
J. Fluid Mech. (2023), vol. 967, A6, doi:10.1017/jfm.2023.433

Engineering of branched fluidic networks that
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Power minimisation of fluid transport in branched fluidic networks has become
of paramount importance for microfluidics, additive manufacturing and hierarchical
functional materials. For fully developed laminar flow of Newtonian fluids, Murray’s
theory provides a solution for the channel and network dimensions that minimise
power consumption. However, design and optimisation of networks that transport
complex fluids is still challenging. Here, we generalise Murray’s theory towards fluid
rheologies, including non-Newtonian (power-law) and yield-stress fluids (Bingham,
Herschel–Bulkley, Casson). A straightforward graphical approach is presented that
provides the optimal radii in a branching network, and the angles between these branches.
The wall shear stress is found to be uniform over the entire network, and the velocity
profile is self-similar. Furthermore, the effect of non-optimal channel radii on the power
consumption of the network is investigated. Finally, examples illustrate how this approach
applies to a wide variety of systems.
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1. Introduction

Fluidic networks are ubiquitous in biological systems and engineering applications, as
shown in figure 1(a). In biology, these networks are found in e.g. vascular networks
(Murray 1926b; Hutchins, Miner & Boitnott 1976; Lee & Lee 2010), bronchial trees of
the lungs (Hooper 1977; Xu et al. 2016a), and leaf veins of plants (McCulloh, Sperry
& Adler 2003; Gleason et al. 2018). Here, evolution has resulted in fluidic networks
that efficiently transport large amounts of heat or mass, with low dissipation during
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Figure 1. (a) Examples of branched fluidic networks in engineering applications and biological systems.
(b) Radius of the channel Ri in the network as a function of the relative flow rate Qi/Q0 at level i for the networks
corresponding to the examples in (a). Every marker indicates a level in the branching. The error bars indicate
the deviation from the marker (Singhal, Henderson & Horsfield 1973; Gan et al. 1993; Kassab et al. 1993;
Nordsletten et al. 2006; Su et al. 2016; Carvalho et al. 2017; Zheng et al. 2017; Zhao et al. 2018; Skylar-Scott
et al. 2019). Adapted with permission from Skylar-Scott et al. (2019), copyright (2019) The Authors, published
by Springer Nature; and adapted under terms of the CC-BY licence from Zheng et al. (2017), copyright (2017)
The Authors, published by Springer Nature.

fluid transport and limited volumes (Bejan & Lorente 2013). These characteristics are
also desirable for three recent fluidic-based platforms: microfluidics (Whitesides 2006),
including microreactors (Dong et al. 2021), additive manufacturing (Visser et al. 2019),
and functional ‘Murray’ materials in which heat or mass is diffused through the channel
walls to the surrounding material (Sciubba 2016; Zheng et al. 2017). However, the
per-channel throughput of these platforms is intrinsically low, for example because long
reaction times are required in microreactors (Su et al. 2016; Madhawan et al. 2018). The
per-channel flow rate of microfluidic systems can be increased by 1–3 orders of magnitude
by entering the inertial regime (Di Carlo 2009) or by in-air microfluidics (Visser et al.
2018), but even this is insufficient for large-scale use. Paralellisation of these technologies
is therefore required to harvest their full benefit (Holtze 2013; Skylar-Scott et al. 2019;
Dong et al. 2022). For example, in microfluidics, Jeong et al. (2015) achieved scaling
of channels up to 1000× to realise commercial throughput of particle-generating flows.
In additive manufacturing of complex soft-robotic walkers, Skylar-Scott et al. (2019)
achieved direct-write via 128 parallel channels by repeated bifurcation from the main
channel for the ‘ink’ supply. In materials science, reactors for heat or mass exchange
were parallelised both top-down by Dong et al. (2021) (resembling microfluidic chips)
and bottom-up by self-assembly by Zheng et al. (2017) (resembling biological materials).
Upscaling by paralellisation is typically achieved by distributing flow to individual
channels via branched fluidic networks. Figure 1(b) shows that several levels of fluidic
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Engineering of optimised branched fluidic networks

branching were achieved for the aforementioned applications, but also that biological
systems still exhibit a far larger number of branchings. Therefore, further optimisation
of engineered networks may help in realising the enormous application potential of
microfluidics, additive manufacturing, and Murray materials. Similarly, optimised fluidic
networks would benefit upscaling of emerging methods for catalysis (Yi et al. 2022),
carbon capture (Moore et al. 2019), droplet and particle production (Holtze 2013; Yadavali,
Jeong & Lee 2018), three-dimensional (3-D) printing of polymer foams (Visser et al.
2019), artificial arterial networks (Kinstlinger & Miller 2016), and microfluidic blood
oxygenation (Dabaghi et al. 2020). The purpose of this paper is to provide optimisation
tools that are suitable for a broad range of fluid rheologies and readily applicable by
scientists and engineers who design fluidic networks.

Theoretical analyses of fluidic networks, including the present work, are usually
constructed in two steps (Murray 1926b).

First, an expression is derived for the radius of a channel such that power consumption
is minimised for a given flow rate. The key idea is to consider not only the power needed
to maintain the flow, i.e. the product of pressure drop and flow rate, but also to minimise
the channel’s volume by considering the costs introduced by the volume in the channels.
For that, a cost factor α, representing the power per volume needed to maintain the fluid,
is multiplied with the volume and included in the power function. For example, Murray
(1926b) proposed the use of the metabolic energy to maintain blood in the body as a cost
factor. For more details on the cost factor, see § 2.4.

Assuming a laminar flow of an incompressible Newtonian fluid in an artery of
circular cross-section, the cube of the radius R is proportional to the flow rate Q for a
power-optimised channel:

R3

Q
= const. (1.1)

Second, the network is optimised by considering a bifurcation consisting of a parent
channel (index ‘0’) and two daughter channels (indices ‘1’ and ‘2’) (Murray 1926a), as
shown schematically in figures 2(a)–2(c). Employing mass conservation and assuming
incompressibility (Q0 = Q1 + Q2), the radii of the tubes must satisfy

R3
0 = R3

1 + R3
2, (1.2)

if (1.1) is satisfied in all channels.
Murray’s theory for this flow regime has been analysed further by e.g. Murray (1926a,b),

Zamir (1977), Sherman (1981), Kamiya, Togawa & Yamamota (1974), Stephenson et al.
(2015), Oka & Nakai (1987) and Miguel & Rocha (2018), and verified experimentally
by e.g. Rossitti & Löfgren (1993) and Hutchins et al. (1976). In addition, it has been
extended to high turbulent flow of Newtonian fluids by Uylings (1977), Kou et al. (2014)
and Stephenson & Lockerby (2016), and to laminar flow of non-Newtonian (power-law)
fluids (Mayrovitz 1987; Revellin et al. 2009; Miguel & Rocha 2018; Stephenson &
Lockerby 2016). Flow regimes of more complex fluid models – Bingham (Reiner 1926),
Herschel–Bulkley (Herschel & Bulkley 1926) and Casson (Venkatesan et al. 2013) – have
been investigated for single pipe flow (Chhabra & Richardson 2008; Chilton & Stainsby
1998) (figure 2d). Ponalagusamy (2012) explored optimal branching of fluidic networks
containing yield-stress fluids (Bingham and Herschel–Bulkley). Next to channels with
circular cross-sections, channels with elliptical (Tesch 2010) and rectangular (Emerson
& Barber 2012) cross-sections have been introduced, from which it appeared that the
cross-section does not affect Murray’s proportionality, in contrast to the flow regime
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Figure 2. (a) Branching of parent channel into N daughter channels. The location of the branching point x
follows from the analysis and determines the lengths Li of the channels. The grey channels indicate that it
is possible to have many channels that originate from the branching point. (b) Schematic of a single branch.
(c) Schematic of velocity profile of fully developed laminar flow of non-yield-stress fluid in pipe. (d) Schematic
of velocity profile of fully developed laminar flow of yield-stress fluid in pipe. (e) The fluid models as analysed
in this work. The colours are consistent across (c–f ). ( f ) Different fluid models characterised by n and φ. For
the characterisation of Casson-like fluids, see Appendix A.

(i.e. laminar or turbulent), which can change Murray’s cube rule. Other effects, such as the
effect of curved channels (Miguel 2018), pulsating flow (Painter, Edén & Bengtsson 2006),
asymmetric branching (Zamir 1978) and the efficiency difference between bifurcation and
trifurcations (Rosenberg 2020), have been investigated. The state of the art is discussed in
more detail in Revellin et al. (2009), Bejan & Lorente (2006), Miguel (2016) and Xu et al.
(2016b).

