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Abstract. This paper compares the hybrid FEM-BEM and FEM-DBCI methods for the solution of open-
boundary electrostatic field problems. Both methods couple a differential equation for the interior problem
with an integral equation for the exterior one. The comparison shows that FEM-BEM is more accurate
than FEM-DBCI but requires more computing time.

PACS. 41.20.Cv Electrostatics; Poisson and Laplace equations, boundary-value problems – 02.70.Dh
Finite-element and Galerkin methods – 02.70.Pt Boundary-integral methods

1 Introduction

In the literature several methods have been devised to
enable the Finite Element Method (FEM) [1] to solve
static and quasi-static electromagnetic field problems in
unbounded domains, such as infinite elements [2], coordi-
nate transformations [3], the hybrid FEM/BEM (Bound-
ary Element Method) method [4,5], and the hybrid FEM-
DBCI (Dirichlet Boundary Condition Iteration) method
proposed by the authors to solve electrostatic [6,7], time-
harmonic skin effect [8,9] and eddy current [10] problems.

In the FEM-DBCI method a differential equation,
which governs the interior problem, is coupled with an
integral one which expresses the unknown Dirichlet con-
dition on the fictitious truncation boundary. The integral
equation makes use of the free-space Green function, the
integration being performed on a surface strictly included
by the truncation boundary. The resulting global algebraic
system is partly sparse and partly dense and it is efficiently
solved in an iterative way: assuming an initial guess for
the Dirichlet condition on the truncation boundary, the
sparse FEM equation is solved by means of the conjugate
gradient (CG) solver; the dense equation is then used to
improve the Dirichlet condition [6]; the procedure is iter-
ated until convergence is reached. This solution strategy is
efficient because the CG is applied to the sparse equation
only, and the dense equation is used only a few times. An
improvement on this solving method is obtained by means
of the Generalized Minimal Residual (GMRES) method,
as described in [7]. Recently the authors have shown that
a similar iterative solution strategy can also be used for
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the solution of hybrid linear FEM-BEM systems of open-
boundary electrostatic problems [11]. Moreover, the GM-
RES solver can also be applied to a reduced system of
linear equations in which the unknowns are the nodal val-
ues of the normal derivative of the electric potential on
the fictitious truncation boundary [12].

This paper compares the hybrid FEM-BEM and FEM-
DBCI methods for the solution of open-boundary electro-
static field problems. The paper is organized as follows. In
Section 2 the FEM-BEM formulation is described in detail
for an open-boundary electrostatic field problem and the
iterative solution of the resulting global system is outlined.
In Section 3 the hybrid FEM-DBCI method is briefly re-
called. In Section 4 the two hybrid methods are compared
by means of a set of numerical examples. Finally the au-
thors’ conclusions are given in Section 5.

2 FEM-BEM formulation and iterative
solution

Consider a system of NC conductors, arbitrarily voltaged
at Vk, k = 1, . . . , NC , embedded in an unbounded free
space. Finite-extension non-homogeneous dielectric bodies
and/or continuous charge distributions may be present in
the proximity of the conductors, as depicted in Figure 1.
In order to compute the solution for the electrical poten-
tial v near the conductors and inside the dielectric bodies
and distributed charges, a fictitious truncation boundary
ΓF enclosing the whole system is introduced so that a
bounded domain D is obtained, whose boundary is given
by ΓF and by the conductor surfaces ΓC . In D the Poisson
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Fig. 1. An electrostatic system (voltaged conductors, non-
homogeneities and charges) enclosed by a truncation boundary.

equation holds:
∇ · (ε∇v) = −ρ (1)

where ε is the electric permittivity and ρ the charge den-
sity.

Equation (1) is subject to the Dirichlet conditions on
the conductor surfaces, whereas an unknown Neumann
condition is assumed to hold on ΓF .

