algebraic geometry?

A cornerstone of classical tropical algebraic geometry is the fundamental theorem
of tropical algebraic geometry (fttag, [22, Theorem 3.2.3], a generalization of
Kapranov’s Theorem [9] for hypersurfaces), which describes in three ways the
tropicalization trop(X , v) ⊂ Rn coming from algebraic subvarieties X ⊂ (K∗)n ,
where K is an algebraically closed field and v ∶ K∗ �→ R is a non-trivial valuation.
A tropical (partial) differential analog of this result (fttdag) was successfully
constructed in [1, 10, 11] giving three different descriptions of the tropical space of
Boolean formal power series v0(X) ⊂ B⟦t1 , . . . , tm⟧n that come from DA varieties X ⊂
K⟦t1 , . . . , tm⟧n , where K is an uncountable algebraically closed field of characteristic
zero and v0 is the trivial valuation. Note that in [6] it is shown that the uncountability
condition can be replaced by countably infinite transcendence degree over the field of
definition of X.

A natural source of finite-dimensional vector spaces X ⊂ KE with E infinite are the
sets of solutions of systems of homogeneous linear differential equations of differential
type zero with coefficients in K⟦t1 , . . . , tm⟧. We explore its consequences for distinct
fields K satisfying or not the conditions of the fttdag. Our main results on matroids
(Theorems 2.11 and 3.5) lead to the following result (Theorem 4.2).

Theorem 1.1 Fix two positive integers m, n. Let E = Nm and let T ∶ KE �→ 2E be
the support map (Definition 2.4). Let Σ ⊂ Km ,n be a system of homogeneous linear
differential equations of differential type zero and let T(Sol(Σ)) ⊂ (2E)n be the set of
supports of Sol(Σ). Then
(1) the minimal elements C(Sol(Σ)) of T(Sol(Σ)) define the circuits of a matroid on

[n] ×Nm ;
(2) if the cardinality of K is large enough, then T(Sol(Σ)) itself is the set of scrawls of

C(Sol(Σ)).

Obtaining that T(Sol(Σ)) is the set of scrawls of C(Sol(Σ)) (see item (1)), implies
in particular that, if we have two supports of solutions of Σ, then their union appears
also as the support of a solution of Σ; this is, T(Sol(Σ)) is a semigroup (with respect
to the operation of union of sets). In item (2), the assumption on the cardinality of K
is strict as we show in Section 6.

The previous result is about the structure of the tropicalization of the set of
formal solutions of a classical system. On the other hand, following Grigoriev
[14], one can study from an algebraic and combinatorial perspective the set
of solutions X = Sol(U) ⊂ B⟦t1 , . . . , tm⟧n associated with a system U ⊂ Bm ,n of
tropical linear differential equations, disregarding wether or not U is realizable
in some field K, this is, independent of the existence of linear systems Σ ⊂ Km ,n
such that U = trop(Σ) as in Definition 5.4. These sets of solutions are always
semigroups even for the case of partial differential equations m > 0, as we show in
Theorem 5.1.
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4 F. Aroca et al.

1.2 Statement of results

In Theorem 2.11, we show that if {0} ≠W ⊂ KE is a finite-dimensional K-vector
subspace, then the pair M(W) = (E ,C(W)) is a matroid, where C(W) ⊂ 2E is the
set of vectors in W having minimal (nonempty) support. This seems to be known
for experts, but we provide a rigorous proof of this. We also show that any element
of T(W) is a union of circuits, and in Theorem 3.5, we show that if #E < #S(K),
where S(K) = K ∪ {K} denotes the set-successor of K, then also the converse holds
true. In Theorem 5.1, we show that the set of solutions Sol(U) ⊂ B⟦T⟧n associated
with a system U ⊂ Bm ,n of homogeneous linear tropical differential equations is a
semigroup. In particular, using the fttdag, we give in Corollary 5.3 a necessary
condition for the set of solutions X = Sol(U) ⊂ B⟦t1 , . . . , tm⟧n to be a matroid (or
a matroid of scrawls, as in Definition 2.3). As a consequence of the previous results,
in Section 6, we give a counterexample for the fttdag in the case of linear differential
equations over countable fields.

1.3 Roadmap

The article is organized as follows. In Section 2, we introduce standard preliminary
material on matroid theory and we prove Theorem 2.11. In Section 3, we study the
matroid of scrawls and prove Theorem 3.5. In Section 4, we discuss the theory of
algebraic differential equations with coefficients in the ring K⟦t1 , . . . , tm⟧ over an
arbitrary field K, and we recast the result of the previous two sections for the case
of homogeneous systems of linear differential equations of differential type zero. In
Section 5, we discuss tropical differential equations, go further and analyze the special
case in which K satisfies the hypotheses of the fttdag.

2 The infinite matroid induced by a finite-dimensional subspace of
a vector space

In this section, we denote by E ≠ ∅ an arbitrary set and by 2E the power set of E, which
is ordered by inclusion. We consider 2E as a semigroup endowed with the set union
as operation.

2.1 Basic theory of infinite matroids

A matroid on E may be given in terms of different collections of subsets of E: the
circuits, the independent sets, or the bases; these are only some possibilities among
the many ways of defining matroids when E is finite. The matroid axioms were shown
to be equivalent by Whitney [27] in the finite case. For the infinite case, the Whitney
axioms need to be completed (see [4]). In [3], another possibility to define matroids
is exhibited by using scrawls.

Definition 2.1 Let C ⊂ 2E . We call C the set of circuits if it satisfies the following
axioms:
(1) ∅ ∉ C.
(2) No element of C is a subset of another.
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Infinite matroids in tropical differential algebra 5

(3) Whenever X ⊂ C ∈ C and {Cx ∶ x ∈ X} is a family of elements of C such that
x ∈ Cy iff x = y for all x , y ∈ X, then for every z ∈ C/(⋃x Cx), there is an element
C′ ∈ C such that z ∈ C′ ⊂ (C ∪⋃x Cx)/X.

(4) The set of C-independents I(C) ∶= {I ⊂ E ∶ C /⊂ I ∀C ∈ C} satisfies

if I ⊂ X ⊂ E and I ∈ I, then {I′ ∈ I ∶ I ⊂ I′ ⊂ X} has a maximal element.

In this case, M = (E ,C) is a matroid, and C is called the set of circuits of M.

Definition 2.2 Let M = (E ,C) be a matroid given in terms of its circuits. An
independent set is a subset of E that contains no circuits (compare item (4) in
Definition 2.1). A basis is a maximal independent set.

With abuse of notation, a matroid M is also denoted by M = (E ,B), where the
elements in B are the bases of M. We also have the following definition of matroid via
sets of scrawls, which are the unions of circuits [3, Section 2.2].

Definition 2.3 Let S ⊂ 2E . We call S the set of scrawls if it satisfies the following
axioms:
(1) S is a semigroup, i.e., any union of elements in S is in S;
(2) S satisfies the conditions (3) and (4) in Definition 2.1, where I(S) ∶= {I ⊂ E ∶

C /⊂ I ∀C ∈ S/{∅}}.
In this case, M = (E , S) is a matroid and S is called the set of scrawls of M.