Next to the radii of the channels, the location of the branching point x is an important
variable in the optimisation of the network, as it determines the lengths of the channels
for a network with given end points xi, i = 0, 1, . . . ,N (see figure 2a). Mostly, when
theoretically optimising a fluidic network, this is done by Murray’s proposal to minimise
both the power of driving the fluid (minimisation of resistance) and the power to maintain
the fluid (minimisation of volume) (Murray 1926a,b; Uylings 1977). Consequently, x has
to be chosen such that the volume of the channels is minimal. The angles formed between
the parent and daughter channels have gained special attention, and were investigated
for the case of a bifurcation or a symmetric trifurcation, theoretically (Murray 1926a;
Horsfield & Cumming 1967; Kamiya & Togawa 1972; Uylings 1977; Zamir 1976, 1977)
and experimentally (Hutchins et al. 1976; Horsfield & Cumming 1967). These angles
depend on the channel radii and the type of minimisation (Zamir 1976), and on other
constraints such as fixed pressures at end points (Kamiya & Togawa 1972). Although the
theoretical optimal radii of the channels match well with the observed results in biology,
the correlation between theoretical optimal and observed angles between the channels is
weaker (Hutchins et al. 1976), possibly related to additional geometrical constraints beyond
network optimisation (Horsfield & Cumming 1967; Hutchins et al. 1976).

Despite all of the previous results, engineering branched fluidic networks remains
challenging. First, many sources aim to describe biological fluidic networks, but biological
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networks are not only designed for energy minimisation (Koçillari 2021) and current
methods are less suitable for engineering purposes. Second, complex mathematical
calculations are often required to optimise networks that transport non-Newtonian fluids
(see e.g. Ponalagusamy 2012). Third, alternative fluid models such as Casson have not
been applied in branched fluidic networks before, despite their applicability to e.g. food
processing and blood.

Therefore, here we introduce a procedure for calculating the geometry of an optimal
branching for fully developed laminar flow of simple and complex fluid models (figure 2e),
which is described in § 2. The losses of non-optimised networks, the wall shear stress, the
self-similar velocity profile, and approaches to determine the cost factor are discussed.
Section 3 shows example cases of the optimisation method, after which the validity of the
theory is discussed in § 4, and the conclusions are presented in § 5.

2. Optimisation of a branching using Murray’s theory

We consider a branching consisting of a parent channel connected to N daughter channels
in a branching point x; see figure 2(a). The channels are numbered from 0 to N, with
0 indicating the parent channel. In this study, we choose to fix the flow rates Qi,
i = 0, 1, . . . ,N, and the position of the termination points of the channels xi, i =
0, 1, . . . ,N. These parameters being fixed, we aim at minimising the power required to
perform this flow, with respect to the effective radii Ri, i = 0, 1, . . . ,N, of the channels
and to the location of the branching point x. Furthermore, Q0 is taken positive towards
the branching point, whereas the flow rates in the daughter channels Qi, i = 1, . . . ,N,
are taken positive away from the branching point. To satisfy mass conservation (assuming
incompressibility), the flow rates satisfy

Q0 =
N∑

i=1

Qi. (2.1)

The effective radius is defined as R ≡ DH/2, where DH ≡ 4A/p is the hydraulic diameter,
with A being the cross-sectional area of the channel, and p being the wetted perimeter
of the cross-section. This can be used for deriving the flow rate through elliptical
and rectangular cross-sections, and comparing channel characteristics, but will result in
different expressions for the flow rate Q than for circular cross-sections. In the present
study, the focus is on only circular cross-sections, and here, the effective radius reduces to
the channel radius. For channel flow with elliptical and rectangular cross-sections, the
reader is referred to e.g. Tesch (2010), Emerson & Barber (2012), Lekner (2007) and
Cornish (1928).

Furthermore, the lengths of the channels Li are functions of the branching location:

Li ≡ |xi − x|, i = 0, 1, . . . ,N. (2.2)

The power depends on the radii and lengths of the channels, and is the sum of the
individual channel contributions:

P(R, x) ≡
N∑

i=0

{∣∣∣∣dp
dz

∣∣∣∣QL + αV
}

i
. (2.3)

Here, V is the channel volume, with

Vi = πR2
i Li, (2.4)
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the pressure gradient |dp/dz| is a fluid-type dependent function derived in § 2.1, and z is
the coordinate in the flow direction of a channel. The pressure at the nodes is not defined
or constrained. The cost factor is α, representing the power per unit volume required to
maintain the fluid (α ≈ 1 kW m−3; Murray 1926b).

Optimisation of the branched network is carried out by differentiation of (2.3) to R and
x, and equating these expressions to 0. From this, one obtains optimisation problems for:
(1) the channel radii R (§ 2.2), and (2) the location of the branching point x (§ 2.3). The
flow profile, dissipation characteristics and wall shear stress of the branched network are
discussed in § 2.4.

2.1. Fully developed laminar channel flow
The pressure difference needed to drive a fluid through a channel is governed by the
‘fluid model’ that describes the rheological behaviour of the fluid. The (effective) dynamic
viscosity μ describes the resistance of the fluid against shear, which can be shear-rate γ̇
dependent according to μ = μ′ |γ̇ |n−1. Here, μ′ is the flow consistency index, and n > 0
is the flow index, with n > 1 representing shear-thickening, and 0 < n < 1 representing
shear-thinning behaviour of the fluid. Furthermore, a fluid may have a yield stress τ0 � 0,
which means that the fluid shears only if the local shear stress τrz exceeds the yield
stress. The shear rate of the fluid as a function of the applied local shear stress for a
Herschel–Bulkley fluid is described as

γ̇ (τrz) =

⎧⎪⎨
⎪⎩

sign(τrz)

( |τrz| − τ0

μ′

)1/n

if |τrz| � τ0,

0 if |τrz| < τ0.

(2.5)

Here, γ̇ ≡ ∂u/∂r � 0, with u the axial velocity. The velocity in the radial and azimuthal
directions is assumed to be 0. In the following, we assume that fluid properties μ′, τ0 and
n are constant, and that there is fully developed laminar flow in cylindrical channels.

The local shear stress (with R � L) is then described as a function of the axial pressure
gradient dp/dz:

τrz = −1
2

dp
dz

r, (2.6)

with r the radial coordinate. Let R be the radius of the channel, and let Rp be the plug
radius in case of yield-stress fluids:

Rp ≡ 2τ0∣∣∣∣dp
dz

∣∣∣∣
. (2.7)

A schematic image of the plug radius Rp is presented in figure 2(d). Scaling this plug
radius with the radius of the tube results in the dimensionless plug radius φ:

φ ≡ Rp

R
= 2τ0∣∣∣∣dp

dz

∣∣∣∣R
. (2.8)
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Using these definitions, (2.5) can be rewritten in terms of φ and n:

γ̇ (r) =

⎧⎪⎨
⎪⎩

sign(τrz)

((
R

2μ′

∣∣∣∣dp
dz

∣∣∣∣
)(

r
R

− φ

))1/n

if r � Rp,

0 if r < Rp.

(2.9)

Figure 2( f ) gives an overview of the different values assigned to φ and n for
each fluid model. For Newtonian fluids, (2.9) collapses to the well-known equation
γ̇ (r) = sign(τrz) (r/2μ) |dp/dz|. For a derivation of Casson-like fluids (such as blood),
see Appendix A.

Integration of γ̇ and applying a no-slip boundary condition at the wall (u(r = R) = 0)
results in the velocity profile

u(r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

nR
n + 1

(
R

2μ′

∣∣∣∣dp
dz

∣∣∣∣
)1/n (

(1 − φ)(1+n)/n −
(

r
R

− φ

)(1+n)/n)
if r � Rp,

nR
n + 1

(
R

2μ′

∣∣∣∣dp
dz

∣∣∣∣
)1/n

(1 − φ)(1+n)/n if r < Rp.

(2.10)

Here, u is restricted to a velocity profile directed positively in the z direction. The negative
direction is simply −u(r). The flow field is integrated over the cross-section to obtain the
flow rate Q:

Q ≡
∫∫

A
u(r) dA = 2π

∫ R

0
u(r) r dr, (2.11)

so Q is a function of |dp/dz|, R, μ′, τ0 and n. Dimension analysis shows that Q can be
written in the form

Q = πR3
(

R
2μ′

∣∣∣∣dp
dz

∣∣∣∣
)1/n ( n

3n + 1

)
× ψ(φ, n), (2.12)

or, in terms of φ as

Q = πR3
(
τ0

μ′φ

)1/n ( n
3n + 1

)
× ψ(φ, n), (2.13)

where we have included the factor πn/(3n + 1) for convenience. Here, ψ(φ, n) is the
dimensionless flow rate – the ratio of the flow rate Q and the flow rate of a non-yield fluid
QNY – which is dependent solely on φ and n, and has a value between 0 and 1. The pressure
gradient in relation to the flow rate Q is obtained by rewriting (2.12):∣∣∣∣dp

dz

∣∣∣∣ = 2μ′

R

(
Q

πR3

)n (3n + 1
n

)n 1
ψ(φ, n)n

. (2.14)

The general expression for ψ(φ, n) can be found by computing the integral in (2.11):

ψ = (1 − φ)(n+1)/n

(3n + 1)−1 ×
(
(1 − φ)2

3n + 1
+ 2φ(1 − φ)

2n + 1
+ φ2

n + 1

)
. (2.15)

For Bingham fluids (n = 1), the expression for ψ reduces to

ψ = 1 − 4
3φ + 1

3φ
4, (2.16)

and for the case of non-yield-stress fluids (φ = 0), ψ always reduces to 1.
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Equation (2.13) shows that Q/R3 is solely a function of the dimensionless plug radius
φ, and vice versa. The same holds for the term |dp/dz| R, which is obtained if φ is known.
This property will be used in the characterisation of the optimised networks.

