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Abstract

There has recently been considerable interest in the stability of stochastic differential
equations with Markovian switching, and a number of results have been achieved.
However, due to the exponential sojourn time of Markovian chain at each state, there
are many restrictions on existing results for practical application. In this paper, we
explore the problem of stability in distribution of nonlinear systems with time-varying
delays and semi-Markov switching. Unlike existing models, the new model takes
into account noise, time-varying delays and semi-Markov switching. By means of
stochastic analysis, functional analysis and inequality techniques, sufficient conditions
are obtained to guarantee the stability of the systems concerned. The proposed results
are new and extend existing ones.
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1. Introduction

In recent years, there has been considerable interest in research into stochastic
systems, since stochastic modeling has come to play an important role in many real
systems [1, 11]. Among them, stability analysis of different stochastic systems has
been a subject of intense activity in the literature [4, 6, 10, 15]. When performing
computation, there are many stochastic perturbations that affect system stability.
Hybrid systems with Markov switching have been used to model many practical
systems, in which abrupt changes in structure and parameters may occur.

Stability is the most fundamental concept in modern control theory, and switching
systems can be used to describe a wide range of physical and engineering systems
in practice, hence the considerable attention devoted to the stability of stochastic
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differential equations with Markovian switching. For example, Ji and Chizeck [8]
and Martion [13] studied the stability of the following linear systems with Markovian
jump parameters:

ẋ(t)= A(r(t))x(t),

where r(t) is a finite state Markov chain taking values in S = {1, 2, . . . , N }. Basak
et al. [2] discussed stability in distribution for a semi-linear stochastic differential
equation with Markovian switching of the form

d X (t)= A(r(t))X (t) dt + σ(X (t), r(t)) d B(t).

In practice, significant time delays, whether constant or time-varying, are
ubiquitous in dynamic systems. For example, in the modeling of biological neural
networks or artificial neural networks, it is necessary to take account of time delays
inherent in the phenomena because of the finite processing speed of information. The
stability of systems with delays has been extensively studied; see, for example, [3, 9]
and references therein.

In many applied problems in reliability, queuing theory, and so on, we use
semi-Markov processes. The main advantage of these is to allow non-exponential
distributions for transition between states and to generalize several kinds of stochastic
processes. Hence it is necessary to develop methods for calculating the stability
conditions based on a semi-Markov evolution of the system. However, to the best of
authors’ knowledge, most of the research deals with the Markov switching case, and
work on the semi-Markov case is rare. Yet semi-Markovian jump systems operate
under fewer restrictions and can be widely found and used in many real system
applications. They are less conservative and more applicable. An early paper on
this topic is by Hou et al. [5], but they study the simplest linear systems with phase-
type semi-Markovian jump parameters. In this paper, we discuss the following more
general nonlinear systems with phase-type semi-Markovian jump parameter and time-
varying delays:

dx(t)= f̂
(
x(t), x(t − τ(t)), t, r̂(t)

)
dt + σ̂

(
x(t), x(t − τ(t)), t, r̂(t)

)
d B(t).

(1.1)
Using a similar method to [5], we first transform the phase-type semi-Markovian
systems to a Markovian one. The problem of stability in distribution is then solved by
considering the system with Markovian switching. The Markovian switching structure
allows the derivation of the stability gained by applying standard methods to the system
of interest.

This paper is organized as follows. In Section 2, we recall the method used
in [5] and transform the problem of semi-Markovian jump parameters into the
discussion of stability of systems with Markovian switching. In Section 3, we establish
Ito stochastic differential equations with time-varying delays and semi-Markovian
switching. Section 4 gives some sufficient conditions in terms of Lyapunov functions
for the stability of the semi-Markovian switching systems. Our conclusions are drawn
in Section 5.

https://doi.org/10.1017/S1446181108000357 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181108000357


[3] Stability in distribution of a class of delayed nonlinear systems with semi-Markovian switching 33

2. Phase-type semi-Markovian processes

Consider a Markov process r(t) on the state space {1, 2, . . . , N + 1}, where the
states 1, 2, . . . , N are transient and the state N + 1 is absorbing. The infinitesimal
generator is

Q =

(
T T 0

0 0

)
,

where the N × N matrix T = (Ti j ) satisfies Ti i < 0, Ti j ≥ 0, i 6= j , while T 0
=

(T 0
1 , T 0

2 , . . . , T 0
N ) is a non-negative column vector, and T I + T 0

= 0 where I denotes
an N -dimensional column vector having 1s as its components. The initial distribution
vector is (a, aN+1), where a= (a1, a2, . . . , aN ), aI + aN+1 = 1.