Definitions 2.1 and 2.3 are equivalent, indeed, given a set of circuits, we get a set
of scrawls by taking all the finite unions of them, conversely, given a set of scrawls,
we get a set of circuits by taking the minimal non-empty elements with respect to
inclusion. Notice that a set of scrawls naturally carries the structure of a semigroup
and simultaneously encodes the information of a matroid.

Let M = (E ,B) be a matroid with basis elements B. By [4, Theorem 3.1], the
complements B∗ ∶= {E/B ∶ B ∈ B} form another matroid M∗ = (E ,B∗), called the
dual matroid to M. The circuits of M∗ are called cocircuits of M. A matroid M is called
tame if every intersection of a circuit and a cocircuit is finite [4]; otherwise, M is called
wild.

If all the circuits of a matroid M (respectively, M∗) are finite then M is called fini-
tary (respectively, cofinitary). These matroids are tame [15]. The matroids considered
in this article are cofinitary as we will show in Theorem 2.12.

2.2 The set of supports of a finite-dimensional vector space

In this section, we consider the vector space KE , where E is as above and K is any field.
We will consider finite-dimensional K-vector subspaces {0} ≠W ⊂ KE .

Definition 2.4 The support map T ∶ KE �→ 2E is the mapping (a i)i∈E ↦ {i ∈ E ∶
a i ≠ 0}. We call T(v) the support of v, and T(W) is defined as the set {T(ϕ) ∣ ϕ ∈
W} ⊆ 2E .
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6 F. Aroca et al.

It seems commonly known among experts in matroid theory that T(W) has a
natural matroid structure by considering the elements with minimal support as the
circuits. For the sake of completeness, we provide a proof by describing the circuits.

Definition 2.5 Let {0} ≠W ⊂ KE be a finite-dimensional K-vector subspace. We
define C(W) ⊂ 2E to be the sets in T(W)/∅ that are minimal with respect to set
inclusion.

Example 2.1 The set C(W) may consist of infinitely many elements. Consider
for instance W generated by φ1 = 1 +∑i≥2 t i , φ2 = ∑i≥1 i t i . Then, for every n > 1,
we obtain that ϕn ∶= n ⋅ φ1 − φ2 ∈W has the support T(ϕn) = N/{n}. Since there is
no non-zero element in W whose support is a subset of T(ϕn), T(φ1) or T(φ2), we
obtain that

C(W) = {N/{n} ∶ n ∈ N}.

Note that, by definition, C(W) satisfies items (i) and (ii) from Definition 2.1 by
explicitly excluding the empty set and only considering minimal sets which cannot
be subsets of other minimal sets. The next result shows that C(W) ≠ ∅.

Lemma 2.2 Let W be as above. For every element 0 ≠ φ ∈W , there is 0 ≠ ψ ∈W of
minimal support such that T(ψ) ⊂ T(φ).

Proof Since {0} ≠W , we have s = dimK(W) > 0. If s = 1, then W = K ⋅ φ1 with
0 ≠ φ1 ∈ KE , and it is clear that C(W) = {S1 = T(φ1) ≠ ∅}.

Suppose that s > 1. Consider 0 ≠ φ1 ∈W and let S1 = T(φ1). If S1 is minimal,
we are done. Otherwise, by definition of minimality, there should exist ∅ ⊊ S2 ⊊ S1
corresponding to some 0 ≠ φ2 ∈W . Then, {φ1 , φ2} ⊂W is linearly independent;
otherwise, an expression λ1φ1 + λ2φ2 = 0 with (λ1 , λ2) ≠ (0, 0) would imply that
λ1 , λ2 ≠ 0, and this would yield S1 = S2. Now repeat the process: if S2 is minimal, we are
done; otherwise, there exists ∅ ⊊ S3 ⊊ S2 corresponding to some 0 ≠ φ3 ∈W . Then,
the chain ∅ ⊊ S3 ⊊ S2 ⊊ S1 implies that {φ1 , φ2 , φ3} ⊂W is linearly independent;
otherwise, an expression λ1φ1 + λ2φ2 + λ3φ3 = 0 with (λ1 , λ2 , λ3) ≠ (0, 0, 0) would
yield at least one equality on the chain S3 ⊊ S2 ⊊ S1. This process eventually finishes
since the dimension of W is finite. ∎

Given W as above, below we show that C(W) also satisfies (3) and (4) from
Definition 2.1, so M(W) = (E ,C(W)) is indeed a matroid.

Remark 2.3 Suppose that W = K ⋅ φ1 with 0 ≠ φ1 ∈ KE . Then, C(W) = {T(φ1)},
and so (E ,C(W)) is a matroid.

Take a basis {φ1 , . . . , φs} ⊂W ⊂ KE of W as a K-vector space. Then, W =
{λ ⋅ φ ∶= ∑s

i=1 λ i φ i ∶ λ ∈ K s}. Each element of the basis has an expression in the
standard basis of KE of the form φ i = (a i j) j∈E with a i j ∈ K. For each j ∈ E, set
u( j) ∶= (a1 j , . . . , as j) ∈ K s . With this notation, an index j ∈ E lies in the support of
λ ⋅ φ ∈W if and only if λ ⋅ u( j) ≠ 0, that is:
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Infinite matroids in tropical differential algebra 7

T(λ ⋅ φ) = { j ∈ E ∶ λ ⋅ u( j) ≠ 0}.(2.1)

We keep this notation for the following lemmas.

Lemma 2.4 Given X ⊂ E, there exists 0 ≠ ϕ ∈W with T(ϕ) ⊂ X if and only if the
K-linear subspace of K s generated by {u( j)} j∉X is a proper subspace of K s .

Proof As a consequence of (2.1), we have that T(λ ⋅ φ) ⊂ X if and only if 0 ≠ λ ∈ K s

is a solution of the system

{u(i) ⋅ λ = 0}i∉X .

This system has non-zero solutions if and only if the K-linear subspace of K s generated
by {u( j)} j∉X is a proper subspace of K s . Since W = {λ ⋅ φ ∶ λ ∈ K s}, the statement
follows, as the dimension of the space of solutions of a linear system AX = 0 in s
unknowns is s minus the rank of the matrix A. ∎

Lemma 2.5 Given 0 ≠ ϕ ∈W, let L ⊂ K s be the K-linear subspace generated by
{u(i)}i∉T(ϕ). Then, L is a proper subspace of K s and u(i) ∉ L for all i ∈ T(ϕ).

Proof As a direct consequence of Lemma 2.4, L is a proper subspace of K s . Now,
ϕ is an element of W if and only if it is of the form λ ⋅ φ and an element i ∈ E is in the
support of λ ⋅ φ if and only if λ ⋅ u(i) ≠ 0. Since L is generated by the set {u(i)}i∉T(ϕ),
we have that λ ⋅ u(i) = 0 for all elements in L. ∎

Lemma 2.6 Given C ⊂ E, let L ⊂ K s be the space spanned by {u(i)}i∉C . Then,
C ∈ C(W) if and only if L is (s − 1)-dimensional and u(i) ∉ L for all i ∈ C.