Discretizing the domain D by means of finite elements
the following FEM system is obtained:

(
A AF

At
F AFF

) (
v
vF

)
=

(
b0

0

)
−

(
0
C

) (
qF

)
(2)

where: v and vF are the vectors of the unknown values
of the potential v in the nodes inside the domain and
on the fictitious boundary ΓF , respectively, A,AF and
AFF are sparse matrices of geometrical coefficients, b0

is the part of the known term array due to the conductor
potentials and sources, C is a rectangular sparse matrix of
coefficients, and qF is the vector of the unknown values of
the inward normal derivative q = ∂v/∂n of the potential
evaluated in boundary nodes other than those of v, as
shown in Figure 2 for first- and second-order triangular
finite elements, having a side lying on ΓF . On these sides,
v and q are approximated by:

v =
∑

n

vnαn (3)

q =
∑
m

qmβm (4)

where vn and qm are the nodal values of v and q, and αn

and βm are the associated shape functions. Note that, if ν
is the order of the αn functions, ν−1 is the order of the βm

ones, in congruence with the fact that q is the derivative
of v.

In order to solve the unbounded field problem, it is
necessary to derive another equation relating the unknown
vectors. This equation is obtained by evaluating the BEM
integral equation at the nodes Qj of the q unknowns:

1
2
v(Qj) +

∫
ΓF

v(P )
∂G(P, Qj)

∂nP
dΓ =

∫
ΓF

Q(P )G(P, Qj)dΓ

(5)
where G is the free space Green function, given by:

G(P, Q) =
1
2π

ln
1
r

(6)

Fig. 2. Finite elements having a side lying on the fictitious
boundary. On this boundary, the symbol • denotes the nodes
Pi of the potential v, whereas the symbol × denotes the nodes
Qj of its normal derivative q.

or
G(P, Q) =

1
4πr

(7)

for two- or three-dimensional problems, respectively, and r
is the distance between points P and Q. Possible sym-
metries are simply taken into account by modifying the
Green function accordingly [1]. It is worth noticing that
the choice of the nodal points for the q unknowns as in
Figure 2 avoids any problem concerning the presence of
sharp corners in the truncation boundary ΓF with conse-
quent multiple values of q in such corners [4].

By developing v as in (3) and q as in (4), these integral
equations are rewritten in matrix form as

HvF = GqF (8)

where H and G are dense matrices. Note that the ma-
trix G is square by construction.

A common approach to solve the global system (2)–(8)
⎛
⎝ A AF 0

At
F AFF C

0 H −G

⎞
⎠

⎛
⎝ v

vF

qF

⎞
⎠ =

⎛
⎝b0

0
0

⎞
⎠ (9)

is by means of an iterative CG-like solver for non-
symmetric matrices. A similar approach is also used in
which the array qF is derived from the integral equation
and substituted in the differential one, to obtain the re-
duced system:

(
A AF

At
F AFF + CG−1H

) (
v
vF

)
=

(
b0

0

)
. (10)

Both these approaches suffer from the fact that in each
step of the iterative solver the matrix-vector multiplica-
tion is very costly, due to the presence of dense parts in
the system matrices. To alleviate the heaviness of the inte-
gral equation, whose complexity is N2, various FMM (Fast
Multipole Method) techniques have been used to reach an
N log N complexity [13]. However, the integral equation
still remains the most time-consuming part of the solving
algorithm. Irrespective of whether FMM is used for the
BEM equation, it is of great importance to minimize the
number of times that this equation is solved in the context
of an iterative solution.

https://doi.org/10.1051/epjap:2007083 Published online by Cambridge University Press

https://doi.org/10.1051/epjap:2007083


G. Aiello et al.: Comparing FEM-BEM and FEM-DBCI 145

In [11] a simple iterative solving strategy was proposed
which takes into account the very different nature of equa-
tions (2) and (8), as described below:

1. a first guess is arbitrarily selected, for example qF = 0;
2. equation (2) is solved for v and vF by means of CG;
3. the square matrix G is first decomposed into L and U

matrices, and then equation (8) is solved for qF;
4. at the generic nth step, a convergence indicator is com-

puted, measuring the distance between the new solu-
tion for qF and the old one:

ηn = 100
‖qnew

F − q(n−1)
F ‖2

‖qnew
F ‖2

(11)

5. if convergence is not reached go to step 2, assuming a
relaxed new guess for qF such as:

q(n)
F = γqnew

F + (1 − γ)q(n−1)
F (12)

where γ is the relaxation coefficient.