LEMMA 2.1 ([14]). The distribution of the time at which r(t) is absorbed in N + 1 is

F(t)= 1− a exp(T t)I, t ≥ 0. (2.1)

DEFINITION 1 ([14]). The state r(t) reached at time t is called the phase of the
distribution F(·) at time t . The distribution F(·) defined in (2.1) on [0,+∞) is called
a continuous phase-type (PH) distribution and (a, T ) is called its representation of
order N .

LEMMA 2.2 ([14]). The family of PH distributions is dense in all the families of
distribution on [0,+∞).

DEFINITION 2. Let E be a finite or countable set. A stochastic process r̂(t) on the
state process E is called a phase semi-Markov process or a denumerable phase semi-
Markov process (when E is finite, r̂(t) is also called a finite phase semi-Markov
process), if the following conditions hold.

(1) The sample paths of (r̂(t), t <+∞) are right-continuous step functions and have
left-hand limits with probability 1.

(2) Denote the nth jump point of the process r̂(t) by τn (n = 0, 1, 2, . . .), where
τ0 ≡ 0< τ1 < τ2 < · · ·< τn < · · · , τn ↑ +∞. Then τn (n = 0, 1, 2, . . .) are
Markovian with respect to the process r̂(t).

(3) Fi j (t)= P(τn+1 − τn ≤ t | r̂(τn)= i, r̂(τn+1)= j)= Fi (t) (i, j ∈ E, t ≥ 0) do
not depend on j and n.

(4) Fi (t) (i ∈ E) is a phase-type distribution.

In [5], it was proved that a finite phase semi-Markov process can be transformed to
a finite Markov chain.

Consider a class of stochastic linear systems with semi-Markovian jump parameters
in a fixed probability space (�, F , P):{

ẋ = Â(r̂(t))x(t), t ≥ 0,

x(0)= x0,
(2.2)

where the initial state x0 is a fixed non-random constant vector, r(0)= r0 and Â(i)
(i ∈ E) are known matrices.
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THEOREM 2.3 ([5]). System (2.2) is equivalent to the system{
ẋ = A(r(t))x(t), t ≥ 0,

x(0)= x0,

where r(t) is the associated Markov chain of r̂(t).

By methods similar to those of [5], we can prove that a nonlinear system with
semi-Markovian switching is equivalent to the corresponding system with Markovian
switching by defining f and σ as follows:

f (ψ(i, k)) := f̂ (i), σ (ψ(i, k)) := σ̂ (i).

We thus have the following lemma.

LEMMA 2.4. System (1.1) is equivalent to the system

dx(t)= f
(
x(t), x(t − τ(t)), t, r(t)

)
dt + σ

(
x(t), x(t − τ(t)), t, r(t)

)
d B(t) (2.3)

with the initial conditions x0 = ξ , where ξ ∈ Cb
F0
([−τ, 0]; Rn) is independent of r(t)

and B(t), and r(t) is the associated Markov chain of r̂(t).

