
2

Advanced pinch technique: Still one loop

In this chapter, we study several more advanced aspects of the pinch technique
(PT), still sticking to one-loop processes, mostly in perturbation theory but with
some discussion of one-dressed-loop effects related to gluon mass generation. One
of these applications of the pinch technique also has nonperturbative consequences,
coming from the invocation of a gauge-field condensate; it allows us to conclude,
as we show in this chapter, that the dynamical gauge-boson mass in QCD vanishes
like q−2, modulo logarithms, at large momentum. Finally, we introduce one of the
main themes of the rest of the book: the pinch technique is realized to all orders by
calculating conventional Feynman graphs in the background-field Feynman gauge.
The subjects covered include the following:

1. The pinch technique and the operator product expansion (OPE) at one loop,
where we see how only gauge-invariant condensates such as 〈TrGμνG

μν〉
arise in PT Green’s functions and how this condensate governs the vanishing
at large momentum of dynamically generated gauge-boson mass in QCD.

2. Uses of the pinch technique in studying gauge-boson mass generation, both
dynamic in QCD (no symmetry breaking, whether by Higgs–Kibble fields
or other mechanisms) and with spontaneous symmetry breaking.

3. The background field method and the effective action.
4. The one-loop equivalence between the pinch technique and the background

field method in the Feynman gauge.

2.1 The pinch technique and the operator product expansion:
Running mass and condensates

As mentioned more than once, the pinch technique is essential to unveiling the
nonperturbative effects that are vital in understanding confinement in QCD. One of
the oldest and most familiar nonperturbative phenomena of QCD is the gauge-field
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46 Advanced pinch technique: Still one loop

condensate 〈TrGμνG
μν〉 appearing in the OPE of hadronic or leptonic currents.

This condensate is explicitly gauge invariant, so it has physical significance.1

If there is to be dynamical mass generation (by which we mean generation of
mass where gauge invariance of the usual classical action forbids such a mass),
the dynamical mass must be a function of the momentum and must decrease
at large momentum. If it did not vanish at infinite momentum, there would be a
corresponding bare mass, not allowable in cases of interest to us. From the viewpoint
of Schwinger–Dyson equations, there simply would be no massive solution for the
gauge propagator unless the mass vanished at infinite momentum. This situation is
already familiar for the constituent mass of the light quarks in QCD, which for all
practical purposes have zero bare mass protected by a chiral symmetry forbidding
a quark mass at any finite order of perturbation theory. Nevertheless, there is a
large constituent mass that must also decrease with momentum. The mass is a sign
of spontaneous chiral symmetry breaking, and there is another characteristic sign
of chiral symmetry breaking: a nonzero value of the quark condensate 〈q̄(x)q(x)〉.
One cannot exist without the other. The OPE tells us how these are related: the
running quark mass M(q) decreases at large momentum as

M(q) → const.
−〈q̄q〉
q2

. (2.1)

What is the corresponding relation between gluon mass and gauge-field conden-
sate? As in every use of the OPE, the first step is to pick a matrix element with
the right quantum numbers and bring together the space-time arguments of the
condensate fields, thereby picking up the appropriate c-number multiplier of the
condensate for that particular matrix element.

The OPE was used to find the contribution of the 〈TrGμνG
μν〉 condensate to the

conventional gluon propagator, with disappointing but not unexpected results at
one-loop order. Not only did this condensate appear, but gauge-dependent conden-
sates involving the ghost fields c and c̄ also appeared. It seemed that no physical
results could be obtained from the OPE for a gauge-dependent quantity such as
the usual gluon propagator. Then Lavelle [1] did the same calculation for the
PT propagator in d = 3, 4, with very different results. Only the gauge-invariant
condensate appeared and in just such a way that it could be interpreted as con-
tributing to a running mass. Lavelle’s results are equivalent to saying that the scalar

1 The condensate 〈TrAμAμ〉, which is explicitly not gauge invariant, can be made gauge invariant by turning it
into the gauged nonlinear sigma model, as we indicate in Section 2.2.4. This is equivalent to minimizing the
space-time integral of TrAμA

μ over all local gauge transformations.

https://doi.org/10.1017/9781009402415.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402415.003


2.2 The pinch technique and gauge-boson mass generation 47

inverse of the PT propagator, in Euclidean space, behaves in d = 3, 4, and at large
momentum as

d̂−1(q) → q2 + cd
g2〈TrGμνG

μν〉
q2

, (2.2)

where

c3 = 29N

30(N2 − 1)
c4 = 17N

18(N2 − 1)
. (2.3)

(Actually, powers of logarithms of q can also occur, but we ignore them here.) The
constants are positive, so this OPE correction has the right sign to represent a run-
ning mass because the condensate is also positive. In both cases, quark constituent
mass and dynamical gluon mass, the running mass decreases like q−2 times a
vacuum expectation value (VEV) of a gauge-invariant condensate. The difference
is, of course, that there is no symmetry breaking for gluon mass generation, and
indeed the gauge-field condensate is in no sense an order parameter for any kind
of symmetry breaking. The simple physical reasoning for the connection of the
condensate and the gluon mass is that a gluon mass allows for the construction of
many different quantum solitons that cannot exist at the classical (zero-mass) level,
including center vortices and nexuses. Condensates of these solitons are favored
because of their large entropy (large number of possible space-time configurations)
relative to their (finite) action and so lead to a gauge-field condensate. Lavelle’s find-
ing is the converse: a condensate allows for gluonic mass generation. Ultimately,
this connection exists only because the gauge theories of interest show infrared
slavery – the infrared manifestation of the ultraviolet phenomenon of asymptotic
freedom in d = 4. Infrared slavery means that the perturbative PT propagator has
a one-loop proper self-energy of the wrong sign (opposite to that of QED), with
consequent intolerable infrared diseases such as tachyons. These theories must
find a cure for infrared slavery, and that cure is dynamical gluon mass generation.

2.2 The pinch technique and gauge-boson mass generation

2.2.1 General remarks

As in Chapter 1, we consider only the one-loop case, postponing the all-orders
generalization to later chapters.

There are several closely related ways of endowing a gauge boson with mass.
The most straightforward way to generate gauge-boson masses is through
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48 Advanced pinch technique: Still one loop

Higgs–Kibble–Goldstone symmetry breaking2 with elementary scalar fields, as
in the Georgi–Glashow model [2] or the electroweak (EW) sector of the standard
model. A second way [3, 4] of generating gauge-boson mass is through dynamical
effects associated with taming the infrared singularities of strongly coupled gauge
theories such as QCD, which has no elementary scalars. Some gauge theories with
no scalar fields can show dynamical symmetry breaking, in which the elementary
scalar fields are replaced by composites arising from homogeneous solutions of
the Schwinger–Dyson equations. A variant of these cases has elementary Higgs–
Kibble–Goldstone fields and possibly symmetry breaking, but the VEVs in the
scalar sector are too small (perhaps even zero, as in the EW sector at high tempera-
ture) to remove the infrared singularities of the underlying NAGT [5]. A third, rather
specialized way, is through a Chern–Simons term in three dimensions. It can hap-
pen that the perturbative gauge-boson mass coming from the Chern–Simons term
is too small to overcome infrared slavery, and dynamical mass generation comes
into play. The pinch technique is important in estimating the critical Chern–Simons
coupling (which is quantized) separating perturbative behavior of the theory from
the need for nonperturbative dynamical mass generation [6].

All these cases have two vital ingredients in common. First, they require massless
longitudinally coupled scalars, one for each gauge boson that gets mass. This is
a subtle matter because the massless scalars do not appear (at least directly) in
the S-matrix, yet they can appear in the pinch technique proper Green’s functions.
Every Goldstone-like scalar, whether elementary or composite, that is eaten by a
gauge boson to give it mass is canceled out of the S-matrix by other massless poles
or current conservation.