Proof Suppose that C ∈ C(W), then C = T(ϕ) for some 0 ≠ ϕ ∈W , and it fol-
lows from Lemma 2.5 that L is a proper subspace of K s and u(i) ∉ L for all i ∈ C.
If the dimension of L is d < s − 1, we take i1 , i2 , . . . is−d in C such that the sub-
space spanned by L and {u(ik)}k=1, . . . ,s−d is K s . The system {u(i) ⋅ λ = 0}i∉C ∪ {u(ik) ⋅
λ = 0}k=2,. . . ,s−d ∪ {u(i1) ⋅ λ = 1} has a unique solution 0 ≠ λ ∈ K s . For this solution,
T(λ ⋅ φ) ⊂ C. Since {ik}k=2,. . . ,s−d ⊂ C and ik ∉ T(λ ⋅ φ) for k = 2, . . . , s − d, the set
inclusion is strict (so C is not minimal). So, we deduce that L is (s − 1)-dimensional.

Conversely, suppose that L is (s − 1)-dimensional. Then, a solution of the system
{u(i) ⋅ λ = 0}i∉C is unique up to scalar multiplication. If 0 ≠ λ ∈ K s is such a solution,
then the only elements of W with support contained in C are scalar multiples of
ϕ ∶= λ ⋅ φ, so they all have the same support. Now, T(ϕ) ⊂ C implies that the K-linear
subspace generated by {u(i)}i∉T(ϕ) is a proper subspace of K s containing L, and since
L is (s − 1)-dimensional, it is then the whole L.

Now, if i ∈ C implies that u(i) ∉ L, then u(i) ∈ L if and only if i ∉ C; indeed, the
converse i ∉ C implies u(i) ∈ L is implied by the construction of L. Likewise, u(i) ∈ L
if and only if i ∉ T(ϕ) by Lemma 2.5 and the previous paragraph. This yields C = T(ϕ)
and thus C ∈ C(W). ∎
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8 F. Aroca et al.

Lemma 2.7 Given 0 ≠ ϕ ∈W, for every z ∈ T(ϕ) ⊂ E , there exists a minimal element
C ∈ T(W)/∅ such that z ∈ C ⊂ T(ϕ).

Proof Let L be the subspace generated by {u(i)}i∉T(ϕ). By Lemma 2.4, the subspace
L is of dimension 0 < d < s. Moreover, since ϕ is a combination of the φ i ’s, for all
i ∈ T(ϕ), it holds that u(i) ∉ L.
(1) If d = s − 1, then, by Lemma 2.6, T(ϕ) is minimal.
(2) Suppose that the dimension of L is d ≤ s − 2. Take i2 , . . . is−d in C such that

the subspace generated by L, u(z) and {u(ik)}k=2,. . . ,s−d is K s . The system
{u(i) ⋅ λ = 0}i∉C ∪ {u(ik) ⋅ λ = 0}k=2,. . . ,s−d ∪ {u(z) ⋅ λ = 1} has a unique solution
0 ≠ λ ∈ K s . For this solution, z ∈ T(λ ⋅ φ) ⊂ C/{ik)}k=2,. . . ,s−d . Since the sub-
space generated by L and {u(ik)}k=2,. . . ,s−d is of dimension s − 1, again by Lemma
2.6, T(λ ⋅ φ) is minimal. ∎

Lemma 2.8 Let X ⊂ E and let {ϕx ∶ x ∈ X} ⊂W be a set such thatT(ϕx) ∩ X = {x}
for all x ∈ X. Then, the vectors {u(x) ∶ x ∈ X} are linearly independent.

Proof For each x ∈ X, let λx ∈ K s be such that ϕx = λx ⋅ φ and let Lx be the linear
subspace generated by {u(i)}i∉T(ϕx). By Lemma 2.5, since x ∈ T(ϕx), then u(x) ∉ Lx .
Now, T(ϕx) ∩ X = {x} implies that u(y) ∈ {u(i)}i∉T(ϕx) for y ∈ X/{x}, then u(x) is
not in the space generated by {u(i)}i∈X/{x} ⊂ Lx . ∎

Lemma 2.9 Property (3) of Definition 2.1 holds for (E ,C(W)).

Proof Suppose that X ⊂ C ∈ C and {Cx ∶ x ∈ X} is a family of elements of C such
that x ∈ Cy iff x = y for all x , y ∈ X. Then, since W is finitely generated, by Lemma 2.8,
X is a finite set.

Choose φ = (b j) j∈E ∈W such that T(φ) = C and, for each x ∈ X, choose
φx = (ax j) j∈E ∈W such that T(φx) = Cx .

Set ϕ ∶= φ −∑x∈X
bx

ax x
φx . We have that C/(⋃x Cx) ⊂ T(ϕ) ⊂ (C ∪⋃x Cx)/X and

the result follows from Lemma 2.7. ∎

Lemma 2.10 Property (4) of Definition 2.1 holds for (E ,C(W)).

Proof Let I ⊂ X ⊂ E with I ∈ I. If X ∈ I, then X is the maximal element we are
looking for. Otherwise, there exists φ ∈W such that T(φ) ⊂ X. Then, by Lemma 2.4,
the dimension of the subspace of K s generated by {u( j) ∶ j ∉ I} is s and the dimen-
sion of the subspace of K s generated by {u( j) ∶ j ∉ X} is r with r < s. Then, there
exist {ir+1 , . . . , is} ⊂ X/I such that {u(ir+1), . . . , u(is)} together with {u( j) ∶ j ∉ X}
generate K s .

If Ī ∶= X/{u(ir+1) , . . . , u(is)} then Ī is a maximal element of {I′ ∈ I ∶ I ⊂ I′ ⊂ X}.
∎

Theorem 2.11 Let {0} ≠W ⊂ KE be a finite-dimensional K-vector subspace. Then,
M(W) = (E ,C(W)) is a matroid. Moreover, any element of T(W) is a union of
circuits.
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Proof Items (i) and (ii) are fulfilled as stated after Definition 2.5, and Lemmas 2.9
and 2.10 show the remaining items. The fact that any element of T(W) is a union of
circuits follows from Lemma 2.7. ∎

The above result is closely related to [15, Theorem 4.12] where the language of thin
sum matroids is used, for more details see Section 2.3.

Recall from Example 2.1 that the setC(W)may consist of infinitely many elements.
Nevertheless, the matroid (E ,C(W)) has some finite structure in the following sense.

Theorem 2.12 The matroid M = (E ,C(W)) is cofinitary. In particular, M is tame.

Proof By Lemma 2.4, we have that X ⊂ E is independent if and only if the K-linear
subspace generated by {u( j)} j∉X is K s , which means that there exist { j1 , . . . , js} ⊂
E/X such that {u( j1), . . . , u( js)} is a linearly independent set. Then, the bases of
the matroid are exactly BM = {E/{ j1 , . . . , js} ∶ Span{u( j1) , . . . , u( js)} = K s}, and
B∗M = {{ j1 , . . . , js} ∶ Span{u( j1), . . . , u( js)} = K s}. Thus, the circuits of the dual
matroid will have at most s + 1 elements. ∎

Remark 2.13 The fact that B∗M = {{ j1 , . . . , js} ∶ Span{u( j1), . . . , u( js)} = K s} says
that the dual M∗ of M = (E ,C(W)) is precisely the matroid defined by the linear
independence of the family of vectors {u( j) ∶ j ∈ E} (see [15, Definition 2.6].