3. Itô stochastic differential equations with time-varying delay and
semi-Markovian switching

Let (�, F , {F}t≥0, P) be a complete probability space with a filtration {F}t≥0
satisfying the usual conditions (that is, it is right continuous and F0 contains all
P-null sets). B(t)= (B1(t), . . . , Bm(t))T is an m-dimensional Brownian motion
defined on (�, F , {F}t≥0, P). Let t0 ∈ R+ = [0,∞), τ (t) : [t0,∞)→ [0, τ ].
C[[−τ, 0], Rn

] denotes the family of all continuous Rn-valued functions ϕ

on [−τ, 0] with the norm ‖ϕ‖ = sup−τ≤θ≤0 |ϕ(θ)|. | · | is the Euclidean norm
in Rn and ‖xt‖ = sup−τ≤θ≤0 |x(t + θ)|, where xt (θ)= x(t + θ). Denote by
Cb

F0
[[−τ, 0], Rn

] the family of all bounded F0 measurable, C[[−τ, 0], Rn
]-valued

random variables. Let p > 0, t ≥ 0, denote by L p
Ft
([−τ, 0]; Rn) the family of all Ft

measurable, C([−τ, 0]; Rn)-valued random variables. ϕ = {ϕ(θ) | −τ ≤ θ ≤ 0}, and
sup−τ≤θ≤0 E |ϕ(θ)|p <∞.

Consider the following Itô stochastic differential delay equations with semi-
Markovian switching:

dx(t)= f̂
(
x(t), x(t − τ(t), t, r̂(t)

)
dt + σ̂

(
x(t), x(t − τ(t), t, r̂(t)

)
d B(t) (3.1)

with initial conditions x0 = ξ , where ξ ∈ Cb
F0
([−τ, 0]; Rn) is independent of r̂(t)

and B(t).
By Lemma 2.4, we need only to consider System (2.3). Assume that

f : L p
Ft
([−τ, 0]; Rn)× L p

Ft
([−τ, 0]; Rn)× R+ × S→ Rn,

σ : L p
Ft
([−τ, 0]; Rn)× L p

Ft
([−τ, 0]; Rn)× R+ × S→ Rn×m .
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In this paper we always assume that under some conditions (3.1) has
a unique continuous solution x(t, ξ) such that for all t ≥ 0, for all a ≥ 0,
E(sup−τ≤s≤t |x(s, ξ)|

a) <∞. Further, assume that f (0, 0, t, i)≡ 0 and σ(0, 0, t, i)
≡ 0 for all i ∈ S. Then (3.1) has a trivial solution x ≡ 0.

Denote by C2,1(Rn
× [−τ,∞)× S; R+) the family of all non-negative functions

V (x, t, i) on Rn
× [−τ,∞)× S which are twice continuously differentiable with

respect to x and once differentiable with respect to t .
For any (x, t, i) ∈ Rn

× [−τ,+∞)× S and any y, z ∈ Rn , define an operator L by

LV (x, t, i) = Vt (x, t, i)+ Vx (x, t, i) f (x, y, t, i)

+
1
2

trace[σ T (x, y, t, i)Vxxσ(x, y, t, i)] +
N∑

j=1

γi j V (x, t, j),

where

Vt (x, t, i)=
∂V (x, t, i)

∂t
,

Vx (x, t, i)=

(
∂V (x, t, i)

∂x1
,
∂V (x, t, i)

∂x2
, . . . ,

∂V (x, t, i)

∂xn

)
,

Vxx (x, t, i)=

(
∂2V (x, t, i)

∂xi∂x j

)
n×n

.

In what follows we consider the difference between two solutions of (2.3) starting
from different initial values, namely

Xϕ,i (t)− Xφ,i (t) = ϕ − φ +
∫ t

0

[
f (Xϕ,i (s), Xϕ,i (s − τ(s)), ri (s))

− f (Xφ,i (s), Xφ,i (s − τ(s)), ri (s))
]

ds

+

∫ t

0

[
σ(Xϕ,i (s), Xϕ,i (s − τ(s)), ri (s))

− σ(Xφ,i (s), Xφ,i (s − τ(s)), ri (s))
]

d B(s). (3.2)

For a given function U ∈ C2(Rn
× S; R+), we define an operator LU : Rn×4

× S
→ R associated with (3.2) by

LU (x, y, z1, z2, i)

=

N∑
j=1

γi j U (x − y, j)+Ux (x − y, i)[ f (x, z1, i)− f (y, z2, i)]

+
1
2

trace
(
[σ(x, z1, i)− σ(y, z2, i)]T Uxx (x − y, i)[σ(x, z1, i)− σ(y, z2, i)]

)
.