If the massless scalars are not elementary Goldstone fields, then they arise as com-
posite excitations in a strongly coupled gauge theory.3 By a composite excitation,
we mean a pole in an off-shell Green’s function representing a field that does not
exist in the classical action but that occurs in the solution of the Schwinger–Dyson
equation for that Green’s function, as a sort of bound state. Therefore, the second
vital ingredient is strong coupling, which, as far as we know, can only come from
the infrared instabilities of a NAGT.

The residue, at zero momentum, of these Goldstone-like poles is essentially
the square m2 of a gauge-boson mass. The classical action does not have the

2 If the gauge theory has local gauge symmetry at the classical level, so-called spontaneous symmetry breaking
is not actually breaking this local gauge symmetry but simply realizing it in a different way. Without explicit
symmetry breaking, such as fermion masses for local axial symmetries, no gauge-dependent object can have
a nonzero VEV, as Elitzur’s theorem tells us. Gauge-fixing terms break a gauge symmetry explicitly, but the
pinch technique effectively removes such breaking.

3 Other massive composite excitations may have to arise as well to save unitarity at high energies; see Lee
et al. [7].
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2.2 The pinch technique and gauge-boson mass generation 49

corresponding elementary field because if it did, there would be a symmetry viola-
tion, or a violation of perturbative renormalizability, or both. If renormalizability
is at issue, the squared mass runs with momentum q and vanishes at large q;
when mass generation is an infrared effect, as it will always be for us, a typi-
cal decrease is m2(q) ∼ q−2 (modulo logarithms), as Lavelle [1] found. Without
some such large-momentum falloff, the Schwinger–Dyson equation would have no
solutions without extra infinities not corresponding to perturbative renormalization
principles.

Here we will introduce two cases of the dynamical gauge-boson mass generation,
saving other examples for later chapters. The first case is dynamical mass generation
in QCD; the second is the well-known case of elementary Higgs–Kibble–Goldstone
scalars. In both cases, the pinch technique is an essential tool for ensuring gauge
invariance of the results.

2.2.2 Dynamical gauge-boson mass generation in QCD

In d = 4, the necessary strong coupling comes from asymptotic freedom as
expressed in the wrong sign of the beta function (see Eq. (1.69)). Unfortunately, it is
not helpful to associate the infrared phenomenon of mass generation with the ultra-
violet phenomenon of asymptotic freedom. This is only a question of terminology
because (perturbative) asymptotic freedom necessarily implies infrared singulari-
ties that are more virulent than in QED. The situation is actually more clearly seen in
d = 3, where NAGTs are superrenormalizable, there is no renormalization group,
and the ideas of asymptotic freedom are not relevant. Yet d = 3 NAGTs have – in
even worse form than in d = 4 – serious infrared singularities.4 We prefer, then, to
suggest these low-momentum singularities with the term infrared slavery because,
ultimately, they lead to confinement. The one-loop PT propagator in d = 3 clearly
shows infrared slavery through the negative (and, as with asymptotic freedom,
wrong) sign of a certain gauge-invariant constant [3, 4]. This sign is absolutely
critical because if it were positive, the infrared behavior of radiatively corrected
gluon propagators would be less singular than at tree level. But in the physical
case of a negative sign, the infrared singularities show up as potential tachyons
or ghost particles, that is, unphysical objects with imaginary mass or couplings.
No other solution for the wrong sign is known aside from dynamical gauge-boson
mass generation, which generates positive terms in the PT proper self-energy that
overcomes the negative and singular behavior.

4 This was not fully appreciated until the pinch technique came along because, before that, people had only
investigated the standard Feynman propagator, which is gauge dependent. For the PT results, see [3, 4, 8].
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We will briefly explore here, at the one-loop level, the nonperturbative dynamics
leading to gauge-boson mass generation, deferring a detailed treatment of the PT
Schwinger–Dyson equations to Chapter 6. Dressed propagators and vertices come,
at least formally, from resumming Feynman graphs and have the power to inform
us about phenomena that do not occur even when perturbation theory is summed
to all orders in the coupling g. This kind of resummation is familiar from the
skeleton graph expansion of Schwinger–Dyson equations and the resummation of
the effective potential [9]. To truncate the otherwise infinite series of Schwinger–
Dyson equations requires us to understand how to construct approximate forms
for three- and higher-point Green’s functions that, in spite of their approximate
nature, exactly satisfy the PT Ward identities and that are expressed in terms of
lower-point functions such as the PT propagator itself. If the vertex functions used
do not obey exactly the Ward identities, gauge invariance is lost. The method of
vertex constructions that satisfies these Ward identities is called the gauge technique
and is discussed in Chapter 5. Because the d = 3 case is so instructive, we begin
with it.

2.2.3 The need for dynamical mass in d = 2 + 1 QCD

We will easily see the problems of infrared slavery in d = 2 + 1 by calculating the
one-loop perturbative PT proper self-energy. This goes exactly as in the d = 3 + 1
case of Section 1.3.3 except for the values of the integrals. The result [3, 4] for the
scalar part of the one-loop PT inverse propagator is

d̂−1(q) = q2 + πb3g
2
3(−q2)1/2 + O(g4

3), (2.4)

where

b3 = 15N

32π
(2.5)

and g3 is the d = 3 coupling with dimensions of (mass)1/2. Infrared slavery is
simply the fact that b3 is positive, which has the implication that there is a pole
in the propagator for a spacelike momentum (q2 < 0). This indicates a tachyonic
pole – a pole corresponding to an imaginary mass.

There is also a tachyonic pole in d = 4, as one can see from the renormalized
version of Eq. (1.68): the propagator has a pole at

−q2 = const.× μ2e−1/bg(μ)2
, (2.6)

again satisfied with tachyonic q2.

What could be the cure for this unphysical behavior? At first glance, it could be
easy: Because the coupling g2

3 has dimensions of mass, the omitted g4
3 term might
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2.2 The pinch technique and gauge-boson mass generation 51

well provide a sufficiently positive term to overcome the negative one-loop term.
This is indeed what happens nonperturbatively but not to any order of perturbation
theory, where the coefficient of g4

3 is identically zero to all orders. (If it were not
zero, we could add a bare mass term to the action, which is not perturbatively
renormalizable.)

This is only the beginning of the bad perturbative behavior. At O(g2N
3 ), each

perturbative integral, by simple dimensional reasoning, has the infrared behavior
g4

3(g2
3/q)N−2, with poles of infinitely high order in the inverse propagator. But with

nonperturbative generation of a (nontachyonic) mass m, the infrared behavior of
every propagator in a loop is ∼ 1/m2, and an easy power counting shows that |q|
in the perturbative ordering expression is replaced by the dynamical mass m ∼ g2

3

so that all terms are of O(m2) for order N ≥ 2.

Of course, a one-loop pinch technique calculation only clearly shows us (i.e., gauge
invariantly) the disease, not the cure. We take up the cure in Chapter 9, but for now,
it is important to know something about what this cure looks like.

2.2.4 What do vertices and propagators look like
when dynamical mass is generated?

The question is how to write PT Schwinger–Dyson equations with the right structure
to represent composite massless scalars in both d = 3 and d = 4. There is a quite
simple answer [10]: abstract this structure from an infrared-effective action in
which we add to the usual NAGT action a mass term that is a gauged nonlinear
sigma model. We add to the classical action,5 the integral of Eq. (1.5), the term

Sm =
∫

ddx m2 Tr
(
U−1DμUU

−1DμU
)

(2.7)

to arrive at a total infrared-effective action (without fermions):

S{A,m} =
∫

ddx

[
−1

2
TrGμνG

μν +m2Tr
(
U−1DμUU

−1DμU
)]
. (2.8)

Here U depends on R, the N ×N unitary matrix representative of the group
element R. We also add the prescription that the exponential of this effective
action is to be integrated over the Haar measure of the local gauge group.