A matroid defined by linear independence of a family of vectors is always finitary
(even if the space spanned by the vectors is infinite-dimensional, see [15, p. 2],
[4, Section 2.6]). Thus, our original matroid (E ,C(W)) = M = (M∗)∗ will in general
not be representable.

2.3 Relationship with thin sums matroids

Again, take a basis {φ1 , . . . , φs} ⊂W ⊂ KE of W as a K-vector space of the form
φ i = (a i j) j∈E . In Remark 2.13, we showed that the dual of our matroid M = M(W) =
(E ,C(W)) is the matroid N = M∗ represented by the family {u( j) ∶ j ∈ E} ⊂ K s

where u( j) ∶= (a1 j , . . . , as j).
Having this in mind, it is possible to use the theory of thin families and their

associated thin sums matroids to give a much shorter proof of the fact that M is
a matroid. The necessary concepts and constructions are rather technical, and the
interested reader can find the details in [15]. But since the proof is rather short, we
include it here as an alternative.

The dual N∗ = M arises as a thin sums matroid over a thin family for the field K by
[15, Theorem 1.2], and [15, Theorem 3.3] gives an explicit way to compute N∗: let C be
the family of all linear dependencies of the family {u( j) ∶ j ∈ E}, which in this case
consists of all the finitely supported elements c of KE which are orthogonal to the set
{φ1 , . . . , φs}. Then, p ∶ E �→ KC defined by p(e)(c) ∶= c(e) is a thin family, and the
corresponding thin sums matroid Mts(p) is N∗.

If v ∈ KE and F ⊂ E, we denote by v∣F the element of KE having coordinates
(v∣F)e = ve if e ∈ F, and (v∣F)e = 0 otherwise. Now, we have the following result.
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10 F. Aroca et al.

Lemma 2.14 The set of vectors v ∈ KE which are orthogonal to all c ∈ C is precisely W.

Proof Since {φ1 , . . . , φs} generate W and are orthogonal to all the elements of C
by definition, then all the elements of W are also orthogonal to all the elements of C.

Conversely, let v ∈ KE be an orthogonal vector to all the elements of C, and let
F ⊂ E be a finite set large enough that the set {φ1∣F , . . . , φs ∣F} is linearly independent.
Then, v∣F is orthogonal to every element orthogonal to the set {φ1∣F , . . . , φs ∣F}, and
so we have an expression v∣F = ∑i l i φ i ∣F for uniquely determined l1 , . . . , ls ∈ K since
{φ1∣F , . . . , φs ∣F} is linearly independent.

Given e ∈ E/F, we know that v∣F∪{e} is orthogonal to every element orthogonal to
the set {φ1∣F∪{e}, . . . , φs ∣F∪{e}}, and so we have an expression v∣F∪{e} = ∑i l ′i φ i ∣F∪{e}.
Now, we restrict this expression to F ⊂ F ∪ {e} to find that l ′i = l i for all i, and since
this is true for every e ∈ E/F, we deduce that v = ∑i l i φ i ∈W . ∎

The previous lemma shows that the set of thin dependencies Dp of the thin family
p is precisely W, now [15, Theorem 3.4] says that Mts(p) = M∗(p), where p ∶ E �→ kW

is defined by p(e)(v) = v(e) for e ∈ E and v ∈W .

3 Scrawls and cardinality

In the previous section, we have shown that the minimal elements of T(W) satisfy
the axioms of circuits. The scrawls of the matroid on E given in terms of these circuits
are unions of circuits. In this section, we investigate the conditions on E and W upon
which the collection of scrawls coincide with T(W). For this purpose, let us denote
by #C the cardinality of a set C and by S(C) = C ∪ {C} the successor-set. Note that
#S(C) = #C + 1 for finite sets C and #S(C) = #C if C is infinite.

3.1 Matroids of scrawls

Denote by Lin(W) the set of K-linear subspaces L ⊂ K s with L ≠ K s such that L is
generated by a set of the form {u(i)}i∈X for some X ⊂ E. We will denote by ΨW the
map given by

ΨW ∶ Lin(W) �→ 2E

L ↦ {i ∈ E ∶ u(i) ∉ L}.(3.1)

Notice that Lin(W) is in fact independent of the choice of basis {φ1 , . . . , φs}. To
see this consider another basis {ψ1 , . . . , ψs} of W and let ψ i = (b i j) j∈E . Denote for
j ∈ E, w( j) ∶= (b1 j , . . . , bs j). Then, there exists an invertible s × s matrix λ =
(λ i j)1≤i , j≤s encoding the change of basis: ψ i = ∑ λ i jφ j . In particular, for all j ∈ E ,
we have

λu( j) = w( j) .

Now consider X ⊂ E and L = ⟨u( j) ∶ j ∈ X⟩. We have

⟨u(i)⟩i∈X = ⟨λ−1w(i)⟩i∈X = ⟨u( j)⟩ j∈T({λ−1 w(i)}i∈X) .

So the base change matrix λ induces a natural bijection between the linear spaces
generated by subsets of {u(i)}i∈E and those of {w(i)}i∈E .

Downloaded from https://www.cambridge.org/core. 24 Sep 2025 at 12:42:26, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Infinite matroids in tropical differential algebra 11

Lemma 3.1 The morphism ΨW induces a one-to-one correspondence between the
circuits of the matroid induced by W and the spaces of codimension one in Lin W.

Proof This is a direct consequence of Lemma 2.6. ∎

Lemma 3.2 The collection T(W) ⊂ 2E is closed under union if and only if ΨW is a
natural one-to-one correspondence between Lin(W) and T(W).

Proof Lemma 2.5 implies that T(W) ⊂ ΨW(Lin(W)).
Now, Lin(W) is closed under intersection and ΨW(L ∩ L′) = ΨW(L) ∪ΨW(L′).

Then, ΨW(Lin(W)) is closed under union. All elements of Lin(W) can be written as
intersection of elements of codimension one. Then, all the elements in ΨW(Lin(W))
may be written in terms of images of elements of codimension one. By Lemma 3.1,
images of elements of codimension one are circuits. By Theorem 2.11, all elements of
T(W) are union of circuits. ∎

Lemma 3.3 Let L be a K-linear subspace of K s with dimK(L) = d ≤ s − 2 and let
{u(i)}i∈X ⊂ K s with X ⊂ E be such that {u(i)}i∈X ∩ L = ∅. If #X < #S(K), then there
exists a K-linear subspace L ⊃ L of K s of dimension d + 1 with {u(i)}i∈X ∩ L = ∅.

Proof Let A be the collection of K-linear subspaces of dimension d + 1 of K s

containing L. The collection A is isomorphic to P
s−d−1
K , where PK denotes the

projective space over K. Then, the cardinality of A is greater than or equal to the
cardinality of S(K). For every non-zero vector u(i) ∉ L, i ∈ X, since the dimension
of L is d, there exists exactly one L i ∈ A such that u(i) ∈ L i . Thus, if #X < #S(K), there
is L ∈ A/{L i}i∈X and L does not contain any of the u(i) ∉ L. ∎

Let us note that for infinite K the proof could be simplified by using #Ps−d−1
K =

#PK = #K.