We conclude this section by defining the stability in distribution of System (3.1).
Let Y (t) denote the C([−τ, 0]; Rn)× S-valued process (X t , r(t)). Then Y (t) is a
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Markovian process. Let p(t, ξ, i, dζ × { j}) denote the transition probability of the
process Y (t).

DEFINITION 3. The process Y (t) is said to be stable in distribution if there exists a
probability measure π(· × ·) on C([−τ, 0]; Rn)× S such that its transition probability
p(t, ξ, i, dζ × { j}) converges weakly to π(dζ × { j}) as t→∞ for every (ξ, i)
∈ C([−τ, 0]; Rn)× S.

LEMMA 3.1 ([11]). Assume (H1) of Theorem 4.1 holds. Then

sup
0≤t<∞

E‖X ξ,it ‖
2 <∞, ∀(ξ, i) ∈ C([−τ, 0]; Rn)× S.

LEMMA 3.2 ([11] Burkholder–Davis–Gundy inequality). There exists a universal
constant K p for any 0< p <∞ such that for every continuous local martingale M
vanishing at 0 and any stopping time τ ,

E

(
sup

0≤s≤τ
|Ms |

p
)
≤ K p(E(M, M)τ )

p/2,

where (M, M)τ is the cross-variation of M and, in particular,

K p =



(
32
p

)p/2

if 0< p < 2,

4 if p = 2,
p p+1

2(p − 1)p−1 if p > 2.

LEMMA 3.3 ([12]). For every p > 0 and any compact subset K of Rn ,

sup
(x,i)∈K×S

E

[
sup

0≤s≤t
|X x,i (s)|p

]
<∞, ∀t ≥ 0.

LEMMA 3.4 ([16]). If V ∈ C2,1(Rn
× [t0,∞)× S; R+), then for any stopping times

0≤ t1 ≤ t2 <+∞,

E
(

V (x(t2), t2, r(t2))
)
= EV

(
x(t1), t1, r(t1)

)
+ E

(∫ t2

t1
LV (x(s), s, r(s)) ds

)
as long as the integrations involved exist and are finite.

4. Main results

From Lemma 2.4, in order to explore the stability of System (3.1), we need
only consider systems with Markovian switching. In what follows we provide some
sufficient conditions in terms of Lyapunov functions for the stability of the Markovian
switching system.
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THEOREM 4.1. Let c1, c2, β be positive numbers and λ1 > λ2 ≥ 0, λ3 > λ4 ≥ 0. If:

(H1) there exists function V (x, i) ∈ C2(Rn
× S; R+) and w1(x) ∈ C(Rn, R+) such

that for all (x, i) ∈ Rn
× S,

c1|x |
2
≤ V (x, i)≤ w1(x)

and for all (x, y, i) ∈ Rn
× Rn

× S,

LV (x, y, i)≤−λ1w1(x)+ λ2w1(y)+ β;

(H2) there exist positive numbers c2 and U (x, i) ∈ C2(Rn
× S; R+), w2(x) ∈ C

(Rn
; R) such that

c2|x |
2
≤ w2(x) ∧U (x, i)

and LU (x, y, z1, z2, i)≤−λ3w2(x − y)+ λ4w2(z1 − z2) for all x, y, z1, z2,

∈ Rn and i ∈ S;
(H3) there is an α > 0 such that for x, y, x̄, ȳ ∈ Rn and i ∈ S,

(x − x̄)T ( f (x, y, i)− f (x̄, ȳ, i))+ 10|σ(x, y, i)− σ(x̄, ȳ, i)|2

≤
α(|x − x̄ |2 + |y − ȳ|2)

2
,

then the process Y (t)= (X t , r(t)) is stable in distribution.