The Darcy–Weisbach equation is commonly used for calculation of the pressure drop
for pipe flow, which is given as

�p = f
ρ

4π2
Q2

R5 L, (2.17)

in which the Darcy friction factor f for the laminar flows of all treated fluid models is then
provided by

f = 64
Re′ ψn , (2.18)

where (Garcia & Steffe 1987)

Re′ = 8
(

n
3n + 1

)n
ρ

μ′

(
Q

πR3

)2−n

R2. (2.19)

For optimised fluidic networks with laminar flow in the first branch (R3/Q = const.,
as discussed in the next subsection), Re′ scales with R2, a generalisation of what Cohn
(1955) derived for symmetric bifurcations. Therefore, all daughter channels will have a
lower Reynolds number than the parent channel, ensuring laminar flow throughout the
network if Re′

0 < Re′
crit. The critical Reynolds number Re′

crit is a function of φ and n that
was derived to be (Hanks & Ricks 1974):

Re′
crit = 6464n

(1 + 3n)2
× (2 + n)(2+n)/(1+n) × ψ2−n

(1 − φ)(n+2)/n , (2.20)

which reduces to Re′
crit ≈ 2100 for Newtonian fluids.

2.2. Optimisation of the channel radii
Every channel within a branching contributes to the total power. When differentiating the
total power to the individual radii Ri for given flow rate Qi, it is found that the optimisation
condition for that radius Ri depends only on the power contribution of the corresponding
channel. Furthermore, the optimal radii Ri do not depend on the lengths of the channels
Li. Therefore, calculation of the optimal channel radius is a decoupled problem, in which
the power defined by (2.3) attains a global minimum with respect to the radius of each
individual channel if

∂Pi

∂Ri
= ∂

∂Ri

(∣∣∣∣dp
dz

∣∣∣∣
i

)
QiLi + 2παRiLi = 0, i = 0, 1, . . . ,N. (2.21)

The optimisation condition for Ri is obtained by differentiating (2.14) to Ri (see § B.1),
resulting in

R3
i,∗

Qi
= 1

π

(
μ′

α

(
3n + 1

n

)n J∗
ψn∗

)1/(n+1)

, i = 0, 1, . . . ,N, (2.22)

967 A6-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

43
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.433


Engineering of optimised branched fluidic networks

where functions evaluated at optimal radius are denoted by a subscript ∗, and J is defined
as

J ≡ 1 + 3n

1 − nφ
ψ

∂ψ

∂φ

. (2.23)

For a Herschel–Bulkley fluid, substitution of ψ from (2.15) into (2.23) results in the
expression

J = 3n + 1
6n3

(2n + 1)(n + 1)
φ3 + 6n2

(2n + 1)(n + 1)
φ2 + 3n

2n + 1
φ + 1

. (2.24)

For Bingham fluids (n = 1), the expression for J reduces further to

J = 4
φ3 + φ2 + φ + 1

, (2.25)

and for non-yield fluids (φ = 0), it reduces to J = 3n + 1. Finally, for φ = 1, one obtains
J = 1.

For the case of Newtonian and power-law fluids (φ = 0), the optimisation condition
for R3∗/Q is calculated relatively easily (with J∗ = 3n + 1 and ψ∗ = 1). However, for
yield-stress fluids, determining the optimal value for R3∗/Q is more difficult. Therefore,
the following procedure is proposed.

First, the following dimensionless numbers are introduced:

R̃3

Q̃
≡ R3

Q

(
α

μ′

)1/(n+1)

, (2.26)

τ̃0 ≡ τ0

(μ′αn)1/(n+1) . (2.27)

Using these dimensionless numbers, (2.22) is rewritten as

R̃3
i,∗

Q̃i
= 1

π

((
3n + 1

n

)n J∗
ψn∗

)1/(n+1)

, i = 0, 1, . . . ,N. (2.28)

Applying the same non-dimensionalisation to (2.13), and rewriting it as a function of ψ ,
then substitution into (2.28), results in the alternative expression

R̃3
i,∗

Q̃i
= J∗τ̃0

πφ∗
, i = 0, 1, . . . ,N. (2.29)

When eliminating R̃3∗/Q̃ from (2.28) and (2.29), we obtain the expression

τ̃0 = φ∗
(

3n + 1
n J∗(φ∗, n) ψ∗(φ∗, n)

)n/(n+1)

. (2.30)

Here, τ̃0 is composed of fluid and system properties, and is therefore considered as known
for an optimisation process. As both ψ and J are solely functions of φ and n, the value
of φ∗ corresponding to τ̃0 can be found implicitly using (2.15) and (2.24). Figure 3 shows
the calculated optimal values of φ∗ as functions of τ̃0 and n. Using φ∗, the corresponding
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Figure 3. Contour plot of the dimensionless plug radius for the optimised network φ∗ as a function of τ̃0
and n.

optimisation condition for R̃3
i,∗/Q̃i is calculated readily using (2.28) or (2.29), and plotted

in figure 4. The optimal channel diameter Ri,∗ at desired flow rate Qi then follows directly
from (2.26).

For the non-yield limit (τ̃0 → 0), the optimisation condition becomes R̃3
i,∗/Q̃i ≈

(3n + 1)π−1 n(−n/(n+1)), which has a maximum R̃3
i,∗/Q̃i ≈ 1.41. This simplified

expression is valid for τ̃0 < 10−2, because then the fluid yield-stress effect in the optimised
network becomes negligible. For larger values of τ̃0, plug formation becomes more
relevant, and R̃3

i,∗/Q̃i becomes larger than in the case of a non-yield fluid. For the yield
limit (τ̃0 → ∞), the optimisation condition tends to go to R̃3

i,∗/Q̃i → τ̃0/π. Figure 4
also shows the parameter space of the different fluid models. The graphical approach of
figure 4 for the optimal value of R3

i,∗/Qi for complex fluids prevents extensive calculations,
enabling straightforward optimisation of the geometry of fluidic networks.

2.3. Optimisation of the network topology
When the optimal channel radii are calculated according to § 2.2, the second optimisation
step is made to provide the location of the branching point x. As shown in figure 2(a),
the location of the branching point determines the length of all channels. Therefore, the
optimised branching point x∗ minimises the total (volume- and dissipation-induced) power
of the network. Now the total power consumption of the network in (2.3) is differentiated
to x and set to 0, resulting in

∇xP =
N∑

i=0

(∣∣∣∣dp
dz

∣∣∣∣
i
Qi + απR2

i

)
∇Li = 0. (2.31)
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Figure 4. Contour plot of R̃3∗/Q̃ as a function of τ̃0 and n. The colours represent the different fluid models
and correspond to figure 2. The Herschel–Bulkley model covers the entire parameter space of τ̃0 and n.

Substituting the optimal radii (2.22) results in the optimisation condition of the branching
point x = x∗ (for a full derivation, see § B.2):

N∑
i=0

R2
i,∗ei,∗ = 0, ei,∗ ≡ (∇Li)∗ = x∗ − xi

|x∗ − xi| . (2.32a,b)

From this implicit equation, the coordinates of x∗ are solved by simple numerical methods,
providing Vi. Note that x∗ can be located in a 3-D space, depending on the location of the
end points xi. The resulting x∗ determines a network that is optimised with respect to both
the channel radii (2.22) and the channel lengths (2.32a,b).

The global minimum power of the branched network P is obtained by inserting the result
of (2.22) into (2.3):

P∗ =
(

J∗ + 2
J∗

)
α

N∑
i=0

Vi,∗. (2.33)

The angles between the channels are calculated by taking the inner product of (2.32a,b)
with unit vectors that originate in the branching point and point towards the nodes.
The resulting cosines of the corresponding angles between the two unit vectors can be
calculated using cos(θij) = ei · ej:

N∑
i=0

R2
i,∗ei,∗ · ej,∗ = 0. (2.34)
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Figure 5. (a) Angles θij in a bifurcation. (b) Angles θij in a trifurcation

This equation results in a linear system of N + 1 equations for ei · ej (i, j = 0, 1, . . . ,N,
with i /= j). For a bifurcation and a symmetric trifurcation, the angles between the channels
for the optimal branching are independent of the coordinates of the nodes xi (see figure 5).
For both symmetric and asymmetric bifurcations, i.e. N = 2, the optimal branching point
x∗ lies in a plane in the 3-D space spanned by x0, x1, x2, as shown in figure 5(a). The
cosines of the smallest angles between each pair of channels involved are given by

e0 · e1 = cos(θ01) = −R4
0 + R4

1 − R4
2

2R2
0R2

1
,

e0 · e2 = cos(θ02) = −R4
0 − R4

1 + R4
2

2R2
0R2

2
,

e1 · e2 = cos(θ12) = R4
0 − R4

1 − R4
2

2R2
1R2

2
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.35)

For a symmetric trifurcation, i.e. N = 3, the optimal branching point x∗ lies in a plane in
the 3-D space spanned by x0, x1 or x3, and x2, where symmetry is assumed, i.e. channels
1 and 3 are mirrored in the line from x0 to x2 (figure 5b). This means that R1 = R3, and
the angles that they make with channels 0 and 2 are equal. In addition, x0, x∗ and x2 are
on the same line, reducing the unknown angles even further. The cosines of the smallest
angles between each pair of channels involved are given by

e0 · e1 = R2
2 − R2

0

2R2
1

,

e1 · e2 = R2
0 − R2

2

2R2
1

,

e1 · e3 = (R2
0 − R2

2)
2 − 2R4

1

2R4
1

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.36)

The results in (2.35) and (2.36) are in line with the findings of e.g. Zamir (1976).
For other cases, the coordinates of xi are needed for calculating the angles between the

channels because the system of equations from (2.34) is underdetermined. For a derivation
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of this general case as well as the above equations for bifurcations and trifurcations, see
Appendix C.