We emphasize that we are not proposing to take Sm seriously as an addition to the
true NAGT action, which always consists only of the usual Yang–Mills term. It is
only part of an effective action, whose consequences should be studied only at the

5 This action is to be used in d = 3, 4; for simplicity, we do not explicitly indicate the dimension as we did in the
previous section.
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classical level. However, it is legitimate for us to guess, from this classical study,
what kind of structure the ingredients of the (PT) Schwinger-Dyson equation must
have and then show that the Schwinger-Dyson equation with the assumed structure
is actually self-consistent and physical. What we will find is what we spoke of
earlier: massless longitudinally coupled Goldstone-like scalars, with couplings
proportional to squared gauge-boson masses.

Because Sm is an effective action, we interpret integration over the group as finding
the extrema over R of Sm. The matrix U undergoes gauge transformations along
with the potential

U → VU, Aμ → VAμV
−1 + V

i

g
∂μV

−1. (2.9)

It is then elementary that the modified potential

Cμ ≡ U−1DμU, (2.10)

is formally gauge invariant. (Furthermore, it is a gauge transformation byU−1 of the
gauge potential Aμ.) We define a potential that is gauge covariant by multiplication
from the left by U and from the right by U−1:

Ãμ ≡ UCμU
−1 = Aμ + i

g
(∂μU )U−1 Ãμ → V ÃμV

−1. (2.11)

It appears that we have added new degrees of freedom to the NAGT action by
introducing U , but we have not, at least perturbatively. The reason is that the
classical equations of motion for U are not independent of those for Aμ but follow
from them, and U can be solved as a (nonlocal) functional of Aμ. The equations
of motion for Aμ are as follows:[

Dμ,Gμν

] +m2Ãν = 0. (2.12)

Because of the identity [
Dν,

[
Dμ,Gμν

]] ≡ 0, (2.13)

it must be that

[Dν, Ãν] = 0. (2.14)

But this equation is precisely the equation of motion found by varying U . After
a certain amount of algebra, one can show that this U equation of motion is
equivalent to

∂νCν = 0. (2.15)
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2.2 The pinch technique and gauge-boson mass generation 53

In other chapters, we will find nonperturbative features of these equations and
connect them to confinement via center vortices and to the Gribov ambiguity.6 In
particular, there are massless scalar excitations longitudinally coupled to the gauge
potential. These massless scalars must be present if a gauge boson is to have mass
in a way that preserves local gauge symmetry. We will see that such scalar fields
actually represent long-range pure-gauge parts of the gauge potential that carry
critical topological information about confinement and topological charge.

For now, we pursue the perturbative solution of the equation of motion for U and
find massless scalars there. Write U = exp[iω] and find [10]:

iω = − 1

�
∂ · A− 1

2

[
1

�
∂ · A, ∂ · A

]
+ 1

�

[
Aμ, ∂

μ 1

�
∂ · A

]
+ O(A3). (2.16)

Substitution of Eq. (2.16) in the gauged nonlinear sigma model action reveals an
infinite set of vertices for the potential Aμ, longitudinally coupled to the massless
scalars. This massless scalar is completely analogous to the Goldstone scalar of
spontaneous symmetry breaking even though, in the present case, there is no
symmetry breaking (and no elementary Higgs field). The lowest-order vertex is
quadratic and yields a transverse mass term of the form∫

ddx m2 Tr

[(
Aμ − ∂μ

1

�
∂ · A

)(
Aμ − ∂μ

1

�
∂ · A

)]
(2.17)

and a free gauge-boson propagator that has the structure expected from a pinch
technique propagator:

i
(0)
αβ(q) = Pαβ(q)d(q) + ξ

qαqβ

q4
, (2.18)

where

d(q) = 1

q2 −m2
. (2.19)

The next vertex is a three-gluon vertex, to be added to the conventional free vertex.
We convert the result to PT form by choosing the free vertex to be �ξ of Eq. (1.37)
and find [4, 11] that

�̂
m,ξ
μαλ(q, k,−q − k) = �

ξ
μαλ(q, k,−q − k) −

[
m2

2

qμkα(q − k)λ
q2k2

+ c.p.

]
, (2.20)

where c.p. stands for cyclic permutations. This vertex obeys the PT Ward identity of
Eq. (1.40) with the propagator of Eqs. (2.18) and (2.19). The new vertex �̂m,ξ has,

6 The Gribov ambiguity is that setting up a covariant gauge fixing in the usual way does not completely fix the
gauge, so the gauge potential is ambiguous for a given field strength. For example, suppose that Aμ is in the
Landau gauge; then, by Eqs. (2.10) and (2.15), so is Cμ, which is a gauge transformation by U−1 of Aμ.
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as we mentioned earlier, terms with longitudinally coupled massless poles whose
residue is m2. This is the only way that the Ward identity can be satisfied if the
propagator is transverse and has mass, just as the only way a massive gauge-boson
propagator can be transverse is if it has similar poles in the transverse projector
Pμν . There are infinitely many other vertices coming from the gauged nonlinear
sigma model term, all with these poles, but we will go no further in exhibiting any
of them explicitly.

Now apply the usual pinch technique to the mass-modified action of Eq. (2.8), in
which we substitute the solution for U , as in Eq. (2.16). After much calculation
[11] (originally done in the light-cone gauge), we find the one-loop pinch technique
proper self-energy. In d = 4, it is as follows:

�̂(q2) = bg2

π2

∫
d4k

[
−q2d(k)d(k + q) + 4

11
d(k) + m2

11
d(k)d(k + q)

]
. (2.21)

(We will take up the d = 3 analog later.) This reduces, as it must, to the formerly
calculated one-loop proper self-energy of Eq. (1.68) in the limit of zero mass. Note
that there are no massless poles in �̂. In fact, the only trace of the massless poles
comes from the second and third terms on the right-hand side (rhs), which do not
vanish at q = 0. There are then massless poles in the tensorial proper self-energy
coming from the longitudinal term in the transverse projector Pμν that multiplies
�̂. Ultimately, these terms cannot appear in the S-matrix because of gauge current
conservation.

With Eq. (2.21), we are actually only a few steps away from being able to study
nonperturbative dressed-loop effects and analyze gauge-boson mass generation.
The next steps are to integrate the rhs of this equation over m2, with a spectral
weight that is used in the Källen–Lehmann7 representation of the pinch technique
propagator; by this means, we construct a simple example of a gauge technique
vertex and a PT Schwinger–Dyson equation for the proper self-energy. But we will
postpone this study until later and use our work here to draw a few lessons that
apply to such a nonperturbative study:

1. However gauge-boson mass is generated, it is accompanied by Goldstone-
like longitudinally coupled scalars.

2. These scalar poles appear in vertices of all order, as, for example, in the
transverse mass term of Eq. (2.17) and the three-vertex of Eq. (2.20), with
couplings proportional to squared gauge-boson masses.

7 The spectral weight is not positive definite, but this is not required for the existence of a spectral representation.
See the discussion of Section 1.7.
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3. These scalars do not appear in the S-matrix and (in our gauged nonlinear
sigma model approach) even cancel out in the final expression for the pinch
technique proper self-energy, as in Eq. (2.21).

4. (This lesson will be learned in part through a one-loop calculation in the next
chapter.) A gauge-boson mass violating a symmetry or perturbative renor-
malizability must be a running mass, vanishing at large q, or the Schwinger–
Dyson equation has no finite solution. Furthermore, a nonrunning mass by
itself leads to violations of unitarity at high energy.

5. Dynamical generation of mass does not interfere with satisfaction of ghost-
free Ward identities.

Next, we see if these lessons apply to Higgs–Kibble symmetry breaking.