PROOF. By definition we need to show that there is a probability measure π(· × ·) ∈
P(C([−τ, 0]; Rn)× S) such that for any (ϕ, i) ∈ C([−τ, 0]; Rn)× S, the transition
probabilities {p(t, ϕ, i, · × ·) | t ≥ 0} converge weakly to π(· × ·). Recalling the
fact that the weak convergence of probability measure is a metric concept (see
[7, Proposition 2.5]), we therefore need to show that for any (ϕ, i)∈ C([−τ,0];Rn)×S,

lim
t→∞

dL
(

p(t, ϕ, i, · × ·), π(· × ·)
)
= 0.

To prove the above equations, we consider the following two steps.

STEP 1. We have to prove that for any (ϕ, i) ∈ C([−τ, 0]; Rn)× S,

lim
t→∞

dL
(

p(t, ϕ, i, · × ·), p(t, 0, 1, · × ·)
)
= 0.

For t ≥ τ and θ ∈ [0, τ ], by Itô’s formula (see [2, 12]) and (3.2),

|Xϕ,i (t − θ)− Xφ,i (t − θ)|2

= |Xϕ,i (t − τ)− Xφ,i (t − τ)|2 +
N∑

j=1

γi j

∫ t−θ

t−τ
|Xϕ,i (s)− Xφ,i (s)|2 ds

+

∫ t−θ

t−τ

∣∣∣σ(A(ϕ, s)
)
− σ

(
A(φ, s)

)∣∣∣2 ds
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+ 2
∫ t−θ

t−τ

(
Xϕ,i (s)− Xφ,i (s)

)T(
f (A(ϕ, s))− f (A(φ, s))

)
ds

+ 2
∫ t−θ

t−τ
(Xϕ,i (s)− Xφ,i (s))T (σ (A(ϕ, s))− σ(A(φ, s))) d B(s),(4.1)

where F(A(8, s))= F(X8,i (s), X8,i (s − τ), ri (s)) for F = f, σ and 8= φ, ϕ.
Using the Burkholder–Davis–Gundy inequality, we get

E sup
0≤θ≤τ

∣∣∣∣∫ t−θ

t−τ

(
Xϕ,i (s)− Xφ,i (s)

)T(
σ(A(ϕ, s))− σ(A(φ, s))

)
d B(s)

∣∣∣∣
≤

1
4

E sup
0≤θ≤τ

|Xϕ,i (t − θ)− Xφ,i (t − θ)|2

+ 8E
∫ t

t−τ
|g(A(ϕ, s))− g(A(φ, s))|2 ds. (4.2)

Substituting (4.2) into (4.1) and using (H3), we obtain

E sup
0≤θ≤τ

|Xϕ,i (t − θ)− Xφ,i (t − θ)|2

≤ 2E |Xϕ,i (t − τ)− Xφ,i (t − τ)|2

+ 2αE
∫ t

t−τ

(
|Xϕ,i (s)− Xφ,i (s)|2 + |xϕ,i (s − τ)− Xφ,i (s − τ)|2

)
ds. (4.3)

Let N be positive number and define the stopping time

τN = inf{t > 0 : |Xϕ,i (t)− Xφ,i (t)| ≥ N }.

Setting TN = τN ∧ t and applying the Itô formula to (3.2),

EU (Xϕ,i (TN )− Xφ,i (TN ), ri (TN ))

≤U (ϕ(0)− φ(0), i)+ λ4τ

∫ 0

−τ

w2(ϕ(s)− φ(s)) ds

− (λ3 − λ4)E
∫ TN

0
|Xϕ,i (s)− Xφ,i (s)|2 ds. (4.4)

This implies that∫
∞

0
E |Xϕ,i (s)− Xφ,i (s)|2 ds

≤U (ϕ(0)− φ(0), i)+ λ4τ

∫ 0

−τ

w2(ϕ(s)− φ(s)) ds <∞,

so that
lim

t→∞
E |Xϕ,i (t)− Xφ,i (t)|2 = 0. (4.5)
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We now observe from (4.4) and (H2) that for any ε > 0, there exists a δ1 > 0 such that

E |Xϕ,i (t)− Xφ,i (t)|2 <
ε

3
if |ϕ − φ|< δ1. (4.6)