2.4. The effect of non-optimised branching, the velocity profile, the wall shear stress, and
the cost factor

Existing fluidic networks are not always optimised, as their dimensions may depend on
physical constraints or industry standards. In this subsection, we compare the energy
dissipation of such non-ideal networks to optimised fluidic networks as described in §§ 2.2
and 2.3.

For single channels within a network, the minimum power for a channel optimised with
respect to the channel radius is obtained by taking the ith element of (2.3) and substituting
(2.14) and the optimisation condition (2.22):

Pi,∗ = J∗ + 2
J∗

απR2
i,∗Li, i = 0, 1, . . . ,N. (2.37)

Next, the ratio of the non-optimised power Pi and its minimum value Pi,∗ per channel is
found by dividing the ith element of (2.3) by (2.37) (see also § B.1):

Pi

Pi,∗
= 2

J∗ + 2

(
ψ∗
ψi

)n ( Ri

Ri,∗

)−(3n+1)

+ J∗
J∗ + 2

(
Ri

Ri,∗

)2

, i = 0, 1, . . . ,N. (2.38)

Note that the optimal parameters J∗, φ∗ and ψ∗ are without index i, because these are
constant over the whole optimised branching (see also below). Substitution of the optimal
values for a certain fluid and system (J∗ and R∗) results in an expression dependent on φ
and R. As φ and R are related by (2.13), the dimensionless power consumption is calculated
by knowing the actual radii.

Substitution of ψ∗ = ψ = 1 and J∗ = 4 for laminar flow of a Newtonian fluid in (2.38)
recovers the relations for power dissipation in a network as obtained by Murray (1926b)
and Uylings (1977). The proof of this result is provided in § B.1.

The ratio of the actual power for the whole network P and the optimal power P∗ is given
by

P
P∗

=
N∑

i=0

Pi

P∗
=

N∑
i=0

Pi

Pi,∗
Pi,∗
P∗
, (2.39)

where

Pi,∗
P∗

= R2
i,∗Li,∗∑N

i=0 R2
i,∗Li,∗

, i = 0, 1, . . . ,N, (2.40)

and Pi/Pi,∗ given by (2.38) is represented graphically in figure 6 as a function of Ri/Ri,∗
and τ̃0, for several values of n. Choosing radii that are only 0.3 times smaller than optimal
can result in orders of magnitude higher power consumption in comparison to optimised
networks (especially for n = 1.5 and fluids with a low yield stress). Section 3 provides
an example of how figure 6 can be used to determine the power consumption of a fluidic
network.
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When the channel radii are non-ideal, this affects the location of the optimal branching
point. In that case, one solves the following equation instead of (2.32a,b):

N∑
i=0

(
2
J∗

(
Ri

Ri,∗

)−(3n+1) (
ψ∗
ψi

)n

+
(

Ri

Ri,∗

)2 )
R2

i,∗ei,∗ = 0. (2.41)

When Ri = Ri,∗, (2.41) reduces to (2.32a,b). For a derivation, see § B.2.
Equation (2.10) suggests a self-similar velocity profile, as it scales only with R and has

the same shape in every optimised channel due to the constant |dp/dz| R and φ. To assess
this property, we combine (2.22) into (2.13) to show that R3

i,∗/Qi = const. holds for every
channel within an optimised branching for all treated fluid rheologies, in the following
manner. Substitution of (2.22) into (2.13) gives an equation containing only constant fluid
properties and φ. Consequently, φ is constant for an optimised branching, and this is also
a proof that R3/Q is constant in every channel of the branching. As φ is constant, ψ and
|dp/dz| R are also constant in every channel. As a result of these invariants, the velocity
profiles in the channels of an optimised branching are self-similar.

Furthermore, the wall shear stress averaged over the perimeter 〈τw〉 is a function of the
fluid properties and the terms R3/Q and ψ(φ). As a result, the average wall shear stress
is constant over the whole branching for laminar flow of all treated fluid models when the
branching is optimised by (2.22):

〈τw〉 ∼
(

Q
R3

)n
μ′

ψn . (2.42)

For the derivation, see Appendix D.
An estimate of the cost factor based on governing costs should be made per situation.

One approach is similar to Murray’s metabolic cost factor, based on the energy needed
to maintain a fluid (such as maintenance of the blood or maintenance of a temperature by
heating). Also, as elaborated in the second example in § 3, one could think of a print nozzle
network filled with expensive ink, where costs are based on the electricity and material
costs. Other cost factors have been described for plants, where the conduit wall volume
determines the costs, as the wall should be strong enough to withstand the negative internal
pressure (McCulloh et al. 2003), diffusive systems (Zheng et al. 2017), and systems that
require drag minimisation (Woldenberg & Horsfield 1986).
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Even if a cost factor α is not known explicitly, it is possible to design an optimised
network based on other constraints – for example, in 3-D printing, where a flow rate and a
nozzle radius at an outlet are specified and are assumed to be optimal. A second approach
is making a channel to require a certain average flow velocity or dimensionless number
such as the Weber number, which serves as a relation to obtain the corresponding optimal
R for given Q. For both approaches, the ratio R3/Q is then known, and based on (2.22),
the whole optimal network can be calculated. The cost factor can be made explicit by
calculating the optimal φ from (2.13) and calculating α from (2.22).

3. Examples: optimisation of a branched fluidic network

This first example shows the convenience of the graphical approach in determination of
R3/Q. Here, a branched fluidic network inspired on a lubrication system is optimised,
which has a laminar flow of grease described by the Bingham model (ρ = 1000 kg m−3,
μ′ = 1.85 Pa s, n = 1, τ0 = 1.0 Pa), inspired by Westerberg et al. (2010). The temperature
of the lubricant is maintained by adding heat, resulting in a cost factor α = 100 W m−3.
The network has one parent channel (channel 0) and two daughter channels (channels
1 and 2, N = 2). The nodes are given by x0 = (0, 0) m, x1 = (0.0625, 0.025) m, and
x2 = (0.0625,−0.025) m. The flow rate in the parent channel is Q0 = 10 ml min−1, and
the flow rates in the daughter channels are determined to be Q1 = Q2 = 1

2 Q0, so the
bifurcation is symmetric.

The dimensionless yield stress τ̃0 is calculated as τ̃0 = τ0/(μ
′αn)1/(n+1) = 0.074,

after which the corresponding optimisation condition R3/Q ≈ 1.29 is easily read from
figure 4. Alternatively, the optimal value of φ is calculated from (2.16), (2.25) and (2.30),
resulting in φ∗ = 0.068. With φ∗, the corresponding optimal value for ψ can be calculated
using (2.15): ψ∗ = 0.910. With these parameters, (2.28) provides an analytic value for
R̃3/Q̃, being equal to 1.2889, which is readily rewritten to real units using (2.26), where
(μ′/α)1/(n+1) = 0.136 s: we obtain R3/Q = 0.175 s. Based on this condition, the main
channel radius is calculated to be R0 = 3.08 mm. Knowing that R3/Q must be constant,
based on (2.22), the radii of the daughter channels are determined:

R1 = R2 = R0

(
Q1

Q0

)1/3

= 0.794R0 = 2.45 mm. (3.1)

As a check on whether the flow is still laminar, the largest Reynolds number and critical
Reynolds number in the network are calculated from (2.19) and (2.20): Re′ = 0.0186
and Re′

crit = 2357, respectively. This shows that the flow in the whole network will stay
laminar.

From (2.32a,b), it is calculated that the branching point is located at x∗ =
(0.030, 0.000) m. The resulting topology is visualised in figure 7(a), where we make use
of the velocity profile given in (2.10). The angles between the channels for this optimised
network are calculated using (2.34) and also shown in the figure.

To show the effect of an asymmetric flow rate division, the same example is taken,
but now with flow rates Q1 = 1

3 Q0 and Q2 = 2
3 Q0. In addition, the end points are

chosen to be x0 = (0, 0) m, x1 = (0.053, 0.017) m and x2 = (0.0625,−0.025) m. Then
the optimisation condition R3/Q is the same as before, but the daughter channel
radii are different. These are R1 = R0(Q1/Q0)

1/3 = 2.14 mm and R2 = R0(Q2/Q0)
1/3 =

2.69 mm. As a consequence, the location of the branching point and the corresponding
angles between the channels become different. The angles are calculated using (2.34), and
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Figure 7. Topology of branching with lubrication flow with N = 2 daughter channels. (a) Symmetric
bifurcation. (b) Asymmetric bifurcation with Q1 = 1

3 Q0 and Q2 = 2
3 Q0.

the topology is shown in figure 7(b). Here, one sees that the angle between the parent
channel and the largest daughter channel has become larger, tending more to the limit of
180◦.