Lemma 3.4 Let W be a subspace of KE and let ΨW be as in (3.1). If #E < #S(K), then
ΨW is a natural one-to-one correspondence between Lin(W) and T(W).

Proof We start by showing that, for L ∈ Lin(W), ΨW(L) is in T(W).
(1) If L is of codimension one it is a consequence of Lemma 2.6 (with no assumption

about cardinality).
(2) Suppose that the dimension of L is d < s − 1. Then, the cardinality of X ∶= {i ∈

E ∶ u(i) ∉ L} satisfies #Sd(X) ≤ #E , where Sd denotes the d-th successor-set.
Applying s − d − 1 times Lemma 3.3, there exists a K-linear hyperplane L ⊃ L
that does not contain any element of {u(i)}i∈X . Take λ ∈ K s such that L = {v ∈
K s ∶ λ ⋅ v = 0}. Since L ⊂ L and {u(i)}i∈E ,u(i)∉L ∩ L = ∅we have that λ ⋅ u(i) = 0
for all u(i) ∈ L and λ ⋅ u(i) ≠ 0 for all u(i) ∉ L. Then, by (2.1), we have that
T(λ ⋅ φ) = ΨW(L).

That the mapping is injective is straightforward and, to show surjectivity, it is enough
to see that T(ϕ) = ΨW(L) for any ϕ ∈W , where L is the subspace generated by
{u(i)}i∈E/T(ϕ). ∎
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Theorem 3.5 Let W be a subspace of KE . If #E < #S(K), then T(W) is a set of scrawls
for E.

Proof By Theorem 2.11, any element of T(W) is a union of circuits. That any union
of circuits is in T(W) is a consequence of Lemma 3.4 together with Lemma 3.2. ∎

The following example shows that the condition in Theorem 3.5 about cardinality
is optimal.

Example 3.6 Let E be a finite set and let K be a finite field with #K < #E. Let i0 ∈ E
and set a i0 ∶= 1. Choose, for i ∈ E, the a i ∈ K such that K = {a i}i∈E/{i0}. Let i1 ∈ E be
such that a i1 = 0. Set φ1 ∶= {b i}i∈E ∈ KE , where b i ∶= 1 for i ≠ i0 and b i0 = 0 and set
φ2 ∶= {a i}i∈E ∈ KE and let W be the subspace of KE spanned by φ1 and φ2.

In this case, the image of the mapping (3.1) is not contained in T(W) since
Ψ({(0, . . . , 0)}) = E and E is not the support of any element of W. In order to see this,
take an element ϕ ∶= λ1φ1 + λ2φ2 ∈W . If λ1 λ2 = 0 then either i0 ∉ T(ϕ) or i1 ∉ T(ϕ).
If λ1 λ2 ≠ 0, let i ∈ E be such that a i = − λ1

λ2
(it exists because K = {a i}i∈E/{i0}). Since

T(ϕ) = T( 1
λ2

ϕ) = T( λ1
λ2

φ1 + φ2) = T({ λ1
λ2
+ a i}i∈E) ∪ {i0} we have that i ∉ T(ϕ).

Note that if K, E , and W ⊂ KE satisfy the conditions of Theorem 3.5, then T(W)
is in particular a semigroup.

Corollary 3.7 Let K and E be arbitrary. Let s ∈ N, for each j ∈ E, set u( j) ∶=
(a1 j , . . . , as j) ∈ K s , such that {φ i = (a i j) j∈E ∶ i = 1, . . . , s} is linearly independent.

Let M be the representable matroid induced by the family {u( j) ∶ j ∈ E}. Then, M∗
is the matroid of scrawls of LinSpan{φ1 , . . . , φs} if #E < #S(K).

Proof Let W = LinSpan{φ1 , . . . , φs}. By Theorem 2.12, if M is the representable
matroid induced by the family {u( j) ∶ j ∈ E}, then M∗ is its matroid of scrawls, and
M∗ = T(W) if #E < #S(K) by Theorem 3.5. ∎

Remark 3.8 We have that Corollary 3.7 says that even if a cofinitary matroid M is
representable by a family of column vectors, it does not follow automatically that its
dual M∗ is the matroid of scrawls of the linear span of the row vectors.

Remark 3.9 Our concept of set of scrawls is stronger than that of a semigroup of
(2E ,∪), since it is clear that a semigroup, being closed under unions, is spanned
by its minimal elements, but it does not necessarily follow that this set of minimal
elements satisfy the axioms of the circuits of a matroid. The concept of set of scrawls
is also stronger than that of the circuits of a matroid on 2E , since it may happen that
a, b ∈ C(W), but a ∪ b ∉ T(W) (see Theorem 3.5).

4 Tropical linear spaces in the differential algebra setting

We apply the previous theory to the case in which the set of formal solutions of a
homogeneous system of linear differential equations is a finite-dimensional vector
space. The dimension of such solution spaces could be stated with the usage of
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D-modules [25] or jet-spaces [17]. When considering differential equations with
polynomial coefficients instead of formal power series coefficients, one would speak of
D-finite solutions [20]. In this article, however, we give a presentation by using the so-
called differential type applicable to every system of algebraic (non-linear) differential
polynomials as those considered in the fttdag [11].

Throughout this section, we will consider K to be a field of characteristic zero and
m, n ∈ N/{0}.

4.1 Preliminaries on differential algebra

We denote by K⟦T⟧ = K⟦t1 , . . . , tm⟧ the ring of multivariate formal power series, by
D = { ∂

∂t1
, . . . , ∂

∂tm
}, the set of standard partial derivatives, and we denote for J ∈ Nm

the differential operator Θ(J) = ∂∣J∣

∂t j1
1 ⋯∂t jm

m
. We denote by Km ,n the polynomial ring

K⟦T⟧[x i , J ∶ i = 1, . . . , n, J ∈ Nm], where x i are differential indeterminates and x i , J ∶=
Θ(J)x i . For Σ ⊂ Km ,n , we set ΘΣ = {Θ(J) f ∶ J ∈ Nm , f ∈ Σ}.

Definition 4.1 Let Σ ⊂ Km ,n . The differential ideal [Σ] ⊂ Km ,n spanned by Σ is the
minimal ideal containing Σ and being closed under taking derivatives.

An element P ∈ Km ,n is called a differential polynomial, and the order of P is
defined as the maximum of the ∣J∣ = J1 +⋯+ Jm effectively appearing in P. The
variables x i , J , i = 1, . . . , n, J ∈ Nm , in Km ,n denote differential variables. We can define
a map P ∶ K⟦T⟧n �→ K⟦T⟧ in which a monomial EM = ∏i , J xm i , J

i , J sends the vector

φ = (φ1 , . . . , φn) ∈ K⟦T⟧n to EM(φ) = ∏i , J(
∂∣J∣φ i

∂t j1
1 ⋯∂t jm

m
)m i , J .

Definition 4.2 We say that φ = (φ1 , . . . , φn) ∈ K⟦T⟧n is a solution of P ∈ Km ,n
if P(φ) = 0. We denote by Sol(P) the set of solutions of P ∈ Km ,n . Let Σ ⊂ Km ,n .
The differential (algebraic) variety defined by Σ is the set of common solutions
Sol(Σ) = ⋂P∈Σ Sol(P) ⊂ K⟦T⟧n .