Since K is compact, there exist ϕ1, ϕ2, . . . , ϕk such that
⋃k

j=1 ρ(ϕ j , δ1)⊇ K where
ρ(ϕi , δ1)= {ϕ ∈ C([−τ, 0]; Rn) : ‖ϕ − ϕi‖< δ1}. By (4.5), there exists a T > 0 such
that if t ≥ T and 1≤ u, v ≤ k, then

E |Xϕu ,i (t)− Xϕv,i (t)|2 <
ε

3
. (4.7)

For any ϕ, φ ∈ K , we can find m, n such that ϕ ∈ ρ(ϕm, δm), φ ∈ ρ(ϕn, δ1). By (4.6)
and (4.7), we derive

E |Xϕ,i (t)− Xφ,i (t)|2 ≤ 3
[

E |Xϕ,i (t)− Xϕm ,i (t)|2 + E |Xϕm ,i (t)− Xϕn,i (t)|2

+ E |Xϕn,i (t)− Xφ,i (t)|2
]
< εT

for all t ≥ T . It follows that

lim
t→∞

E |Xϕ,i (t)− Xφ,i (t)|2 = 0 uniformly in ϕ, φ ∈ K . (4.8)

By (4.3) and (4.8),

lim
t→∞

E‖Xϕ,it − Xφ,it ‖
2
= 0 uniformly in ϕ, φ ∈ K (4.9)

for any compact subset K of C([−τ, 0]; Rn).
Now

|E f (Y ϕ,i (t))− E f (Y φ, j (t))|

≤ E | f (Y ϕ,i (t))− f (Y φ, j (t))|

≤ E
[

ITi j≤M1 E
∣∣∣ f
(

X ϕ̄,kt−Ti j
, rk(t − Ti j )

)
− f

(
X φ̄,kt−Ti j

, rk(t − Ti j )
)∣∣∣]

≤ E
[

ITi j≤M1,‖ϕ̄‖≤M2,‖φ̄‖≤M2
E
(∥∥∥X ϕ̄,kt−(Ti j∧M1)

− X φ̄,kt−(Ti j∧M1)

∥∥∥)]. (4.10)

On the other hand, by (4.9), there exists a T > M1 such that

E
∥∥∥X ϕ̄,kt−(Ti j∧M1)

− X φ̄,kt−(Ti j∧M1)

∥∥∥2
< ε2, ∀t ≥ T1,

provided that ‖ϕ̄‖ ≤ M2 and ‖φ̄‖ ≤ M2, and hence

E
∥∥∥X ϕ̄,kt−(Ti j∧M1)

− X φ̄,kt−(Ti j∧M1)

∥∥∥≤ (E
∥∥∥X ϕ̄,kt−(Ti j∧M1)

− X φ̄,kt−(Ti j∧M1)

∥∥∥2
)1/2

≤ ε.
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Substituting this into (4.10) gives

|E f (Y ϕ,i (t))− E f (Y φ, j (t))|< ε.

Since f ∈ L is arbitrary,

sup
f ∈L
|E f (Y ϕ,i (t))− E f (Y φ, j (t))|< ε,

that is,
lim

t→∞
dL
(

p(t, ϕ, i, · × ·), p(t, 0, 1, · × ·)
)
= 0

for any (ϕ, i) ∈ C([−τ, 0]; Rn)× S.

STEP 2. We have to prove that {p(t, 0, 1, · × ·) | t ≥ 0} is Cauchy in the space
P(C([−τ, 0]; Rn)× S) with metric dL , that is, there is a unique π(· × ·) ∈

P(C([−τ, 0]; Rn)× S), such that

lim
t→∞

dL
(

p(t, 0, 1, · × ·), π(· × ·)
)
= 0.

Let ϕ ∈ C([−τ, 0]; Rn) and i ∈ S be arbitrary. With Y ϕ,i (t)= (Xϕ,it , ri (t)), we
need to show that

lim sup
t→∞ f ∈L

|E f (Y ϕ,i (t + s)− E f (Y ϕ,i (t))| = 0.