In a second example, we optimise the channel radius of a hypothetical branching nozzle,
as for example used in parallel direct-write (Skylar-Scott et al. 2019; see figure 1). A model
fluid is described by the Herschel–Bulkley model (ρ = 1200 kg m−3, μ′ = 15 Pa sn,
n = 0.4, τ0 = 2000 Pa). The cost factor is estimated to be the ratio of the material costs
per volume and the electricity costs to pump the fluid for a certain operation time:
α = cρ/E�t. The fluid costs c = 100 AC kg−1, electricity costs E = AC0.40 kWh−1, and a
print session takes �t = 18 min. Then the cost factor is estimated at α = 1 GW m−3. The
flow rate of the parent channel is Q0 = 10 ml min−1, and the channel splits up into K = 4
levels of symmetric bifurcations. Calculating τ̃0 = τ0/(μ

′αn)1/(n+1) = 0.78 and using
figure 4, we obtain a value for the optimisation condition as R̃3

i,∗/Q̃i ≈ 1.14. Therefore,
the optimisation condition in real units becomes R3

i,∗/Qi = R̃3
i,∗/Q̃i(μ

′/α)1/(n+1) = 2.9 ×
10−6 s. Consequently, the optimal channel radii for the four different levels (where due
to symmetry, every channel at the same level has the same size) are R0 = 79 μm,
R1 = 62 μm, R2 = 50 μm and R3 = 39 μm. These channels are unrealistically small,
because their manufacture is challenging and the material cost within the channels may be
small compared to e.g. depreciation of equipment. However, this example shows clearly
how expensive fluids could drive miniaturisation of the system.

In a third example, we investigate how a microfluidic branched network with
equally sized channels performs in comparison to an optimised network, for symmetric
bifurcations and K = 5 levels. The fluid in the network is described by the
Herschel–Bulkley model (n = 0.5, τ0 = 1000 Pa, μ′ = 200 Pa sn; Skylar-Scott et al.
2019). The radius and flow rate of the channel were considered to be optimal
for the channels at outlet and have values Ropt = 250 μm and Qopt = 2 ml min−1.
Consequently, all channels have radius 250 μm, and the main parent channel has flow
rate Q0 = 32 ml min−1. The flow rate in the other channels is calculated according to
equal distribution of Q0. Furthermore, the channel lengths are assumed to be a function
of the flow rate: Li/L0 = (Qi/Q0)

2/3. The optimisation condition based on the optimal
channel becomes R3

i,∗/Qi = 4.69 s. From that, the optimal radii are calculated, based on

967 A6-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

43
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.433


Engineering of optimised branched fluidic networks

the known flow rate in each channel. Together with the optimisation condition R3
i,∗/Qi,

one can calculate the properties of the optimal network. Based on the optimal channel,
one can calculate φ∗ = 0.14 and ψ∗ = 0.68 using (2.13), which also yields J∗ = 2.24
using (2.24) and τ̃0,∗ = 0.210 using (2.30). Calculation of the radius ratio Ri/Ri,∗ for
each channel provides the needed input for the power ratio per channel via (2.38) or
figure 6. Multiplying each power ratio with the corresponding term Pi,∗/P∗ from (2.40),
and summing everything, results in the overall network power ratio P/P∗ = 2.38. This
shows that application of the optimal radii instead of equally sized channels could reduce
58 % of the power consumption in the network.

4. Discussion

The optimal geometry derived above does not incorporate the constraint that the pressure
at all end points must be equal. Therefore, flow rates may deviate from the calculated
flows for open-ended systems such as nozzles that exit into the air. This issue can be
mitigated in general by a pressure control system at the end of every node. Fortunately,
however, bifurcating channels that are symmetric with respect to both the flow rate and
the geometry always exhibit the same pressure drop, and will therefore provide optimal
flow through the network without active control. In addition, this problem is prevented
for radius-wise optimised networks by requiring

∑
i Li/Ri = const. for both branches that

originate from a branching point.
Furthermore, Murray’s theory (§§ 2.2 and 2.3) is sometimes simplified to the so-called

Murray law stating that the cubed parent channel radius is equal to the sum of the cubed
daughter channel radii (see e.g. Sherman 1981; Stephenson et al. 2015):

R3
0 =

N∑
i=1

R3
i . (4.1)

This relation is obtained by substituting Qi from the optimisation condition (2.22) into
the mass conservation equation (2.1), where the right-hand side of (2.22) is constant
for an optimised network. It is important to note that a branching optimised by (2.22)
automatically fulfils (4.1), but satisfying (4.1) does not necessarily give the optimal
branching. This was already pointed out by Kamiya et al. (1974). Rosenberg (2020)
analysed this point critically, and invalidated the conclusion by Sherman (1981) that
conservation of the cube of the radii in a branching point is the determinant condition for
network optimisation for both symmetric and asymmetric branches, for whatever number
of daughter channels. Therefore, (4.1) is not sufficient for determining the optimal radii,
except for branchings in which the flow rate in all daughter channels is the same (e.g.
symmetric bifurcations). In that case, (4.1) reduces to

Ri

R0
= N−1/3, i = 1, 2, . . . ,N. (4.2)

Finally, flow effects such as entrance effects, non-axisymmetric velocity profiles at
junctions, and channel curvature effects have not been taken into account due to the
assumption of the channel flows being fully developed. However, if the slenderness
condition in the channels is satisfied (R � L), then the major part of the flow is still
governed by the fully developed flow equations. Therefore, the theorem is suitable for
overall network design or as an analysis tool, but for design details near junctions,
simulations or experiments are recommended.
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5. Conclusions and outlook

A generalised approach to minimise power consumption of branched fluidic networks was
developed for Newtonian, power-law, Bingham, Herschel–Bulkley and Casson-like fluids
in the steady laminar regime.

First, the flow rate in a single channel was analysed, providing the pressure drop over a
channel as a function of the fluid model and channel dimensions. Subsequently, the optimal
network geometry was obtained by minimising power with respect to the channel radii and
the location of the branching point. For all treated fluid rheologies, Murray’s optimisation
condition for all channels within a network was recovered:

R̃3
i,∗

Q̃i
= const., i = 0, 1, 2, . . . ,N. (5.1)

The value of this constant is represented graphically in figure 4, enabling optimisation of
fluid networks for non-Newtonian systems with a minimum of mathematical analysis for
the first time. Detailed analysis of the network provided the following additional results.

(i) Insight into the increase of power consumption in case of non-optimal channel radii,
revealing potentially large energy gains.

(ii) A self-similar velocity profile across the network, resulting in a constant wall shear
stress.

(iii) Multiple methods to estimate the cost factor to maintain the liquid flow.
(iv) Conditions for which optimal flow is maintained without active control of the

pressure at every junction.
(v) Proof that if the parent channel is laminar, the entire optimised network exhibits

laminar flow. The Darcy friction factor is provided.

Future work may further address situation-specific cost factors for engineering systems
(Woldenberg & Horsfield 1986), as well as systems with a transition from turbulent to
laminar flow regimes.
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Appendix A. Derivation of channel flow and optimal branching for Casson-like fluids

In § 2.1, the fluid models for Newtonian, power-law, Bingham and Herschel–Bulkley fluids
were presented, where the first three models are simplifications of the Herschel–Bulkley
fluid model. For food processing and blood flows, another fluid model, the so-called
‘Casson’ model, is used (Venkatesan et al. 2013; Chhabra & Richardson 2008). For
large shear rates γ̇ , the behaviour of the Casson model is similar to Bingham fluids,
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but especially for small γ̇ , the Casson model has a more gradual increase in shear stress
with increasing shear rate, which describes the mentioned applications better. This gradual
behaviour is accomplished by weighting the square roots of the terms in the fluid model,
which is slightly more sophisticated than for Bingham and Herschel–Bulkley.

In this appendix, a parameter – the weight factor m – is introduced to indicate the
weight method of the terms. Here, Bingham and Herschel–Bulkley fluids have weight
factor m = 1. Further, Casson fluids have the same terms as Bingham fluid, but then with
weight factor m = 2. In a similar manner, the Herschel–Bulkley model with weight factor
m = 1 has its equivalent for weight factor m = 2, which will be denoted as generalised
Casson, because it has the same m as the Casson fluid model. Next to m = 1, m = 2 is
most commonly used, but the derivation could be extended to arbitrary values of m.

The goal of this appendix is to derive relations for optimal networks containing
Casson-like fluids with an optimisation method analogous to § 2. For that, the pressure
drop of a channel flow is derived for these fluid models in § A.1. Subsequently, the
corresponding optimisation equations that are specific for these models are given in § A.2.
The theory is applied in an example in § A.3.