Let Σ ⊂ Km ,n be a system of differential equations such that the radical differential
ideal generated by Σ is prime. We need to require that Σ is in a reduced form such
that system such as {y, y′ − 1} are further simplified before continuation. Formally,
this can for instance be achieved by imposing that Σ is autoreduced [5, 18, 24]. Let L
denote the set of leaders of Ω. Then, the transcendence degree of the general solution
of Σ is equal to the cardinality d of the set Θ{x1 , . . . , xn}/ΘL. We say that Σ is of
differential type zero if and only if d is finite. For the general notion of differential type
and more details on the dimension of the solution set, we refer to [18, 19].

4.2 The linear case

In this section, we apply the results of the previous sections to the space of solutions
Sol(Σ) of a homogeneous linear system of differential equations Σ ⊂ Km ,n . We start
with some definitions.
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Definition 4.3 An (algebraic) linear differential equation is a linear polynomial
P ∈ Km ,n , i.e., P = ∑i , J α i , J x i , J + α, with α i , J , α ∈ K⟦T⟧. We say that P is homogeneous
if α = 0.

If P ∈ Km ,n is linear and homogeneous, then it is easy to see that Sol(P) ⊂ K⟦T⟧n

is a K-vector space. Thus, if Σ ⊂ Km ,n is a system of homogeneous linear differential
equations, then Sol(Σ) is also a K-vector space.

Remark 4.1 Let us note that for homogeneous linear systems of differential equa-
tions Σ, the differential ideal generated by Σ is always prime and every autoreduced set
Ω of Σ is homogeneous and linear as well. Moreover, the transcendence degree of the
general solution d, if it is finite, is the dimension of Sol(Σ) [18, Chapter 3, Section 5].

With abuse of notation, we will denote by Nm the idempotent monoid (Nm ,∪,∅),
and we will denote by T ∶ K⟦T⟧ �→ 2N

m
the support map.1 If n ≥ 1 and X ⊂ K⟦T⟧n , its

set of supports (see [10]) is

T(X) = {(T(w1), . . . ,T(wn)) ∈ (2N
m
)n ∶ (w1 , . . . , wn) ∈ X}.(4.1)

The canonical order of the idempotent monoid (2N
m
)n defined by (S1 , . . . , Sn) ≤

(T1 , . . . , Tn) whenever S i ∪ Ti = Ti for all i = 1, . . . , n coincides with the product
or cartesian order ≤prod defined by (S1 , . . . , Sn) ≤prod (T1 , . . . , Tn) when S i ⊆ Ti for
i = 1, . . . , n. Note that if n ≥ 2, then this order differs from the inclusion order, thus,
with the purpose of being able to apply the theory of the previous sections, first, we
need to perform the following transformation.

We only need the following extra procedures whenever n ≥ 2. Let us denote by
K⟦T I ∶ I ∈ [n] ×Nm⟧ the set of all maps φ ∶ [n] ×Nm �→ K endowed with the sum
given by point-wise addition of maps. We can represent the elements of this K-module
as∑I∈[n]×Nm aI tI .

We construct an isomorphism of K-modules Φ ∶ (K⟦t1 , . . . , tm⟧n ,+) → (K⟦T I ∶
I ∈ [n] ×Nm⟧,+) by sending the vector φ = (φ1 , . . . , φn)with φ i(I) = a i ,I to the map
Φ(φ) ∶ [n] ×Nm �→ K sending (i , I) to a i ,I . The inverse map of Φ sends φ ∈ K⟦T I ∶
I ∈ [n] ×Nm⟧ to (φ1 , . . . , φn) ∈ K⟦t1 , . . . , tm⟧n , where φ i ∶= ∑I∈Nm φ(i , I)T I .

This, in turn, induces an isomorphism of monoids ϕ ∶ (2N
m
)n → 2[n]×N

m
, where

now 2[n]×N
m

is ordered by inclusion. The isomorphism sends the vector (S1 , . . . , Sn)
to {1} × S1 ∪⋯∪ {n} × Sn .

Then, we have

ϕ ○ T(X) = {{1} × T(w1) ∪⋯ ∪ {n} × T(wn) ∈ 2[n]×N
m
∶ (w1 , . . . , wn) ∈ X}.(4.2)

Thus, if W ⊂ K⟦t1 , . . . , tm⟧n is a linear space, then Φ(W) ⊂ K⟦T I ∶ I ∈ [n] ×Nm⟧
is also a linear space which is isomorphic to W, and we have that ϕ ○ T(W) =
T ○Φ(W), so we can apply the theory of the previous sections to the images
under ϕ of set of supports (4.1) associated with finitely-dimensional vector spaces
W ⊂ K⟦t1 , . . . , tm⟧n .

1The formal power series in the argument of T can be identified as the list of coefficients such that this
is consistent with Definition 2.4.
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Theorem 4.2 Let Σ ⊂ Km ,n be a system of homogeneous linear differential equations
of differential type zero and let T(Sol(Σ)) ⊂ (2N

m
)n be the set of supports of Sol(Σ).

Then
(1) the minimal elements C(Sol(Σ)) of T(Sol(Σ)) define the circuits of a matroid

M(Sol(Σ)) on [n] ×Nm ;
(2) If #[n] ×Nm < #K, then ϕ ○ T(Sol(Σ)) ⊂ 2[n]×N

m
is a set of scrawls of the matroid

M(Sol(Σ)).

Proof Since Σ is of differential type zero, we have that {0} ≠ Sol(Σ) ⊂ K⟦T⟧n is a
finite-dimensional K-vector space.

We also have that the minimal elements of ϕ ○ T(Sol(Σ)) ⊂ (2[n]×N
m

, ⊆) coincide
with the minimal elements of T(Sol(Σ)) ⊂ ((2N

m
)n , ≤prod), where ≤prod is the prod-

uct order, since they are isomorphic as posets. Thus, ϕ(C(Sol(Σ))) = C(ϕ(Sol(Σ))),
so (i) follows from Theorem 2.11, and (ii) follows from Theorem 3.5 after applying the
inverse homomorphism ϕ−1 to the semigroup ϕ ○ T(Sol(Σ)) ⊂ 2[n]×N

m
. ∎

Remark 4.3 If n ≥ 2, one must use the isomorphism ϕ ∶ (2N
m
)n → 2[n]×N

m
in order

to unveil the matroidal structures of the sets Sol(Σ). The isomorphism of posets
yields that condition (iii) in Definition 2.1 can be stated directly in terms of the poset
T(Sol(Σ)) ⊂ ((2N

m
)n , ≤prod). It should be interesting to see if the same can be done

for condition (iv) in Definition 2.1.