This iterative scheme exhibits the following characteris-
tics:

(a) since the first guess for the CG solver in each step is
the solution obtained in the previous iteration step,
the various solutions of system (2) get faster as the
iteration proceeds;

(b) the LU decomposition is performed only once at the
beginning of the iterative procedure; round-off errors
in the LU decomposition are treated by selecting an
appropriate (double precision) accuracy in the com-
puting and storing of the matrices H and G [14];

(c) the whole iterative procedure is convergent if an appro-
priate relaxation coefficient γ is selected; this, however,
is not known a priori; if an inappropriate coefficient γ
is used, divergence may occur;

(d) consequently, the integral equation (8) is used only a
few times, if compared to its use in an iterative CG-
like solver for the whole non-symmetric system (9) or
the reduced one (10).

A similar iterative technique was proposed in [15], in which
the first guess for the unknown condition on the truncation
boundary is a Dirichlet one. This makes the whole solution
strategy more complex.

Looking at the above iterative solution more deeply,
one realizes that the iterative algorithm can be interpreted
as a stationary iterative method applied to the reduced
system:

MqF = k (13)

where:

M = G− H(At
FA−1AF − AFF)−1C (14)

k = H(At
FA−1AF − AFF)−1At

FA−1b0. (15)

Since it is well-known that stationary methods are very
weak and possibly non-converging, one can think of using
the more robust GMRES solver [16]. The matrix M and
vector k are not directly available. However, the vector k
is simply built as follows:

1. assume a zero initial guess q(0)
F = 0;

2. solve the FEM equation (2) by means of the CG solver
to obtain v(0) and v(0)

F ;
3. compute k = Hv(0)

F , which coincides with the initial
residual vector.

Similarly, matrix M can be used to perform matrix-vector
multiplication Mq(n)

F , as follows:

1. given the vector q(n)
F ;

2. solve the FEM equation (2) by means of the CG solver
to obtain v(n) and v(n)

F ;
3. compute Mq(n)

F = Gq(n)
F − Hv(n)

F .
The reason for the choice of GMRES among various non-
stationary CG-like solvers for non-symmetric matrices,
such as BiCG (BiConjugate Gradient), QMR (Quasi Min-
imal Residual), CGS (Conjugate Gradient Squared), and
BiCGstab (BiCG stabilized), relies on the fact that GM-
RES performs a true minimization of the residual and is
thus the optimal method for accelerating the iterative so-
lution of (13) as it minimizes the number of matrix-vector
multiplications (neglecting the other operations required).
The residual can be computed directly with the approxi-
mate solution, thus requiring a further matrix-vector mul-
tiplication, or by using the orthonormal basis of the Krylov
subspace, as explained in [16]. The latter option is def-
initely preferable since matrix-vector multiplications are
much more expensive than in a case where the coefficient
matrix is directly available.

The major drawbacks of GMRES are the computing
time and memory required to compute and store the or-
thonormal basis, which increases linearly with the number
of iterations, so restarting procedures are often used. In
this case the computing time and memory required for the
orthonormal basis are only a small fraction of the total,
because GMRES works on a reduced system. Most of the
computing time and memory is spent on solving (8), i.e.
performing matrix-vector multiplications. It is therefore
convenient to use long restarts which generally result in a
full GMRES due to the quick convergence characteristic of
the simple iterative procedure. The fact that the relaxed
iterative procedure converges with a suitable choice of a
positive relaxation parameter γ indicates that the eigen-
values of the matrix M have positive real parts, and this
assures that GMRES converges to the true solution even
with a very short restarting parameter m [16].

In comparing the GMRES solving algorithm with the
simple iterative one, it is to be noted that the GMRES
solution does not require the LU decomposition of ma-
trix G. This is a great advantage, especially for problems
with a large number of unknowns. Conversely, the various
solutions of the FEM equations by means of the CG-solver
are not related to each other, so the number of CG steps
does not decrease as the solution proceeds.