A.1. Derivation of laminar channel flow
In § 2.1, a derivation for fully developed laminar flow in cylindrical channels was presented
for the fluid model presented in (2.5). In this subsection, a similar derivation for more
sophisticated Casson-like fluid models is presented.

The pressure difference needed to drive a fluid through a channel is governed by
the ‘fluid model’ that characterises the behaviour of the fluid. The (effective) dynamic
viscosity μ describes the resistance of the fluid against the shear rate, which can be shear
rate γ̇ dependent according to μ = μ′ |γ̇ |n−1. Here, μ′ is the flow consistency index,
and n > 0 is the flow index, with n > 1 representing shear-thickening , and 0 < n < 1
representing shear-thinning behaviour of the fluid. Furthermore, a fluid may have a yield
stress τ0 � 0, which means that the fluid flows only if the local shear stress τrz exceeds
the yield stress. The shear rate of the fluid as a function of applied local shear stress is
described in a generalised form as

γ̇ (τrz) =

⎧⎪⎪⎨
⎪⎪⎩

sign(τrz)

(
(|τrz|1/m − τ

1/m
0 )m

μ′

)1/n

if |τrz| � τ0,

0 if |τrz| < τ0.

(A1)

Here, γ̇ ≡ ∂u/∂r � 0, with u the axial velocity. The velocity in the radial and azimuthal
directions is assumed to be 0. Fluid properties such as μ′, τ0 and n are assumed to be
constant. When taking m = 1, we will recover (2.5).

The local shear stress of fully developed laminar flows in cylindrical channels (with R �
L) is described as a function of the axial pressure gradient dp/dz by τrz = −1

2 (dp/dz)r.
By using this and the definition of the dimensionless plug radius φ in (2.8), (A1) can be
rewritten in terms of φ, n and m:

γ̇ (r) =

⎧⎪⎨
⎪⎩

sign(τrz)

((
R

2μ′

∣∣∣∣dp
dz

∣∣∣∣
)((

r
R

)1/m

− φ1/m
)m)1/n

if r � Rp,

0 if r < Rp.

(A2)
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Fluid model n φ m

Newtonian 1 0 1
Power-law n > 0 0 1
Bingham 1 0 � φ � 1 1
Herschel–Bulkley n > 0 0 � φ � 1 1
Casson 1 0 � φ � 1 2
Generalised Casson n > 0 0 � φ � 1 2

Table 1. Different fluid models characterised by φ, n and m.

Many rheological models can be described using (A2). Table 1 gives an overview of the
different values assigned to φ, n and m for each fluid model. Note that if φ = 0, then (A2)
always reduces to Newtonian or power-law fluids, irrespective of m. In the remainder of
this subsection, the derivation is done for m = 2.

Integration of γ̇ and applying a no-slip boundary condition at the wall (u(r = R) = 0)
results in the following velocity profile (restricted to positively directed velocity profiles)
for m = 2:

u(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nR
n + 1

(
R

2μ′

∣∣∣∣dp
dz

∣∣∣∣
)1/n (

(1 − √
φ)(2+n)/n

(
1 + n

n + 2
√
φ

)

−
(√

r
R

− √
φ

)(2+n)/n (√ r
R

+ n
n + 2

√
φ

))
if r � Rp,

nR
n + 1

(
R

2μ′

∣∣∣∣dp
dz

∣∣∣∣
)1/n

(1 − √
φ)(2+n)/n

(
1 + n

n + 2
√
φ

)
if r < Rp.

(A3)

The flow field can be integrated over the cross-section to obtain the flow rate Q:

Q ≡
∫∫

A
u(r) dA = 2π

∫ R

0
u(r) r dr. (A4)

Integration shows that the flow rate can be written in the form

Q = πR3
(

R
2μ′

∣∣∣∣dp
dz

∣∣∣∣
)1/n ( n

3n + 1

)
× ψ(φ, n), (A5)

where the dimensionless flow rate ψ(φ, n) is a function depending solely on φ and n, and
has a value between 0 and 1.

The expression for ψ(φ, n) for generalised Casson fluids (m = 2) is

ψ = (1 −
√
φ)2(1−n)/n ×

[
1 − 2(5n + 3)

(5n + 2)

√
φ + 2(5n2 + 6n + 3)

(2n + 1)(5n + 2)
φ

− φ3/2(n − 1)(n − 2)
[
2(n + 1)(n + 2)+ 5n(n + 2)

√
φ + 20n2φ + 30n3φ3/2]

(n + 1)(n + 2)(2n + 1)(3n + 2)(5n + 2)

+ 60n4(n − 1)φ7/2 − 30n5φ4

(n + 1)(n + 2)(2n + 1)(3n + 2)(5n + 2)

]
. (A6)
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For Casson fluids (n = 1), the expression for ψ reduces to

ψ = 1 − 16
7

√
φ + 4

3φ − 1
21φ

4. (A7)

In the case of non-yield-stress fluids (Newtonian and power-law), ψ always reduces to 1.
Laminar flow in an optimised network is ensured if Re′

0 < Re′
crit. For an expression and

derivation of Re′
crit for Casson-like fluids, the reader is referred to Hanks (1981) and Hanks

& Ricks (1974).

A.2. Optimal branching
The optimisation problem as described in § 2 is the same for Casson-like fluids. The only
difference is the different expression forψ . Therefore, J is also different, and consequently,
figures 3 and 4 have their equivalent for m = 2.

Here, J is defined by (2.23). The full expression of J (m = 2) is written as

J = (3n + 1)×
[

90n5(nφ1/2 + 2)
(5n + 2)(3n + 2)(2n + 1)(n + 1)(n + 2)

φ5/2

+ 90n4

(5n + 2)(3n + 2)(2n + 1)(n + 1)
φ2 + 60n3

(5n + 2)(3n + 2)(2n + 1)
φ3/2

+ 15n2

(5n + 2)(2n + 1)
φ + 6n

5n + 2
φ1/2 + 1

]−1

. (A8)

A contour plot of this equation is presented in figure 8. For n = 1, (A8) is simplified to

J = 4
1
7φ

3 + 2
7φ

5/2 + 3
7φ

2 + 4
7φ

3/2 + 5
7φ + 6

7φ
1/2 + 1

. (A9)

In a similar manner as explained in § 2.2, the optimal dimensionless plug radius φ is
calculated from (2.30), (A6) and (A8), and plotted in figure 9. Also, a contour plot of the
optimisation condition R̃3/Q̃ as a function of τ̃0 and n is constructed in figure 10 by using
(2.29), (2.30), (A6) and (A8).

The optimisation of the branching point as described in § 2.3 has exactly the same
procedure for m = 2 as for m = 1.

A.3. Example
In this example, a blood vessel network is optimised. Here, the cost factor is undetermined,
but a physical constraint is used for designing the network. For blood, the Casson model is
used (τ0 = 5 mPa, n = 1, μ′ = 3.5 mPa s) and the physical constraint is the flow through
a capillary (Murray 1926b; R = 3.5 μm, Q = 1.93 × 104 μm3 s−1). Consequently, if
this channel is taken as a base, then all channels should satisfy R3/Q = 2.23 × 10−3 s.
When we know the network layout (number of branches, number of levels) and the
flow rate division, the flow rate in each channel can be determined. When assuming
symmetric bifurcations with K levels, the parent channel at the highest level has flow
rate Q0 = 2K−1Q. The corresponding channel radius is R0 = 2(K−1)/3R.

From the physical constraint, it is also possible to retrieve the cost factor α.
When calculating φ from (2.13) and (A7), being equal to 0.0022, the corresponding
dimensionless optimisation condition R̃3∗/Q̃ appears to be 1.318 (using (2.28)). From these
parameters, the cost factor is calculated from (2.26), resulting in α = 1.23 kW m−3.

967 A6-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

43
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.433


J.S. Smink, C.H. Venner, C.W. Visser and R. Hagmeijer

0.1 0.2 0.3 0.4 0.5

φ
0.6 0.7 0.8 0.9 1.00

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

n

1
.0

1
1
.0

51
.11
.2

51
.51
.7

5

2

2
.2

52
.5

2.
75

33.
5

44
.5

55
.5

6

Figure 8. Contour plot of J in (A8) as a function of φ and n, for m = 2.
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Figure 9. Contour plot of φ for m = 2 (calculated using (2.30), (A6) and (A8)) as a function of τ̃0 and n.
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Figure 10. Contour plot of R̃3/Q̃ (m = 2) as a function of τ̃0 and n.

Appendix B. Derivation of minimised power branching

B.1. Power minimisation with respect to radii
At fixed channel length L and flow rate Q, the channel-radius-dependent power P(R)
consists of two contributions: one to maintain the flow rate against an adverse pressure
gradient |dp/dz| L, and one to maintain the fluid:

P(R) ≡
∣∣∣∣dp
dz

∣∣∣∣LQ + αV. (B1)

In this expression, V is the channel volume,

V = πR2L, (B2)

and α is a fluid maintenance constant representing the cost per unit volume to maintain the
fluid.