2.2.5 Mass generation through Higgs–Kibble–Goldstone fields

There are two ways of describing mass generation in this case, depending on the
description of gauge fixing in the theory (which, of course, is ultimately irrelevant).
The method we mostly use in this book for the pinch technique was first developed
in [12] for the Georgi–Glashow model and was later generalized to all orders of
electroweak (EW) theory in [13]. Numerous other authors have used a similar form
of the pinch technique for EW processes; Degrassi and Sirlin [14] have pointed out
the relation of the pinch process to equal-time commutators of symmetry currents
and given explicit expressions for the one-loop PT proper self-energies. All these
authors use a modified Rξ gauge analyzed by Fujikawa et al. [15] and originally
from ’t Hooft [16], which we will term the FLS gauge. In the FLS gauge, the
Goldstone bosons decouple from the gauge bosons that eat them, at least at tree
level (but not beyond). The value of this gauge, as we will see shortly, is that the
tree-level gauge propagators have no longitudinal parts in the Feynman version of
the FLS gauge (or ’t Hooft–Feynman gauge), just as there are none for the free
gauge propagator in the Feynman Rξ gauge with ξ = 1 (see Eq. (1.31)). But this
is not an unalloyed virtue because the PT calculations in the FLS gauge seem
to differ from what we have said so far: the Goldstone bosons in general have a
gauge-dependent mass that is the same as that of the ghosts.8 This is a sign that the
Goldstone bosons as well as the ghosts do not appear in the S-matrix. Moreover, the
proper self-energies and vertices are independent of ξ but satisfy Ward identities
ostensibly different from those we have already used, such as transversality of the
gauge boson proper self-energy. However, these pieces can be reshuffled [12] to

8 In the FLS–Feynman gauge, ξ = 1, the ghosts and Goldstone bosons, and the gauge bosons that eat them, all
have the same mass.
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yield transverse proper self-energies and vertices that do have the properties listed
in our lessons from dynamical mass generation in QCD.

There is another approach that is more similar in spirit to what we have done
so far for QCD-like theories; it uses the standard sort of Rξ gauge that we have
used for QCD. In this gauge, the Goldstone bosons and ghosts are massless scalar
fields longitudinally coupled to gauge bosons. The massless poles do not appear in
the S-matrix but are important in enforcing current conservation (Ward identities).
Demanding that these Ward identities be satisfied leads uniquely to a set of PT
Green’s functions that are independent of ξ and obey other physical requirements.
It is worthwhile to understand this approach because similar massless scalar exci-
tations must and do occur in the vertices of QCD-like gauge theories if there is
to be dynamical gluon mass generation. Although these Goldstone-like excitations
do not contribute to the perturbative S-matrix, they are the carriers of long-range
topological information that is responsible for nonperturbative phenomena, includ-
ing confinement and chiral symmetry breakdown. We will begin with a brief sketch
of what happens in this QCD-like description. Needless to say, either description
results in the same physics, as described by the pinch technique.

Symmetry breaking in a standard Rξ gauge The main new feature with symme-
try breaking is that Ward identities used for pinching, though unchanged in basic
structure (see Eq. (1.62)), have new vertex terms involving the massless Goldstone
bosons even at tree level, similar in structure to those found for dynamical mass
generation in QCD. These new terms are essential for current conservation or, more
generally, for satisfaction of the Ward identities.

To be explicit, consider the Georgi–Glashow model [2] in d = 4, containing an
SU (2) gauge field, a Fermion doublet ψ , and a triplet φa of scalar bosons. With
these scalars and fermions, the Georgi–Glashow model is asymptotically free, with
the beta function coefficient b of the pure gauge-boson theory (see Eq. (1.69))
changed to 19/(48π2). The action is as follows:

SGG =
∫

d4x

{
− 1

2
TrGμνG

μν + iψ̄ [D/−M0]ψ + 1

2

[(
Dμφa

)
(Dμφa

)
−V (φ2

a) − hψ̄τaψφa

}
, (2.22)

to which we will add a gauge-fixing term. We will also use the convenient matrix
notation

φ = 1

2
τaφa, (2.23)
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2.2 The pinch technique and gauge-boson mass generation 57

where the τa are the Pauli matrices. The potential V has the form

V (φ2
a) = λ

2
(φ2

a − v2)2, (2.24)

with the symmetry-breaking minimum taken by convention to be in the 3 direction
so that φa = vδa3 at the classical level. This gives a Higgs mass to the gauge bosons
with group indices 1,2, with value Mg = vg, and the third gauge boson remains
massless. There is also a symmetry-breaking term in the fermion mass matrix M,
which becomes

M = M0 + hvτ3 ≡ M0 +mτ3. (2.25)

In the presence of symmetry breaking, we write the scalar fields in matrix form:

φ = 1

2
[vτ3 + χaτa], (2.26)

where, by definition, the VEV of χa vanishes.

In a conventional Rξ gauge, there is a quadratic coupling term between the original
gauge potential and the χa for a = 1, 2. This is just what tells us that the gauge
bosons with a = 1, 2 swallow the corresponding Goldstone bosons and become
massive (the gauge potential A3μ remains massless, and χ3 describes a massive
Higgs–Kibble field). From now on, we use the notation Wμ for the massive gauge
bosons.

This quadratic coupling is no particular problem. Because the Goldstone fields are
eaten by the W -bosons, they become – at least in perturbation theory – dependent
fields, expressible entirely in terms of the gauge potential and possibly other fields.
Save only the W -bosons and the φ fields with indices a = 1, 2 and write the
quadratic part of the Lagrangian, including the gauge-fixing term:

S2 =
∫

d4x

{
−1

2
T̃r
(
∂μWν − ∂νWμ

)
(∂μWν − ∂νWμ) (2.27)

+ T̃r

(
∂μχ + v

[
Wμ,

1

2
τ3

])2

− 1

ξ
T̃r
(
∂μWμ

)2
}
,

where T̃r means taking the trace only over terms involving τ1,2. We define an
anti-Hermitean Goldstone matrix G = 1

2iτaGa , with a = 1, 2, by a re-ordering of
χ1,2:

χ =
[
G,

1

2
τ3

]
or χ1 = −G2, χ2 = G1. (2.28)

Now couple the fields Wμ and G to currents Vμ and T , respectively. A short
calculation using the action S2, in terms of G rather than χ , yields (in momentum
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space) the two equations(
q2gμν − qμqν

)
Wν + 1

ξ
qμqνW

ν −M2
g

(
Wμ − qμG

Mg

)
= Vμ (2.29)

q2G−MgqνW
ν = T .

The solution for the G equation is

G = MgqμW
μ + T

q2
, (2.30)

and this, substituted in the equation for Wμ, yields an equation for this potential
with a modified source term:(

q2 −M2
g

) (
gμν − qμqν

q2

)
Wν + 1

ξ
qμqνW

ν = Vμ − qμMgT

q2
. (2.31)

Note that the inverse propagator (coefficient of Wν on the left-hand side) has just
the form of Eq. (1.30) that we expect of a PT propagator, with the proper self-energy
given by M2

g .

We are concerned, as usual, with the gauge dependence of amplitudes, so we note
that the ξ -dependent term in the solution of Eq. (2.31) is

Wν = ξqνqμ

q4

(
Vμ − qμMgT

q2

)
+ · · · . (2.32)

Without gluon mass generation by symmetry breaking (i.e., if Mg and m were
zero), the current Vμ would have to be conserved on shell,9 or otherwise there
would be ξ dependence even in the tree-level S-matrix. The situation would then
be just the same as for QCD-like theories. But with symmetry breaking, a different
current is conserved on shell; the massless Goldstone pole has modified the massive
gauge-boson source and is essential for current conservation and Ward identities,
as we now show. This modification of the source term is essential because it must
happen that the combined source in Eq. (2.31) must be conserved on shell:

qμV
μ −MgT = 0 on-shell. (2.33)

It is this quantity multiplied by ξ that would appear in the tree-level S-matrix and
so must vanish.