3 FEM-DBCI formulation

In the FEM-DBCI method the differential equation is the
same as the FEM-BEM one, but an unknown Dirichlet

https://doi.org/10.1051/epjap:2007083 Published online by Cambridge University Press

https://doi.org/10.1051/epjap:2007083


146 The European Physical Journal Applied Physics

condition is assumed on ΓF . Therefore:

Av = b0 − AFvF. (16)

The Dirichlet condition on ΓF is expressed by means of
the integral equation:

v(Pj) =
∫

ΓM

[
∂v(P )
∂nP

G(P, Pj) − v(P )
∂G(P, Pj)

∂nP

]
dΓ

(17)
where the integration is performed on a surface ΓM strictly
enclosed by ΓF , but enclosing the whole electrostatic sys-
tem [6], and Pj is a node on ΓF . Therefore:

vF = Nv (18)

where N is a dense matrix, in which null columns appear
for the internal nodes not involved in the computation [6].

The whole system (16)–(18) is well suited to be solved
by means of an iterative algorithm similar to that of the
previous section, in which the initial guess is made on vF.
Analogously, a more robust solving strategy was proposed
in [7] based on the use of the GMRES to solve the reduced
system of (16)–(18) in which the unknown is vF.

4 Comparing FEM-BEM and FEM-DBCI

Comparing the two methods the following considerations
can be made. First, in the FEM-DBCI integral equa-
tion (18) only one dense matrix N is present, whereas in
the FEM-BEM integral equation (8) two dense matrices
H and G appear. Since the number of entries of N is (in
general) approximately equal to the sum of those of H and
G, the two methods exhibit comparable memory require-
ments for the integral equations. The same conclusion can
be drawn for the FEM equations, in which the small sparse
matrices At

F, AFF and C are not present in the FEM-
DBCI global system. However, the key point which de-
termines the different behaviour of the two methods is
that one method adopts a Dirichlet condition on the trun-
cation boundary, whereas the other adopts a Neumann
one. This difference implies different convergence charac-
teristics: the FEM-DBCI converges notably faster than
FEM-BEM. This behaviour has always been observed ex-
perimentally by us, and will be verified in the next sec-
tion by means of a set of examples. Note that similar be-
haviour was also observed and studied by comparing the
FEM-DBCI method with the FEM-RBCI (Robin Bound-
ary Condition Iteration) one, in which a Robin (mixed)
boundary condition is assumed on the truncation bound-
ary [17].

From the point of view of accuracy, it can be noted that
in FEM-DBCI a numerical derivative of the potential is
performed on the integration surface ΓM , whereas this is
not necessary in FEM-BEM. FEM-BEM can therefore be
expected to give more accurate results than FEM-DBCI.
These considerations can be verified by means of a set
of simple examples, in which the computations were per-
formed by means of ELFIN, a large FEM code developed
by the authors for electromagnetic CAD research [18].

Fig. 3. CPU time for the first example.

4.1 Two-wire transmission line

Consider a two-wire transmission line constituted by two
parallel conducting circular cylinders of radius R whose
centres are separated by a distance of d = 2.4R, volt-
aged with opposite potentials V0/2 and −V0/2. This elec-
trostatic problem exhibits the well-known analytical solu-
tion [19]:

v∗(x, y) =
V0

4 cosh−1(d/2R)
ln

(x + a)2 + y2

(x − a)2 + y2
(19)

where:

a =

√
d2

4
− R2. (20)

The fictitious boundary was selected as constituted by two
circumferences of radius 1.14R centred at the cylinder cen-
tres, so the gap between the conductors and the fictitious
boundary is 0.14R. The analysis can be restricted to the
first quadrant only, by imposing homogeneous Neumann
and Dirichlet boundary conditions on the x- and y-axis, re-
spectively. The resulting bounded domain is regularly dis-
cretized with second-order triangles. The integration curve
ΓM of the FEM-DBCI was selected as constituted by the
triangle sides of the finite-element layer closer to the con-
ductor surface. The global systems were solved with the
GMRES schemes (with restarting parameter m = 10). To
test the accuracy of the various numerical solutions ob-
tained, an accuracy indicator is defined as:

ζ = 100

√∫
D

(v∗ − v)2dxdy∫
D(v∗)2dxdy

(21)

where D is the domain of FEM analysis (lying in the first
quadrant). The computing times for the solution of the
linear systems (on a Pentium IV, 3.2 GHz, 4 Gb RAM,
with an end-iteration tolerance of 0.01% for the GMRES
and 0.0001% for the CG) and the accuracy indicators ζ are
plotted in Figures 3 and 4, respectively, versus the number
of nodes in the various meshes used. As expected, we can
see that FEM-BEM is more accurate than FEM-DBCI,
but it requires more computing time.
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Fig. 4. Accuracy indicator for the first example.