The power P(R, x) needed to maintain the flow rate and the fluid in the whole branching
depends on the radii and lengths of the channels, and is the sum of the individual channel
contributions given by (B1):

P(R, x) ≡
N∑

i=0

{∣∣∣∣dp
dz

∣∣∣∣ LQ + αV
}

i
. (B3)

Differentiation of P with respect to Ri in (B3) gives

∂P
∂Ri

=
(
∂

∂Ri

(∣∣∣∣dp
dz

∣∣∣∣
i

)
Qi

Ri
+ 2απ

)
RiLi, i = 0, 1, . . . ,N. (B4)
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From this expression, we need to know (∂/∂R)(|dp/dz|), for which use is made of (2.14).
Writing out the differentiation results in (for i = 0, 1, . . . ,N)

∂

∂Ri

(∣∣∣∣dp
dz

∣∣∣∣
i

)
= ∂

∂Ri

(∣∣∣∣dp
dz

∣∣∣∣
i

)∣∣∣∣
ψ=const.

+ ∂

∂ψ

(∣∣∣∣dp
dz

∣∣∣∣
i

)∣∣∣∣
R=const.

∂ψ

∂φ

∂φ

∂Ri
, (B5)

where

∂

∂Ri

(∣∣∣∣dp
dz

∣∣∣∣
i

)∣∣∣∣
ψ=const.

= −3n + 1
Ri

∣∣∣∣dp
dz

∣∣∣∣
i
, (B6a)

∂

∂ψ

(∣∣∣∣dp
dz

∣∣∣∣
i

)∣∣∣∣
R=const.

= − n
ψ

∣∣∣∣dp
dz

∣∣∣∣
i

(B6b)

and
∂φ

∂Ri
= − φ∣∣∣∣dp

dz

∣∣∣∣
i

∂

∂Ri

(∣∣∣∣dp
dz

∣∣∣∣
i

)
− φ

Ri
. (B6c)

Taking everything together results in the expression

∂

∂Ri

(∣∣∣∣dp
dz

∣∣∣∣
i

)
= − 1

Ri

∣∣∣∣dp
dz

∣∣∣∣
i

⎛
⎜⎜⎝1 + 3n

1 − nφ
ψ

∂ψ

∂φ

⎞
⎟⎟⎠ . (B7)

Because ψ is a fluid-model-dependent function, the last term in brackets is also
fluid-model-dependent. We will define a parameter J that takes this term into account.
Consequently, (∂/∂Ri)(|dp/dz|i) = −|dp/dz|i(J/Ri), and J is expressed by (2.23).
A contour plot of J for a Herschel–Bulkley fluid is presented in figure 11.

Substitution of (∂/∂Ri)(|dp/dz|i) and |dp/dz|i into (B4) results in

∂P
∂Ri

=
(

− μ′
(

Qi

πR3
i

)n+1 J
ψn

(
3n + 1

n

)n

+ α

)
2πRiLi. (B8)

This shows that ∂P/∂Ri = 0 if and only if (2.22) (the optimisation condition) holds.
Then it remains to prove that (2.22) is a global minimum for the parameter space of

interest (0 < n < 2, 0 � φ � 1). For that, we differentiate P twice to Ri:

∂2P

∂R2
i

=
∣∣∣∣dp
dz

∣∣∣∣
i

QiLi

R2
i

(
J2 + J − Ri

∂J
∂Ri

)
+ 2απLi, (B9)

in which
∂J
∂Ri

= (J − 1)3

3Ri

(
φ

ψ

∂ψ

∂φ
−
(
φ

ψ

∂ψ

∂φ

)2

+ φ2

ψ

∂2ψ

∂φ2

)
. (B10)

Evaluation of ∂J/∂Ri on the domain of interest shows that this expression holds for
∂J/∂Ri � 0. Consequently, as all quantities in (B9) in itself are positive, d2P/dR2

i � 0.
This means that for the domain of interest, (2.22) is a global minimum. It should be
noted that in principle, this is not a sufficient condition to guarantee that (2.22) is a global
minimum, but that it is true only because the equations for the channels are decoupled.
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Figure 11. Contour plot of J in (2.24) as a function of φ and n.

After applying the non-dimensionalisation defined in (2.26) and (2.27), the optimisation
condition can be simplified to (2.28) or (2.29). Elimination of R̃3∗/Q̃ from these equations
results in (2.30). This equation for τ̃0 is a function of solely φ and n (using expressions
for ψ(φ, n) and J(φ, n)). As τ̃0 can be calculated from fluid and system properties, the
corresponding optimal φ can be determined. Also, φ∗ can be calculated from the equations
or be determined using figure 9. This is possible because in an optimised branching, φ is
constant. If φ∗ is known, then the corresponding optimal R̃3∗/Q̃ is calculated directly from
(2.28) or (2.29). As a much simpler approach, one can use figures 4 and 10, which give
a graphical representation of the dimensionless optimisation condition as a function of τ̃0
and n.

Although optimal radii can be calculated using the theorem (2.28), it is possible that in
practice, the channels have a radius unequal to the optimal radius. This affects the actual
power needed to transport and maintain a fluid through a channel and branching. To show
this effect, we substitute (2.14) into (2.3) for one channel, and divide the expression by the
power of an optimised channel (2.37), resulting in

Pi

Pi,∗
= J∗

J∗ + 2

(
Qn+1

i

R3n+1
i

(
3n + 1

nψ

)n 2μ′

απn+1R2
i,∗

+ R2
i

R2
i,∗

)
. (B11)

Rewriting the optimisation condition (2.22) as a function for Qi results in

Qn+1
i = R3n+3

i,∗ πn+1 α

μ′

(
n

3n + 1

)n
ψn∗
J∗
. (B12)
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Substituting Qi into (B11) provides the following expressions for the actual power over the
optimal power:

Pi

Pi,∗
= 2

J∗ + 2

(
ψ∗
ψi

)n ( Ri

Ri,∗

)−(3n+1)

+ J∗
J∗ + 2

(
Ri

Ri,∗

)2

, (B13)

or alternatively,

Pi

Pi,∗
= 2

J∗ + 2

(
φ∗
φi

)(
Ri

Ri,∗

)−1

+ J∗
J∗ + 2

(
Ri

Ri,∗

)2

. (B14)

These relations hold for a single channel. Contour plots of (B13) for different values of
n are presented in figure 6. When multiplying the power ratio with the optimal power
per channel, subsequently summing these power ratios for all channels in the branching
results in the actual power P needed for the fluid flow in the branching. By dividing P by
the optimal power for a branching P∗ (see (2.3)), one obtains the power ratio for the entire
branching. Alternatively, multiplying (B13) with (2.40) and summing the terms results in
P/P∗.

B.2. Power minimisation with respect to branching point
For the optimal location of the branching point x, the gradient of P in (B3) with respect to
the branching point x is

∇xP =
N∑

i=0

(∣∣∣∣dp
dz

∣∣∣∣
i
Qi + απR2

i

)
∇Li. (B15)

Because L2
i = |x − xi|2 = (x − xi) · (x − xi), we have

2Li ∇Li = ∇L2
i = 2 (x − xi) , (B16)

therefore

∇Li = ei ≡ x − xi

|x − xi| . (B17)

If the channel radii are optimised according to (2.22), then one can rewrite the
expression for the pressure drop (2.14) to the simpler form

∣∣∣∣dp
dz

∣∣∣∣
i
= 2α

J∗

πR2
i,∗

Qi
. (B18)

By substituting (B18) into (B15), one obtains that ∇xP = 0 if and only if

J∗ + 2
J∗

απ

N∑
i=0

R2
i,∗ei,∗ = 0. (B19)

Since J∗ � 1 and α > 0, this immediately implies (2.32a,b). Equation (2.33) can be found
by substitution of Ri,∗ and x∗ into the expression for P(R, x).
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It remains to be shown that P has a global minimum when the branching point x satisfies
(2.32a,b). We write the branching point as a perturbation of the optimum:

x = x∗ + sr, s ∈ R, r ∈ R
3, |r| = 1. (B20)

A Taylor series expansion shows that

N∑
i=0

R2
i,∗Li =

( N∑
i=0

R2
i,∗Li

)
s=0

+
(

d
ds

N∑
i=0

R2
i,∗Li

)
s=0

s

+
∫ s

0

∫ t

0

(
d2

ds2

N∑
i=0

R2
i,∗Li

)
s=u

du dt. (B21)

The first and second derivatives in this expression are, respectively,

d
ds

N∑
i=0

R2
i,∗Li = ∇

( N∑
i=0

R2
i,∗Li

)
· dx

ds
=
( N∑

i=0

R2
i,∗ei

)
· r (B22)

and

d2

ds2

N∑
i=0

R2
i,∗Li =

N∑
i=0

R2
i,∗

dei

ds
· r =

N∑
i=0

R2
i,∗

Li
{1 − (ei · r)2}, (B23)

where we have used

dei

ds
= 1

Li

{
r − ei

(
∇Li · dx

ds

)}
= 1

Li
{r − ei (ei · r)} . (B24)

With these expressions, (B21) can be written as

N∑
i=0

R2
i,∗Li =

( N∑
i=0

R2
i,∗Li

)
s=0

+
( N∑

i=0

R2
i,∗ei,∗

)
· rs

+
∫ s

0

∫ t

0

( N∑
i=0

R2
i,∗

Li
{1 − (ei · r)2}

)
s=u

du dt. (B25)