The Goldstone contribution is necessary because with symmetry breaking, the
divergence qμV

μ is generally not zero, even at tree level. Consider our earlier
example Vμ = ū1(p + q)γμu2(p), where the fermion momenta p, p + q are on

9 For example, Vμ ∼ ū1(p + q)γμu2(p), where the labels 1,2 distinguish different SU (2) fermion eigenstates.
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x y
p2p1

Figure 2.1. Part of a one-loop Feynman graph for on-shell quark-quark scattering.
Gauge propagators end at space-time points x, y on the quark line.

shell and the mass of the fermion labeled 1 is M0 +m and of the fermion labeled
2 is M0 −m. Then qμV μ is

qμū1(p + q)γ μu2(p) = ū1(p + q)
[
S−1(p + q) − S−1(p) − 2m

]
u2(p)

= −2mū1u2. (2.34)

The last equation follows because the inverse propagators annihilate the on-shell
spinors. The Goldstone source term of Eq. (2.31), proportional to MgT , turns
out to be 2mū1(p + q)u2(p)qμ/q2 when one recognizes that m = (h/g)Mg. Now
we see that the vertex Vμ −MgT qμ/q

2 does obey the expected on-shell Ward
identity. One reads off from Eq. (2.34) the off-shell Ward identity of our tree-level
example:

qμ

[
V μ −MgT

qμ

q2

]
= S−1(p + q) − S−1(p). (2.35)

This is the same as the Ward identity used earlier for QCD-like theories, and the
pinch technique proceeds from it as before.

We digress to give the Degrassi–Sirlin explanation of how the symmetry currents
coupled to the gauge bosons are related to the pinching out of various propagators.
Figure 2.1 shows a part of a Feynman graph that occurs in the S-matrix. This could
be a part of several of the complete S-matrix graphs shown in Figure 1.1. This
figure by itself is the tree-level version of the matrix element:

〈p1|T
[
J a
μ(x)J b

ν (y)
] |p2〉, (2.36)

aside from the two gauge propagators, which we do not exhibit explicitly. The T
operation is covariant time ordering, and the currents J a,b

α are symmetry currents
coupled to the gauge bosons. A gauge propagator with a longitudinal momentum
acts to take the divergence of this time-ordered product, say, with respect to x. The
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currents themselves are supposed to be conserved, so the only effect is the matrix
element of the equal-time commutator:

〈p1|δ (x4 − y4)
[
J a

0 (x), J b
ν (y)

] |p2〉. (2.37)

The equal-time commutator here is

ifabcδ(x − y)〈p1|J c
ν (y)|p2〉, (2.38)

in which the points x and y are made to coincide and a fermion propagator is
missing, just as would happen with our standard PT formalism.

If just the currents Vμ that we introduced in Eq. (2.29) were used for the symmetry
currents, our pinch arguments would fail because these are not conserved. We must
add the T currents, sources of the Goldstone bosons, to get conserved currents, and
conservation arises through the coupling of the massless Goldstone field. It is not
hard to check, by resumming graphs, that these Goldstone particles and currents
come from the tree-level mixing of Goldstone fields and gauge fields that is no
longer eliminated when we use a standard Rξ gauge.

The Goldstone poles cannot appear in theS-matrix because they are not independent
elementary fields; their appearance at one place must be canceled by another
appearance elsewhere. The pinch technique, of course, shows this cancellation.
The essence of it is that in the pinch technique, the inverse propagator has the
form

−i
̂−1
αβ (q) = Pμν(q)

[
q2 + i�̂(q)

] + 1

ξ
qαqβ. (2.39)

For the charged bosons, �̂(q = 0) 
= 0, so the Goldstone bosons appear as the
longitudinal massless poles of the transverse projector. In the S-matrix, these terms
in the propagator itself strike currents that are conserved and cannot contribute to
the S-matrix. On the other hand, the Goldstone poles that allow these currents to
be conserved annihilate the physical part of the propagator or inverse propagator,
leaving only gauge-dependent kinematic terms. We know that these must cancel
in the pinch technique. Now we go on to the more widely used, and equivalent,
formulation in the FLS gauge.

Symmetry breaking in the FLS gauge In the FLS gauge, the gauge-fixing term
is chosen to cancel the quadratic coupling of Wμ and ∂μS:

LGF = −1

ξ
T̃r
(
∂μWμ −MWξS

)2
. (2.40)
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The quadratic cross-term between Wμ and ∂μS now cancels. However, the S2 term
in the gauge-fixing Lagrangian now makes these Goldstone fields, and also the
ghosts, massive. A short calculation gives the following:

i
μν = gμν

q2 −M2
g

+ qμqν(ξ − 1)

(q2 −M2
g )(q2 − ξM2

g )
(2.41)

i
S = i
gh = 1

q2 − ξM2
g

,

where 
μν is the W propagator, 
S is the Goldstone propagator, and 
gh is
the ghost propagator. Clearly, all the ξ dependence in these propagators must
cancel in the S-matrix and therefore in the pinch technique, and they do, after
some very lengthy calculations [12]. At ξ = 1, the tree-level gauge propaga-
tor has no longitudinal terms that can pinch, which considerably simplifies the
calculations. Moreover, in this Feynman gauge, the gauge bosons, ghosts, and
Goldstone particles all have the same mass MW , and no unphysical masses can
appear.

For general ξ , one often decomposes the W propagator as follows [12, 15]:

i
μν = i
1
μν + i
2

μν, (2.42)

i
1
μν =

[
gμν − qμqν

M2
g

]
1

q2 −M2
g

,

i
2
μν = qμqν

M2
g (q2 − ξM2

g )
.

This is one way of isolating the gauge dependence of the free propagator into

2. The first term, 
1, is the propagator in the so-called unitary gauge ξ = ∞.
The one-loop pinch technique decomposition has been worked out [12] with this
separation of the W -propagator, followed by a demonstration of how to recover the
usual results with massless Goldstone particles that we discussed earlier. The idea
is simply to recompose the W -propagator by writing the 1/M2

g term in 
1 with the
identity

1

M2
g

= q2 −M2
g

q2M2
g

+ 1

q2
. (2.43)

This shows not only the massless Goldstone poles but one of the ways in which
they cancel out in the S-matrix.

The pinch technique has been worked out to all orders for the standard electroweak
model [13]. We will discuss it in Chapter 10.
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2.3 The pinch technique today: Background-field Feynman gauge

It would be very awkward to carry on with the pinch technique in the light-cone
gauge (see Section 2.2.4). Even two-loop calculations would be exceptionally
difficult, not only because of the intrinsic difficulties of working in a noncovariant
gauge but also because what we have done so far at the one-loop level does not
really suggest how to generalize the pinch technique. Fortunately, there is a simple
way to generalize the pinch technique to all orders of perturbation theory (and to
nonperturbative applications, with the help of the gauge technique). It consists of
calculating ordinary Feynman graphs in the Feynman gauge of the background-
field method. Just as with ordinary Feynman graphs, the sum of such graphs can
be reorganized into a dressed-loop expansion from which nonperturbative effects
can arise. Much of the rest of this book is devoted to demonstrating these points,
which are not at all evident.