5 Applications to tropical DA geometry

We have that Theorem 4.2 from Section 4 is valid for the set of supports T(Sol(Σ)) ⊂
(2N

m
)n of a system Σ ⊂ Km ,n of homogeneous linear differential equations of differ-

ential type zero over an arbitrary field K. An important case occurs when K satisfies
the hypotheses of the fttdag [6], namely, when K is an algebraically closed field of
characteristic zero and has infinite transcendence degree over the field of definition
of Σ.2

5.1 Tropical algebra preliminaries

If K satisfies the hypotheses of the fttdag, then we can express our results in a more
algebraic form using the formalism of tropical algebra. Recall that 2N

m
= (2N

m
,∪) is

a semigroup. The tropical counterparts of the underlying algebraic structures are as
follows.
(1) Consider the Minkowski set sum + ∶ 2N

m
× 2N

m
�→ 2N

m
;

(2) Define the (tropical) differential operators D = { ∂
∂t i
∶ Nm �→ N

m ∶ i = 1, . . . , m}
by shifting the support accordingly as

∂
∂t i
(S) ∶= {( j1 , . . . , j i−1 , j i − 1, j i+1 , . . . , jm) ∶ ( j1 , . . . , jm) ∈ S , j i > 0}.

Then, the tuple (2N
m

,∪,+, D) is an (idempotent) differential semiring (see [10]).

2Note that the latter is always fulfilled for uncountable fields.
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We give an alternative presentation of this algebraic structure. More details and the
connection to the approach above are presented in [7].

Let B = {0 < 1} be the Boolean semifield with the usual tropical addition a +
b ∶= min(a, b) and tropical multiplication ab ∶= a + b. If B⟦t1 , . . . , tm⟧ denotes the
semiring of Boolean formal power series endowed with the standard operations of
sum and product of Boolean power series, and D = { ∂

∂t1
, . . . , ∂

∂tm
} denotes the set

of standard partial derivations on B⟦t1 , . . . , tm⟧, then we have an isomorphism of
(idempotent) differential semirings

(B⟦t1 , . . . , tm⟧,+,×, D) ≅ (2N
m

,∪,+, D).(5.1)

We denote by Bm ,n the polynomial semiring B⟦T⟧[x i , J ∶ i = 1, . . . , n, J ∈ Nm]. An
element P ∈ Bm ,n is called a differential polynomial, and the variables x i , J , i = 1, . . . , n,
J ∈ Nm in Bm ,n denote differential variables.

We define a map P ∶ B⟦T⟧n �→ B⟦T⟧ in which a monomial EM = ∏i , J xm i , J
i , J sends

the vector φ = (φ1 , . . . , φn) ∈ B⟦T⟧n to EM(φ) = ∏i , J(
∂∣J∣φ i

∂t j1
1 ⋯∂t jm

m
)m i , J . The solutions of

P are defined in a tropical way as follows.

Definition 5.1 Given A ∈ 2N
m

, its Newton polyhedron New(A) is the convex hull of
the set {I + J ∶ I ∈ A, J ∈ Nm} ⊆ Rm

≥0. We define the Newton polyhedron New(φ) of
φ ∈ B⟦t1 , . . . , tm⟧ by using the isomorphism from (5.1).

The semiring of vertex polynomials is defined as the quotient VB[T] ∶= B⟦T⟧/New,
where New ⊂ B⟦T⟧ ×B⟦T⟧ denotes the semiring congruence composed of pairs of
Boolean power series with equal Newton polyhedra. We denote by V ∶ B⟦T⟧ �→
VB[T] the resulting quotient homomorphism of semirings.

In the following, we will denote the sum of equivalence classes in VB[T] by “⊕”.

Definition 5.2 Given a sum

s = a1 ⊕⋯⊕ ak(5.2)

in VB[T] involving k ≥ 2 summands, let s î ∶= a1 ⊕⋯⊕ â i ⊕⋯⊕ ak denote the sum
obtained by omitting the i-th summand, i = 1, . . . , k.

The sum (5.2) tropically vanishes in VB[T] if s = s î for every i = 1, . . . , k.

Given P ∈ Km ,n , the definition of a solution of P can be given in a tropical way as
follows.

Definition 5.3 We say that φ = (φ1 , . . . , φn) ∈ B⟦T⟧n is a solution of ∑M aM EM =
P ∈ Bm ,n if

V(P(φ)) =⊕
M

V(aM EM(φ))
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vanishes tropically in VB[T]. We denote by Sol(P) the set of solutions of P. Recall that
EM = ∏i , J xm i , J

i , J represents a monomial and aM ∈ B⟦T⟧ its corresponding coefficient.

Given U ⊂ Bm ,n a system of tropical differential equations, we will denote by
⋂p∈U Sol(p) = Sol(U) ⊂ B⟦T⟧n its set of common solutions.

We will be mostly interested in the case where P ∈ Bm ,n is linear as in Definition
4.3, where α i , J , α ∈ B⟦T⟧. The tropical analog of the fact that the set of solutions of
a system of homogeneous linear differential equations is a vector space also holds
for the case of homogeneous linear tropical differential equations in Bm ,n . Note that
under the isomorphism (5.1), the closure under taking unions translates to the closure
under taking sums.

Theorem 5.1 Let U ⊂ Bm ,n be a system of homogeneous linear tropical differential
equations. Then, Sol(U) ⊂ B⟦T⟧n is a semigroup.

Proof Since Sol(U) = ⋂p∈U Sol(p), it suffices to show that Sol(p) is a semigroup
for linear p ∈ Bm ,n . Let φ, ψ ∈ Sol(p) and set α = φ + ψ, then p(α) = p(φ) +
p(ψ), and it follows that V(p(α)) = V(p(φ) + p(ψ)) = V(p(φ)) ⊕ V(p(ψ)) ⊂
V(p(φ)) ∪ V(p(ψ)), which finishes the proof. ∎

So, if U ⊂ Bm ,n is as in Theorem 5.1, then Sol(U) ⊂ B⟦T⟧n is a semigroup and
thus, the union of tropical solutions is again tropical solutions. The structure of the
semigroup Sol(U) was studied in [14] for the ordinary case (m = 1) and U finite.
Following Remark 4.3, if n ≥ 2, we can consider the image of Sol(U)under the map ϕ ∶
B⟦T⟧n → B⟦T I ∶ I ∈ [n] ×Nm⟧, which is also a semigroup, but it is not necessarily
the set of scrawls of a matroid (see Theorem 4.2).

In Corollary 5.3, we give a necessary condition for a set ϕ(Sol(U)) to be the set of
scrawls of a matroid. It would be interesting to find sufficient conditions under which
a semigroup ϕ(Sol(U)) is the set of scrawls of a matroid.

5.2 Connections with the fundamental theorem

In this section, we analyze the special case when the coefficient field K fulfills the
hypotheses of the fttdag, that is, K is an uncountable algebraically closed field of
characteristic zero.

To start with, by (5.1), we have an isomorphism of semirings 2N
m
≅ B⟦t1 , . . . , tm⟧,

and we will denote byT ∶ K⟦t1 , . . . , tm⟧ �→ B⟦t1 , . . . , tm⟧ the support map. If n ≥ 1 and
X ⊂ K⟦T⟧n , its set of supports T(X) ⊂ B⟦t1 , . . . , tm⟧n is defined as in (4.1).

Consider now a system Σ ⊂ Km ,n of homogeneous linear differential equations of
differential type zero over K. Then, by Theorem 4.2, the set ϕ ○ T(Sol(Σ)) is the set of
scrawls of a matroid.