The second term on the right-hand side is zero in view of (2.32a,b), and the third term
on the right-hand side of (B21) is non-negative since |ei| = 1, |r| = 1, and therefore
(ei · r)2 � 1, with the inequality applying to at least one of the channels. Hence

N∑
i=0

R2
i,∗Li �

( N∑
i=0

R2
i,∗Li

)
s=0

, (B26)

and therefore the power minimum is a global minimum.
When the channel radii are not equal to the optimal radii, this also affects the optimal

branching point. The corresponding equation governing the optimal branching point is
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derived as follows. Equation (2.14) is substituted into (B15), giving an expression for
non-optimised channel radii:

∇xP =
(

2μ′

πn

Qn+1
i

R3n+1
i

(
3n + 1

n

)n 1
ψn + απR2

i

)
ei,∗. (B27)

Rewriting the optimisation condition for R as a function for Qi (see (B12)), substituting Qi
into (B27), and equating this expression to 0, gives us the optimisation condition for the
branching point:

N∑
i=0

πα

(
2
J∗

R3n+3
i,∗

R3n+1
i

(
ψ∗
ψi

)n

+ R2
i

)
ei,∗ = 0, (B28)

which after some rewriting becomes

N∑
i=0

(
2
J∗

(
Ri

Ri,∗

)−(3n+1) (
ψ∗
ψi

)n

+
(

Ri

Ri,∗

)2 )
R2

i,∗ei,∗ = 0. (B29)

This expression shows that the non-ideal channel radius ratio Ri/Ri,∗ determines the
weight of the term corresponding to that specific channel. If all channels are optimised,
then (B29) reduces to (2.32a,b).

Appendix C. Analysis of angles between channels in network topology

The optimal branching point x∗ lies in the space in which the xi (i = 0, 1, . . . ,N) lie.
Using the optimal radii of the branching determined by (2.22), the network topology is
determined using (2.32a,b). By taking the inner product of (2.32a,b) with unit vectors in
the directions of the channels, the cosines of the corresponding angles between the two
unit vectors can also be calculated using cos(θij) = ei · ej:

N∑
i=0

R2
i,∗ei,∗ · ej,∗ = 0, j = 0, 1, . . . ,N. (C1)

This equation results in a linear system of equations for ei · ej (i, j = 0, 1, . . . ,N, i /= j).
The number of unit vectors is N + 1, and each unique combination of two unit vectors

should be calculated. As the inner product of two equal unit vectors is 1, this is a known
combination. The number of unknown angles for an (a)symmetric branching is calculated
by the binomial (

N + 1
2

)
= (N + 1)!

2! (N + 1 − 2)!
= 1

2
N(N + 1). (C2)

As the number of equations is N + 1, the number of unknowns after solving (C1) is

#DOF = 1
2(N − 2)(N + 1). (C3)

Therefore, for a bifurcation (N = 2), the system is determined, but for a trifurcation
(N = 3), the system is underdetermined, and assumptions about the topology should be
made.
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When assuming symmetry, the number of unknowns in (C3) reduces with

#reduced unknowns =

⎧⎪⎪⎨
⎪⎪⎩

1
4

N2 for N = 2k, k ∈ N,

1
4
(N2 + 3) for N = 2k + 1, k ∈ N.

(C4)

Due to symmetry, a number of linear equations become dependent, resulting in the number
of independent equations

#independent eqs =

⎧⎪⎪⎨
⎪⎪⎩

1
2
(N + 2) for N = 2k, k ∈ N,

1
2
(N + 3) for N = 2k + 1, k ∈ N.

(C5)

Subtracting (C4) and (C5) from (C2) results in the following degrees of freedom for a
symmetric branching:

#DOF, sym =

⎧⎪⎪⎨
⎪⎪⎩

1
4
(N2 − 4) for N = 2k, k ∈ N,

1
4
(N2 − 9) for N = 2k + 1, k ∈ N.

(C6)

As a result, symmetric trifurcations also have a determined system of equations. This
means that the angles between the channels are independent of the precise coordinates
of the nodes in the cases of a bifurcation and a symmetric trifurcation.

In the case of a bifurcation, (2.34) is expanded for i = 0, 1, 2. As it holds that
ei · ej = ej · ei for the inner product, only the unique combinations have to be determined.
Writing everything out leads to the following linear system of equations:⎛

⎜⎝
R2

1 R2
2 0

R2
0 0 R2

2

0 R2
0 R2

1

⎞
⎟⎠
⎛
⎝e0 · e1

e0 · e2
e1 · e2

⎞
⎠ = −

⎛
⎜⎝

R2
0

R2
1

R2
2

⎞
⎟⎠ , (C7)

which has a unique solution

e0 · e1 = −R4
0 + R4

1 − R4
2

2R2
0R2

1
,

e0 · e2 = −R4
0 − R4

1 + R4
2

2R2
0R2

2
,

e1 · e2 = R4
0 − R4

1 − R4
2

2R2
1R2

2
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C8)

When assuming symmetry, it holds that R1 = R2 and e0 · e1 = e0 · e2. The linear system
(C7) reduces to (

2R2
1 0

R2
0 R2

1

)(
e0 · e1

e1 · e2

)
= −

(
R2

0

R2
1

)
, (C9)
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which also has a unique solution:

e0 · e1 = − R2
0

2R2
1
,

e1 · e2 = R4
0 − 2R4

1

2R4
1

.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(C10)

Application of Murray’s theory, leading to R1 = R0/
3√2, provides a fixed result for the

angles between the channels: arccos(e0 · e1) = 142.5◦ and arccos(e1 · e2) = 74.9◦.
In the case of a trifurcation, (2.34) is expanded for i = 0, 1, 2, 3. Also here, only the

unique combinations of unit vectors have to be calculated. Writing everything out leads to
the following linear system of equations:⎛

⎜⎜⎜⎜⎝
R2

1 R2
2 R2

3 0 0 0

R2
0 0 0 R2

2 R2
3 0

0 R2
0 0 R2

1 0 R2
3

0 0 R2
0 0 R2

1 R2
2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

e0 · e1
e0 · e2
e0 · e3
e1 · e2
e1 · e3
e2 · e3

⎞
⎟⎟⎟⎟⎟⎠ = −

⎛
⎜⎜⎜⎜⎝

R2
0

R2
1

R2
2

R2
3

⎞
⎟⎟⎟⎟⎠ . (C11)

This system has four independent equations and six unknowns. Therefore, there is no
solution independent of the location of the nodes, and assumptions should be made to
get a node-independent solution. A possible assumption is that of symmetry. In that case,
R1 = R3 and therefore e0 · e1 = e0 · e3. In addition, as the number of daughter channels is
odd, one of the channels (in this case channel 2) should be aligned with the parent channel
0. As a result, e0 · e2 = −1 and e1 · e2 = e2 · e3. Taking everything into consideration, the
number of independent equations reduces to 3 and the number of unknowns also reduces
to 3. Then the linear system of equations becomes⎛

⎜⎝
2R2

1 0 0

R2
0 R2

2 R2
1

0 2R2
1 0

⎞
⎟⎠
⎛
⎝e0 · e1

e1 · e2
e1 · e3

⎞
⎠ = −

⎛
⎜⎝

R2
0 − R2

2

R2
1

R2
2 − R2

0

⎞
⎟⎠ , (C12)

which has a unique solution

e0 · e1 = R2
2 − R2

0

2R2
1

,

e1 · e2 = R2
0 − R2

2

2R2
1

,

e1 · e3 = (R2
0 − R2

2)
2 − 2R4

1

2R4
1

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C13)

Appendix D. Wall shear stress

For laminar flow of a Newtonian fluid through circular tubes, power minimisation of a
branching leads to uniform shear stress in all channels (Zamir 1977). We will show that
this condition also holds for all laminar flows of fluids described by the fluid model of
(2.5).
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The wall shear stress τw for fully developed flow through a channel with arbitrary
cross-section can be computed from a force balance:∣∣∣∣dp

dz

∣∣∣∣AL = L
∮
τw ds, (D1)

where the closed-curve integral indicates integration over the intersection between the
channel wall and a perpendicular cross-plane. The average shear stress is defined as

〈τw〉 ≡ 1
�

∮
τ ds, � ≡

∮
ds, (D2a,b)

where � is the perimeter. The average shear stress is then expressed in terms of the pressure
drop as

〈τw〉 =
∣∣∣∣dp
dz

∣∣∣∣ A
�
. (D3)

Hence, using (2.12) and A = πR2, one gets

〈τw〉 = 1
�

Qn

R3n−1
2μ′

πn−1

(
3n + 1

n

)n 1
ψn . (D4)

For a fixed cross-section shape, the perimeter is � = 2πR, therefore the average shear stress
is uniform when

R3

Q
ψ(φ) = const., (D5)

provided that the fluid properties are constant. Using (2.13), (D5) shows that uniform wall
shear stress is obtained if R3/Q = const.

For power minimisation in a network, this same condition should hold, so if a branching
with a laminar flow of a fluid described by (2.5) is optimised using Murray’s theory, then
the wall shear stress is also constant over the entire network.
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