The background-field method [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27] goes back
decades in the study of general relativity and NAGTs. It gives an effective action as
a functional of specified background fields (gauge potentials) – an effective gauge
action guaranteed to depend on the background fields only through gauge-invariant
constructs such as TrG2

μν . Unfortunately, just as in any other covariant formulation
of NAGTs, there has to be gauge fixing and ghosts, and the coefficient functions
of the background field constructs depend on the specific gauge chosen (so they
depend on ξ in anRξ gauge). If these coefficient functions were gauge independent,
there would be no need for an independent pinch technique. It is essential that the
gauge-fixing term can be chosen to have full local non-Abelian gauge invariance
for the background fields in order that this effective potential be gauge invariant
for these fields. In other words, gauge fixing is used only for the quantum fields –
those integrated out in the functional integral defining the effective potential.

As we said earlier, the first connection was made at the one-loop level [28, 29, 30],
where it was shown that the one-loop pinch technique and the one-loop background
Feynman gauge method gave precisely the same results. This raises the question
of why these two seemingly disparate approaches should give the same answer but
by no means answers it. It does not seem plausible that calculations in a specified
gauge should actually give gauge-invariant results for Green’s functions, as the
pinch technique does. In fact, if one were to calculate Green’s functions in some
other version of the background-field method, for example, the Landau gauge, the
results would not be the same as the pinch technique gives. The pinch technique can
be used to combine pieces of Feynman graphs in the background Landau gauge, just
as in any other gauge, and the usual pinch technique results emerge. Ultimately, as
the rest of this book shows, the background Feynman gauge is singled out because
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of the absence, in this particular gauge, of certain longitudinal numerator parts that
give pinches.

We cannot emphasize too strongly that the pinch technique is a way of enforcing
gauge invariance and several other physical properties for off-shell Green’s func-
tions. The background-field method, in a general gauge, is not. It is a remarkable
and extraordinarily useful result that PT Green’s functions can also be calculated
in the background Feynman gauge, but this needs a very extensive demonstration.

Before presenting the background-field method, we first quickly review the well-
known construction of the effective action and the problems encountered with it in
gauge theories.

2.3.1 The effective action

A brief review of the scalar field case Consider first a Euclidean d = 4 φ4 field
theory. The generating functional is written

Z[J ] =
∫

[dφ] exp

{
iS[φ] + i

∫
d4x J (x)φ(x)

}
≡ eiW [J ], (2.44)

where S[φ] is the scalar field action. Functional derivatives of W with respect to
the source J yield connected quantum Green’s functions. In particular,

δW

δJ (x)
= 〈φ(x)〉 ≡ 
(x), (2.45)

the expectation value of the quantum field in the presence of the source J .

The Legendre transform of W is more useful because it generates the 1PI graphs:

�[
] = W [J ] −
∫

d4x J (x)
(x);
δ�

δ
(x)
= −J (x). (2.46)

The functional �[
] is the effective action, and its functional derivatives with
respect to 
 yield 1PI Green’s functions. Usually, we are interested in setting the
source J to zero at the end of the calculation, and so the preceding equation shows
that � is stationary in 
. This condition of stationarity is the Schwinger–Dyson
equation for 
.

The effective action can be found directly by introducing a background field 


and shifting the argument φ of the action S[φ] by this amount. At the outset, this
shift field 
 is arbitrary and independent of J . The shift yields a new generating
functional Z̃:

Z → Z̃ =
∫

[dφ] exp

{
iS[φ +
] + i

∫
d4x J (x)φ(x)

}
≡ eiW̃ [J,
]. (2.47)
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We might as well write this by shifting variables back, through φ → φ −
, so
that

W̃ [J,
] = W [J ] −
∫

d4x J (x)
(x). (2.48)

This is precisely the effective action �[
], provided that J and 
 are related by
Eq. (2.45). This equation amounts to δW̃/δJ = 0.

Let us calculate the effective action �̃ corresponding to Z̃. Do the Legendre trans-
form:

�̃[φ̄ +
] = W̃ [J,
] −
∫

d4x J (x)φ̄(x), (2.49)

where the Legendre-transform variable φ̄ is defined by

φ̄(x) = δW̃

δJ (x)
. (2.50)

When the equations of motion (2.45) are satisfied, φ̄ vanishes.

We have written �̃ as a functional of only one variable. To show this, use

δW̃

δ
(x)
= −J (x), (2.51)

to find the total variation of �̃:

δ�̃ = −Jδ(φ̄ +
). (2.52)

The final conclusion is that when the equations of motion in Eq. (2.45) hold,

�̃[φ̄ = 0,
] = �[
]. (2.53)

A possible construction of � comes from summing all connected 1PI Feynman
graphs, using the field-shifted action of Eq. (2.47) to find the 1PI graphs. Or, one
can simply integrate the Schwinger–Dyson equation for 
, written in terms of 1PI
skeleton graphs.

All the scalar-field results have analogs for NAGTs but with certain complications
from gauge fixing and ghost terms. There is a further generalization [9] of effective-
action methods that allows us to construct an effective action that is 2PI, so that
no connected graph in � can be separated by cutting only two (distinct) lines. We
discuss this generalization briefly in the following section.

The two-particle-irreducible effective action By introducing a two-point source
K(x, y) and corresponding Legendre transform, we can [9] define a generating

https://doi.org/10.1017/9781009402415.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402415.003


2.3 The pinch technique today: Background-field Feynman gauge 65

functional and its Legendre transform, the effective action �[
,G] that depends
on a propagator function 
 as well as on 
:

Z[J,K] =
∫

[dφ] exp

{
iS[φ] + i

∫
d4x J (x)φ(x)

− i

2

∫
d4x

∫
d4y φ(x)K(x, y)φ(y)

}
= eiW [J,K]

�[
,
] = W [J,K] −
∫

d4x J (x)
(x)

− 1

2

∫
d4x

∫
d4y [
(x)K(x, y)
(y) +
(x, y)K(x, y)]. (2.54)

The functional derivatives

δW

δJ (x)
= 〈φ(x)〉 ≡ 
(x) (2.55)

δW

δK(x, y)
= 1

2
[
(x)
(y) +
(x, y)] ,

where 
 is the connected two-point function, lead to the functional derivatives for
the effective action:

δ�

δ
(x)
= −J (x) −

∫
d4y K(x, y)
(y)

δ�

δ
(x, y)
= −1

2
K(x, y). (2.56)

As before, physical processes correspond to vanishing sources, so now � is station-
ary with respect to both the one- and two-point functions. The vanishing variation
of δ�/δ
 yields the Schwinger–Dyson equation for 
. The graphical construction
for � now involves the sum of connected 2PI graphs, those that cannot be separated
by cutting only two (distinct) lines. These graphs necessarily have dressed prop-
agators for their lines. There are, in addition, some one-dressed-loop terms. Even
if � is approximated by saving only a few terms in the dressed-loop expansion,
the equations resulting from requiring stationarity may well reveal nonperturbative
effects not visible even in resummed perturbation theory.

One can go further and introduce sources for three- and four-point functions,
along with Legendre transforms analogous to those of Eq. (2.54). The resulting
� is now stationary (at vanishing sources) with respect to N -point functions with
N = 1, 2, 3, 4, and the stationarity requirements are the corresponding Schwinger–
Dyson equations. Or [31], one can simply look at the sum of connected graphs (with
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correct combinatoric factors!) for W in the absence of sources and resolve these
into skeleton graphs for these N -point functions. The derivatives of W with respect
to these N -point functions come out to be the Schwinger–Dyson equations.