Now, the fttdag can be used to give a sufficient condition for the solution set
of tropical differential equations to be the set of scrawls of a matroid (see 5.2).
This theorem gives an equality between the set T(Sol(Σ)) and the set of formal
Boolean power series solutions Sol(trop([Σ])) as in Definition 5.3 of some system
trop([Σ]) ⊂ Bm ,n .
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Definition 5.4 Given P = ∑M aM EM in Km ,n , we denote by trop(P) the polynomial
trop(P) = ∑M T(aM)EM in Bm ,n .

Recall that if Σ ⊂ Km ,n , then [Σ] denotes the differential ideal spanned by it. The
following result defines DA tropical varieties in three different ways, and also justifies
the name.

Theorem 5.2 [11, Fundamental Theorem] Let Σ ⊂ Km ,n . Then, the following three
subsets of B⟦t1 , . . . , tm⟧n coincide.
(1) X = T(Sol(Σ));
(2) X = Sol(trop([Σ])) = ⋂P∈[Σ] Sol(trop(P));
(3) X = {w ∈ B⟦T⟧n ∶ inw([Σ])} contains no monomial.

Definition 5.5 Any subset X ⊂ B⟦t1 , . . . , tm⟧n satisfying one of the characteriza-
tions of the above theorem is called a DA tropical variety.

For a variety of examples and further discussion on the fttdag, see [6].
We now present the following result.

Corollary 5.3 Let U ⊂ Bm ,n and X = ⋂p∈U Sol(p). If U = trop([Σ]), where
Σ ⊂ Km ,n is a system of homogeneous linear differential equations of differential type
zero, then ϕ(X) is the set of scrawls of ϕ(C(Sol(Σ))).

Proof Follows from the above result after applying the Fundamental Theorem 5.2,
since T(Sol(Σ)) = Sol(trop([Σ])) = ⋂P∈[Σ] Sol(trop(P)) = X. Then, we apply ϕ to
both ends of the equality. ∎

We have shown that if W = Sol([Σ]), where Σ is as in Corollary 5.3, then M(W) =
(2[n]×N

m
, ϕ ○ T(W)) is a matroid. Since a satisfactory theory of duality exists for

infinite matroids, and the dual M(W)∗ of M(W) is representable and finitary, it
should be interesting to know if its set of circuits C∗(W) relate to some notion of
tropical basis for the ideal [Σ].

Example 5.4 Let Σ ⊂ K1,1 have the solutions W generated by φ1 = ∑i≥0 t2i , φ2 =
∑i≥0 t2i+1 ∈ K⟦t⟧. Since n = 1, there is no need to consider the map ϕ, and it follows
that

T(W) = {T(φ1) = 2 ⋅N,T(φ2) = 2 ⋅N + 1,∅,N}.

Thus, C = {C1 = T(φ1), C2 = T(φ2)}. The bases of T(W) are the maximal subsets of
N that do not contain the set of even numbers nor the set of odd numbers. So they
are complements of sets of the form {e , o}, where e is an even number and o is an
odd number. In particular, the bases of the dual are these pairs {e , o}. The circuits of
the dual (cocircuits) are now given as the pairs {e1 , e2}, {o1 , o2}, where e1 , e2 are even
and o1 , o2 are odd numbers.
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6 Counterexample: the fundamental theorem of tropical DA
geometry over a countable field

The article [1] by Aroca, Garay, and Toghani proves a fundamental theorem for
tropical DA geometry over uncountable fields. Using a non-constructive result in [8],
it was shown that there exists a system of algebraic partial differential equations over
a countable field for which the fundamental theorem does not hold [10, Remark 7.3].
The question of whether the fundamental theorem holds for ordinary or even linear
differential equations over countable fields remained open. As consequence of the
results given in the previous sections, we give a negative answer to this question by
constructing a counterexample as follows.

Fix a countable field k = {a0 , a1 , a2 , . . . }, and consider the linear differential
polynomial

Σ ∶= {y′′ + γ(t)y′ + β(t)y} ⊂ k1,1(6.1)

with γ(t) = ∑i≥0 c i t i and β(t) = ∑i≥0 b i t i . In the following, we want to build b i and
c i such that Sol(Σ) is generated by the two power series solutions (see Example 3.6)

φ1 = 1 +∑
i≥2

t i and φ2 = t +∑
i≥2

a i t i .

Their supports are T(φ1) = N/{1} and T(φ2) = N/{0}. For every a1 , a2 ∈ k, also
a1ϕ1 − a2ϕ2 is a solution of Σ and

T(a1φ1 − a2φ2) = N/{ j}

for some j ∈ N (or∅ in the case of a1 = a2 = 0). Note that there are no further solutions
of Σ. The unionT(φ1) ∪ T(φ2) = N is a tropical solution (see Theorem 5.1), but cannot
be realized by any solution of (6.1).

Let us now construct the coefficients b i , c i such that Σ has a solution set generated
by φ1 , φ2. By plugging φ1 into (6.1), we obtain

0 = ∑
i≥0
(i + 2)(i + 1)t i + (∑

i≥0
c i t i) ⋅ (∑

i≥0
(i + 1)t i − 1) + (∑

i≥0
b i t i) ⋅ (∑

i≥0
t i − t)

= ∑
i≥0
((i + 2)(i + 1) +

i
∑
j=0
(i + 1 − j)c j − c i +

i
∑
j=0

b j − b i+1)t i .

Similarly, by plugging-in φ2 into (6.1) and setting a0 = 0, a1 = 1,

0 = ∑
i≥0
(i + 2)(i + 1)a i+2 t i + (∑

i≥0
c i t i) ⋅ (∑

i≥0
(i + 1)a i+1 t i) + (∑

i≥0
b i t i) ⋅ (∑

i≥0
a i t i)

= ∑
i≥0
((i + 2)(i + 1)a i+2 + c i +

i−1
∑
j=0
(i + 1 − j)c j a i+1− j +

i−1
∑
j=0

b j a i− j)t i .

By coefficient comparison in both equations, seen as polynomials in t, we obtain the
system of recurrence equations
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b i+1 = (i + 2)(i + 1) +
i
∑
j=0
(i + 1 − j)c j − c i +

i
∑
j=0

b j ,

c i+1 = −(i + 3)(i + 2)a i+3 −
i
∑
j=0
(i + 2 − j)c j a i+2− j −

i
∑
j=0

b j a i+1− j

for every i ∈ N. By choosing b0 , c0 as any element in k, γ(t), β(t) are uniquely
determined from the given solutions φ1 , φ2. Let us fix b0 , c0 ∈ k.

Then, since φ1 , φ2 are linearly independent and Σ consists of a single linear
ordinary differential equation of order two, the solution set is indeed given exactly
as the linear combinations of φ1 and φ2.

Remark 6.1 Notice that k can be chosen as the algebraic closure of the rational
numbers. Then, γ(t) and β(t) are (non-convergent) formal power series and Σ is a
system of linear differential equations involving formal power series coefficients. We
thus have shown that for this frequently used case, the fundamental theorem does
not hold. For holononomic systems, i.e., when all coefficients of the elements in Σ are
polynomial, this question remains open.

Remark 6.2 Within this article, we have worked with homogeneous linear differen-
tial systems together with linear spaces. We expect that the results can be generalized
to affine representable matroids [23, Section 1.5] and (non-homogeneous) linear
differential systems of differential type zero.

Acknowledgements C.G. wishes to thank David Fernández-Bretón for valuable
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