Fix any f ∈ L . Using the Markov property,

|E f (Y ϕ,i (t + s))− E f (Y ϕ,i (t))|

=
∣∣E[E( f (Y ϕ,i (t + s))|Fs)

]
− E f (Y ϕ,i (t))

∣∣
=

∣∣∣∣ N∑
m=1

∫
E f (Y φ,m(t))p(s, ϕ, i, dφ × {m})− E f (Y ϕ,i (t))

∣∣∣∣
≤

N∑
m=1

∫
E | f (Y φ,m(t))− f (Y ϕ,i (t))|p(s, ϕ, i, dφ × {m}), (4.11)

where the integration is over the whole space C([−τ, 0]; Rn).
Let ε > 0 be arbitrary. From Lemma 3.1, we know that there exists a compact

subset K of C([−τ, 0]; Rn) such that

p(s, ϕ, i, K × S) > 1− ε. (4.12)

Define the stopping time

Tmi = inf{t > 0 | rm(t)= ri (t)}.
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By the ergodicity of the Markov chain, Tmi <∞ almost surely, so there exists a
positive number M1 such that

P(Tmi > M1) < ε, ∀m, i ∈ S.

By the property of conditional expectation

E | f (Y φ,m(t))− f (Y ϕ,i (t))|

= E
(

E
[∣∣∣ f (Xφ,mt , rm(t))− f (Xϕ,it , r(t))

∣∣∣ |FTmi

])
≤ E[ITmi≤M1 E | f (X φ̄,kt−Tmi

, rk(t − Tmi ))− f (X ϕ̄,kt−Tmi
, rk(t − Tmi ))|]

+ E[ITmi>M1 E | f (X φ̄,kt−Tmi
, rk(t − Tmi ))− f (X ϕ̄,kt−Tmi

, rk(t − Tmi ))|]

≤ E[ITmi≤M1 E | f (X φ̄,kt−Tmi
, rk(t − Tmi ))− f (X ϕ̄,kt−Tmi

, rk(t − Tmi ))|]

+ 2P(Tmi > M1) (4.13)

where k = rm(Tmi )= ri (Tmi ), φ̄ = Xφ,m(Tmi ), ϕ̄ = Xϕ,i (Tmi ).
By Lemma 3.3, there exists an M2 > 0 such that for ∀φ ∈ K ,

P(ω : Tmi ≤ M1, ‖ϕ̄‖> M2) < ε and P(ω : Tmi ≤ M1, ‖φ̄‖> M2) < ε. (4.14)

From (4.11)–(4.14) and the Markov property, for t ≥ M1,

|E f (Y ϕ,i (t + s))− E f (Y ϕ,i (t))|

≤

N∑
m=1

∫
K

E | f (Y φ,m(t))− f (Y ϕ,i (t))|p(s, ϕ, i, dφ × {m})+ ε

≤

N∑
m=1

∫
K

E[ITmi≤M1 E | f (X φ̄,kt−Tmi
, rk(t − Tmi ))− f (X ϕ̄,kt−Tmi

, rk(t − Tmi ))|]

×p(s, ϕ, i, dφ × {m})+ 2ε

≤

N∑
m=1

∫
K

E[ITmi≤M1,‖φ̄≤M2,‖ϕ̄≤M2
E(‖X φ̄,kt−(Tmi∧M1)

− X ϕ̄,kt−(Tmi∧M1)
‖)]

×p(s, ϕ, i, dφ × {m})+ 6ε. (4.15)

On the other hand, by (4.9), there exists a T > M1 such that

E‖X φ̄,kt−(Tmi∧M1)
− X ϕ̄,kt−(Tmi∧M1)

‖
2 < ε2, ∀t ≥ T1,

provided that ‖φ̄‖ ≤ M2 and ‖ϕ̄‖ ≤ M2, and hence

E(‖X φ̄,kt−(Tmi∧M1)
− X ϕ̄,kt−(Tmi∧M1)

‖)≤ (E‖X φ̄,kt−(Tmi∧M1)
− X ϕ̄,kt−(Tmi∧M1)

‖
2)1/2 ≤ ε.