2.3.2 The background-field method for gauge fields

The goal is to produce an effective action that is gauge invariant in terms of the
classical potentials Âμ that appear in it so that it is a functional of the classical field
strengths such as Tr ÂμνÂ

μν . We would like to imitate the principle of shifting the
variable of integration (which we also call the quantum potential) by a classical
potential and then shift back to produce the effective action, as we did for scalar
fields. So we want to split the original quantum variable Aμ in the functional
integrals into a classical part Âμ and a quantum part Qμ:

Aμ = Âμ +Qμ. (2.57)

The original action of Eq. (1.5) is invariant under the inhomogeneous gauge trans-
formation of Eq. (1.10), which is just a change of variable of integration. How do
we apportion this gauge transformation,

Aμ → V
i

g
AμV

−1 + V ∂μV
−1, (2.58)

between Âμ and Qμ? Furthermore, the NAGT generating functional with no back-
ground field given in Eq. (1.5), which we repeat here:

Z[Jμ] =
∫

[dQμ][dc̄][dc] exp

{
iS[Q]

+ i
∫

d4x

[
1

2ξ
Tr
(
∂μQ

μ
)2 + (c̄∂νDνc) + Jμ(x)Qμ(x)

]}
≡ eiW [Jμ], (2.59)

is not gauge invariant because of the ghost-antighost and gauge-fixing terms, as
well as the term involving J · A. So how do we get overall gauge invariance of
some sort in W [J ] and its Legendre transformation, the effective action?

Gauge invariance of the effective action as a functional of the classical potential Âμ

means that it is invariant under a standard gauge transformation of this potential
in which the full inhomogeneous term goes with Âμ (and it would seem that no
inhomogeneous term goes with the quantum potential Qμ):

Âμ → V
i

g
ÂμV

−1 + V ∂μV
−1; Qμ → V

i

g
QμV

−1. (2.60)
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The combined transformations preserve gauge invariance of the NAGT action
S[Âμ +Qμ]. Following the scalar field construction, we proceed by coupling only
the quantum potential to the current so that the term J ·Q remains unchanged.

Next is the gauge-fixing term. If it involves derivatives (and therefore has ghosts),
we can replace the ordinary derivatives with the covariant derivative with respect
to the classical potential. For example, in Rξ gauges,

1

2ξ
Tr
(
∂μQμ

)2 → 1

2ξ
Tr
([
Dμ(Â),Qμ

]2
)
, (2.61)

where Dμ(Â) = ∂μ − igÂμ is the covariant derivative with respect to the classical
potential.10 The Faddeev–Popov determinant undergoes a corresponding change.

At this point, the new generating functional Z̃, given by

Z̃[Jμ, Âν] =
∫

[dQμ][dc̄][dc] exp

{
iS[C +Q]

+
∫

d4x i

[
1

2ξ
Tr
([
Dμ(Â),Qμ

])2 + Lc̄c(x) + Jμ(x)Qμ(x)

]}
≡ eiW̃ [Jμ,Cν ], (2.62)

(whereLc̄c is the Lagrangian expressing the Faddeev–Popov determinant), is invari-
ant under the combined transformations of Eq. (2.60) plus a homogeneous rotation
of the current under which

Jμ → V JμV
−1. (2.63)

The corresponding Legendre transform

�̃[Aμ, Âμ] = W̃ [Jμ, Âμ] −
∫

d4x Jμ(x)Aμ(x)

δW̃

δJμ(x)
= 〈Qμ(x)〉 ≡ Aμ(x), (2.64)

is also invariant.

Just as with the scalar field, the next step is to change the variable of integration
back so that in Eq. (2.62), Qμ → Qμ − Âμ. This changes the argument of the
action back to a conventional form. Then the generating functional becomes

eiW̃ [Jμ,Âμ] = eiW [Jμ]+i
∫

d4x Jμ(x)Aμ(x). (2.65)

Here W is the conventional exponent, except that it is calculated in a special gauge.
Making the shift Qμ → Qμ − Âμ in the gauge-fixing term of Eq. (2.61) yields the

10 The unadorned covariant derivative Dμ is always with respect to the quantum potential.
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gauge-fixing term

1

2ξ
TrG2; G = [

Dμ(C),Qμ − Cμ

]
. (2.66)

This is somewhat unconventional because this term depends on the classical poten-
tial. One must also calculate the Faddeev–Popov determinant,

det
δG

δθ
, (2.67)

for an infinitesimal gauge transformationV ≈ I − iθ , under which the new variable
of integration Qμ transforms as

δQμ = −1

g
[Dμ, θ ]. (2.68)

Note that this corresponds to transforming Qμ inhomogeneously, as in Eq. (2.58),
which is necessary because the action is only invariant under such a gauge
transformation.

For the scalar field case, we were finished at this point because it was trivial to
show that W̃ = �. It is only slightly more elaborate [23] to show that

W̃ [Aμ = 0, Âμ] = �C[Âμ], (2.69)

where �C is the conventional effective action with the gauge-fixing term of
Eq. (2.66). The complication is that the gauge-fixing term in the conventional
effective action also depends on the external potential.

The Feynman rules for the effective action, consisting, as usual, of the sum of
1PI connected graphs in the presence of the external potential Cμ, are given by
Abbott [23] and in the appendix. They are different from the usual rules because
this external potential appears in the gauge-fixing term and in the ghost-antighost
action. As far as we are concerned right now, two of the main differences are
that the three-gluon vertex with one external potential leg is precisely the same as
the vertex �ξ of Eq. (1.38) and that the ghost-external potential vertex, unlike the
conventional (asymmetric) ghost-gluon vertex, is conserved.

One can, of course, use any value for ξ in the gauge choice for the background-
field method without affecting the fact that the effective action is a gauge-invariant
functional ofCμ. Unfortunately, the coefficient functions found from the functional
integrals over Qμ still lead to ξ -dependent quantities, and so we are only part way
along the path to true quantum gauge invariance. It is nevertheless true that simply
by setting ξ = 1, we do get the gauge-invariant Green’s functions of the pinch
technique. In fact, Chapter 1 and our subsequent remarks already give us what
amounts to a proof of this for one-loop quantities. The integrands in Eq. (1.61)
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a,α b,β

(â)

a,α b,β

(b̂)(a) (b)

Figure 2.2. Feynman diagrams contributing to the one-loop background gluon
self-energy. Shaded circles on external lines represent background fields.

for the PT proper self-energy and Eq. (1.84) for the three-gluon vertex are pre-
cisely those that would be found using the background-field method at ξ = 1. The
background-field method at ξ 
= 1 does not give the PT results, but these can be
recovered by applying the pinch technique as usual, thereby coming back to the
background-field method results at ξ = 1.

2.3.3 Pinch technique and background Feynman gauge correspondence

Let us have a closer look at the announced connection between the pinch technique
and the background Feynman gauge. The key observation [28, 29] is that at ξQ = 1,
the tree-level vertex that occurs in the action multiplying Âα(q)Aμ(k1)Aν(k2), to
be denoted by �̃

ξQ
αμν(q, k1, k2) (see Feynman rules of the appendix), collapses to the

expression for �F
αμν(q, k1, k2), given in Eq. (1.42). Because in addition, at ξQ = 1,

the longitudinal parts of the gluon propagator vanish, one realizes that at this point,
there is nothing there that could pinch. Thus, ultimately, the background Feynman
gauge is singled out because of the total absence, in this particular gauge, of any
pinching momenta.

It is relatively straightforward to verify at the one-loop level the correspondence
between the PT two- and three-point functions and those of the background Feyn-
man gauge [28, 29]. For example, the two Feynman diagrams contributing to the
background Feynman gauge gluon self-energy are shown in Figure 2.2. Using the
background Feynman gauge Feynman rules, we obtain

(̃a)αβ = 1

2
g2CA

∫
k

1

k2(k + q)2
�̃αμν(q,−k − q, k)�̃μν

β (q,−k − q, k)

(̃b)αβ = −g2CA

∫
k

1

k2(k + q)2
(2k + q)α(2k + q)β. (2.70)

We can simply compare the two terms on the rhs of Eq. (1.63) with the two terms
given in Eqs. (2.70). Evidently, the PT and background Feynman gauge gluon
self-energies are identical at one loop.
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+ 1 graph

(â) (b̂)

a,α

m,μn, ν

q1

q3 q2s,σ

r,ρ λ
k1 k3

k2

+ 2 graphs

(ĉ)

+ 2 graphs

(d̂)

(a) (b)

(c) (d)

Figure 2.3. One-loop diagrams contributing to the three-gluon vertex in the BFM.
Diagrams (̃c) carries a 1/2 symmetry factor.