Fig. 5. Triangular discretization on the conductor surface of
the second example.

4.2 Conductor cube

Consider a conductor cube of edge size s, voltaged at V0

and embedded in free space. For this classical electrostatic
problem a very accurate estimate of the normalized capac-
itance is given by 0.6606780±2.7×10−7 [20], the normal-
izing value being 4πε0s. In order to apply the FEM-DBCI
method a cube fictitious boundary ΓF is selected homol-
ogously to the conductor, placed at a distance of s/2.
For symmetry reasons, the analysis is restricted to one
octant only, by imposing homogeneous Neumann condi-
tions on the three symmetry planes. The gap between the
two cubes is filled with 70 371 first-order tetrahedra with
13 988 nodes. The triangular discretization on the conduc-
tor surfaces is depicted in Figure 5. To avoid the sharp
corners on the conductor surface, the integration surface
ΓM is selected at a distance s/10 from the conductor.

The number of iterations performed (with an end-
iteration tolerance of 0.01% for the GMRES and 0.001%
for the CG), the computing times for the solution of the
linear systems and the normalized capacitances c are given

Table 1. Comparison between FEM-BEM and FEM-DBCI for
the second example.

Method Iterations CPU time (s) Capacitance c
FEM-BEM 9 2.724 0.65263
FEM-DBCI 3 0.821 0.67305

Fig. 6. Contours of the potential on a symmetry plane of the
third example.

in Table 1. As before, FEM-BEM is more accurate than
FEM-DBCI, but more time-consuming.

4.3 Square plate condenser

This problem considers a condenser constituted by two
parallel square plates of negligible thickness. The size of
the plate edges is s and the distance between them is
d = s. The region between the plates is filled with a di-
electric of relative permittivity εr = 9, whereas the whole
condenser is embedded in air. The two plates are oppo-
sitely voltaged at V0/2 and −V0/2. A Cartesian reference
frame is selected having the origin in the centre of the con-
denser and the x and y axes parallel to the plate edges.
The unbounded space around the condenser is truncated
by means of a cube surface homologous to the condenser,
whose edge size is 2s. For symmetry reasons, the analysis
can be restricted to the first octant only, by imposing ho-
mogeneous Neumann boundary conditions on the xz and
yz planes and a homogeneous Dirichlet condition on the
xy plane. The mesh was formed by 93 816 first-order tetra-
hedra with 17 148 nodes. To avoid the field singularities
near the edges of the condenser plates, the FEM-DBCI in-
tegration surface ΓM is placed at a distance of s/10 from
the condenser. Contours of the potential on a symmetry
plane are shown in Figure 6.

The number of iterations performed (with an end-
iteration tolerance of 0.01% for the GMRES and 0.001%
for the CG), the computing times for the solution of the
linear systems and the normalized capacitances c (the nor-
malizing value being ε0s

2/d) are given in Table 2. Once
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Table 2. Comparison between FEM-BEM and FEM-DBCI for
the third example.

Method Iterations CPU time (s) Capacitance c
FEM-BEM 11 4.597 11.590
FEM-DBCI 3 1.182 11.631

again we can see that FEM-BEM requires more comput-
ing time than FEM-DBCI.

5 Conclusions

In this paper we have compared the hybrid FEM-
BEM and FEM-DBCI methods for the solution of open-
boundary electrostatic field problems. The comparison has
shown that FEM-BEM is more accurate than FEM-DBCI,
but requires more computing time. For this reason we con-
clude that FEM-DBCI is more appropriate for applica-
tions which require a shorter computing time, as for ex-
ample in the stochastic optimisation of electrical devices,
where some thousands of analyses should typically be per-
formed to obtain a satisfactory result. Conversely, FEM-
BEM is more appropriate in cases in which a high level of
precision is required in a single computation.

This work was supported in part by the MIUR (The Italian
Ministry for University and Research).
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