Substituting this into (4.15) yields

|E f (Y ϕ,i (t + s))− E f (Y ϕ,i (t))| ≤ ε, ∀t ≥ T, s > 0.
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Since f is arbitrary, it follows that

lim sup
t→∞ f ∈L

|E f (Y ϕ,i (t + s))− E f (Y ϕ,i (t))| = 0.

Hence {p(t, 0, 1, · × ·) : t ≥ 0} is Cauchy in the metric space P(C([−τ, 0]; Rn)

× S) with metric dL and there exists a unique π(· × ·) ∈ P(C([−τ, 0]; Rn)× S) such
that

lim
t→∞

dL(p(t, 0, 1, · × ·), π(· × ·))= 0.

Therefore

lim
t→∞

dL(p(t, ϕ, i, · × ·), π(· × ·)) ≤ lim
t→∞

[
dL
(

p(t, ϕ, i, · × ·), p(t, 0, 1, · × ·)
)

+ dL
(

p(t, 0, 1, · × ·), π(· × ·)
)]
= 0

as required. 2

REMARK 1. Condition (H1) implies that sup0≤t<∞ E‖X ξ,it ‖
2 <∞, for all (ξ, i)

∈ C([−τ, 0], Rn)× S. By the Chebyshev inequality, it is easy to see that this
guarantees that for any (ξ, i) ∈ C([−τ, 0], Rn)× S, the family {p(t, ξ, i, dζ × { j}),
t ≥ 0} is tight. That is, for any ε > 0, there is a compact subset K = K (ξ, i, ε) of
C([−τ, 0], Rn) such that

P(t, ξ, i, K × S)≥ 1− ε.

REMARK 2. The hypothesis in Theorem 4.1 about the growth of f and σ is not too
restrictive because of, for instance, results due to Yuan [17], Hou [5] and Mao [12].

REMARK 3. When System (3.1) reduces to a one-dimensional stochastic differential
delay equation with semi-Markov switching of the form

d X (t)= f̂
(
X (t), r̂(t)

)
+ σ̂

(
X (t − τ(t)), r̂(t)

)
d B(t)

on t ≥ 0, the discussion of the stability of this system is easier. Assume that the
phase semi-Markovian process r̂(t) has two states, denoted by 1 and 2. The sojourn
time in the first state is exponentially distributed with parameter 1. The sojourn
time in the second state is distributed as Erlang(2), which can be interpreted as
the sum of two independent exponential distributions with parameter 1. The state
space of Z(t)= (r̂(t), J (t)) is clearly G = ((1, 1), (2, 1), (2, 2)) and ϕ((1, 1))= 1,
ϕ((2, 1))= 2, ϕ((2, 2))= 3. Hence the infinitesimal generator of ϕ(Z(t)) is

Q =

−1 1 0
0 −1 1
1 0 −1

 .
Choosing appropriate f and σ as in [17], we can prove that the system is stable in
distribution. So in this sense, we generalize [17] to the semi-Markov case.
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REMARK 4. When the system is linear, it reduces to the system in [5] and all the
results in [5] apply also in this paper.

REMARK 5. Here, we only discuss the phase-type semi-Markov processes, that is,
the sojourn time in state i follows a PH distribution. But this is enough to describe
the general semi-Markov processes, because according to [14], the family of PH
distributions is dense in all the families of distribution on [0,∞). We may choose
a PH distribution to simulate every probability distribution on [0,∞) to any accuracy.

5. Conclusions

In this paper, we consider the problem of stochastic stability for a class of nonlinear
systems with time-varying delays and semi-Markov switchings. Unlike existing
models, the new model takes into account noise, time-varying delays and semi-
Markov switching. By means of stochastic analysis, functional analysis and inequality
techniques, sufficient conditions are proposed to guarantee the stability in distribution
of the system of interest. Our results are new, and extend or improve upon existing
ones. Our methods are suitable also for general control and filtering problems.
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