Similarly, the one-loop diagrams contributing to the background Feynman gauge
three-gluon vertex are shown in Figure 2.3; it is easy to see that the sum (̃a) + (̃b)
coincides with the term N̂αμν of Eq. (1.85), while diagrams (̃c) give exactly the
term B̂αμν of Eq. (1.86). Finally, diagrams (d̃) vanish by virtue of elementary
group-theoretical identities.

Although it is a remarkable and extremely useful fact that the one-loop PT Green’s
functions can be calculated in the background Feynman gauge, particular care
is needed for the correct interpretation of this correspondence. First, the pinch
technique enforces gauge independence (and several other physical properties,
such as unitarity and analyticity) on off-shell Green’s functions, whereas the BFM,
in a general gauge, does not. This is reflected in the gauge invariance of the BFM
n-point functions in the sense that they satisfy (by construction) QED-like Ward
identities, but are not gauge independent, i.e., they depend explicitly on ξQ. For
example, the BFM gluon self-energy at one loop is given by [30]

�̃
(ξQ)
αβ (q) = �̃

(ξQ=1)
αβ (q) + i

4(4π )2
g2CA(1 − ξQ)(7 + ξQ)q2Pαβ(q). (2.71)

Had the BFM n-point functions been ξQ independent, in addition to being gauge
invariant, there would be no need to introduce the pinch technique independently.

We emphasize that the objective of the PT construction is not to derive diagrammat-
ically the background Feynman gauge but rather to exploit the underlying BRST
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symmetry to expose a large number of cancellations and eventually define gauge-
independent Green’s functions satisfying Abelian Ward identities. Thus, that the
PT Green’s functions can also be calculated in the background Feynman gauge
always needs a very extensive demonstration. Therefore, the correspondence must
be verified at the end of the PT construction and should not be assumed beforehand.
Moreover, the ξQ-dependent BFM Green’s functions are not physically equivalent.
This is best seen in theories with spontaneous symmetry breaking: the dependence
of the BFM Green’s functions on ξQ gives rise to unphysical thresholds inside
these Green’s functions for ξQ 
= 1, which limits their usefulness for resummation
purposes (this point will be studied in detail in Chapter 11). Only the case of the
background Feynman gauge is free from unphysical poles because then (and only
then) do the BFM results collapse to the physical PT Green’s functions.

It is also important to realize that the PT construction goes through unaltered
under circumstances in which the BFM Feynman rules cannot even be applied.
Specifically, if instead of an S-matrix element, one were to consider a different
observable, such as a current correlation function or a Wilson loop (as was in fact
done in the original formulation [4]), one could not start out using the background
Feynman rules because all fields appearing inside the first nontrivial loop are
quantum ones. Instead, by following the PT rearrangement inside these physical
amplitudes, the unique PT answer emerges again.

Perhaps the most compelling fact that demonstrates that the PT and BFM are
intrinsically two completely disparate methods is that one can apply the PT within
the BFM. Operationally, this is easy to understand: away from ξQ = 1, even in
the BFM, there are longitudinal (pinching) momenta that will initiate the pinching
procedure. Thus, one starts out with the S-matrix written with the BFM Feynman
rules using a general ξQ and applies the PT algorithm as in any other gauge-fixing
scheme; one will recover again the unique PT answer for all Green’s functions
involved (i.e., the Green’s functions will be projected to ξQ = 1).

2.3.4 The generalized pinch technique

As we have seen in detail, the PT projects us dynamically to the background
Feynman gauge, regardless of the gauge-fixing scheme from which we may start.
A question that arises naturally at this point is the following: could we devise a
PT-like procedure that would project us to some other value of the background
gauge-fixing parameter ξQ? As was shown by Pilaftsis [32], such a construction is
indeed possible; the systematic algorithm that accomplishes this is known as the
generalized pinch technique.

The starting point of the generalized PT is precisely the decomposition given in
Eqs. (1.37), (1.38), and (1.39). However, unlike the pinch technique where all
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longitudinal momenta are allowed to pinch, in the generalized pinch technique, the
�ξ of Eq. (1.38) does not trigger any pinching (even though it contains longitudinal
momenta), playing essentially the role of �F; the pinching momenta of the general-
ized pinch technique come from the �Pξ of Eq. (1.39) and, of course, the tree-level
gluon propagators. At the end of this procedure, one recovers diagrammatically the
background Green’s functions calculated at the desired value of ξ → ξQ.

To be sure, the generalized pinch technique represents a fundamental departure
from the primary aim of the pinch technique, which is to construct gauge-fixing,
parameter–independent, off-shell Green’s functions. The generalized pinch tech-
nique, instead, deals exclusively with gauge-fixing, parameter–dependent Green’s
functions, with all the pathologies that this dependence entails. Nonetheless, it
is certainly useful to have a method that allows us to move systematically from
one gauge-fixing scheme to another at the level of individual Green’s functions.
In addition to the possible applications mentioned by Pilaftsis [32], we would
like to emphasize the usefulness of the generalized pinch technique in truncating
gauge-invariant (i.e., maintaining transversality) sets of Schwinger–Dyson equa-
tions written in gauges other than the Feynman gauge (see Chapter 6). This pos-
sibility becomes particularly relevant, for example, in attempts to compare SDE
predictions with lattice simulations, which are carried out usually in the Landau
gauge.

The method can be systematically generalized to more complicated situations [32].
For instance, a method may be projected from the Rξ gauges to one of the gen-
eralized BFM gauges, such as the BFM axial gauge. This, of course, leads to a
proliferation of pinching momenta; the resulting construction is therefore more
cumbersome but remains conceptually rather straightforward.

2.4 What to expect beyond one loop

Everything in Chapters 1 and 2 illustrates the pinch technique at the one-loop level.
The pinch technique would be of little interest unless everything in these chapters
had an all-order generalization. A good part of the rest of the book is devoted to
showing that the PT propagator has the following indispensable properties to all
orders, and even nonperturbatively:

1. It truly is gauge independent.
2. It is independent of what group representation or spin the external particles

used to construct the S-matrix have. (The reader should check this for the
one-loop pinch technique.)

3. It has only physical threshholds even if (or especially if) the gluons get a mass
through the strong interactions. There are no unphysical ghost contributions.
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4. Its Green’s functions have conventional analytic properties and spectral repre-
sentations, except that in certain cases, conventional positivity requirements
do not hold.

5. It, along with similarly defined pinch technique vertices, participates in ghost-
free Ward identities that are analogous to those of QED and with similar
consequences such as generalizations of the familiar QED identity Z1 = Z2.

6. The PT propagator defines a running charge that is gauge invariant and
scheme independent.

7. Once the ghost-free Ward identities are imposed, it is unique, which can
be understood because (as we will show) PT propagators and vertices are
simply those of the background Feynman gauge, which is a uniquely defined
graphical prescription with the same Ward identities.

As a result of the preceding requirements – and we emphasize once again not the
other way around – we show that the PT Green’s functions to all orders are identical
to those of the background-field method in the Feynman gauge.

After the technical developments that establish these points come the applications.
They range from perturbative effects, such as a physical and gauge-invariant defi-
nition of the neutrino charge radius, to nonperturbative effects, such as the all-order
resummation needed to define the widths of unstable gauge bosons beyond tree
level, to setting up the tools necessary for calculating the dynamical mass of gauge
bosons in the magnetic sector of QCD or of high-temperature electroweak theory.
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