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CONTINUOUS PREIMAGES OF SPACES WITH 
FINITE COMPACTIFICATIONS 

BY 

GEORGE L. CAIN, JR. 

1. Introduction. A compactification aX of the space X is called an n -point 
compactification if the remainder aX — X consists of exactly n points. K. D. 
Magill [5] showed that if Y has an n-point compactification and if /:X—» 
f(x) = Y is a compact continuous mapping of the space X onto Y, then X also 
has an M-point compactification. The main purpose here is to study the 
existence of finite compactifications of a space X that can be mapped continu­
ously onto a space Y for which there is an n-point compactification. Results 
obtained extend Magill's in that they apply to continuous maps more general 
than compact ones, and also provide sharper results regarding the number of 
points in the finite compactifications of X As a corollary, a characterization of 
those spaces having an n -point compactification is given in terms of the 
existence of certain mappings onto compact spaces. 

2. Finite compactification of suhspaces. The following result is used 
throughout this section. 

LEMMA 2.1. Suppose C is a component of a compact Hausdorff space Y and 
W is an open neighborhood of C Then there exists an open neighborhood U of C 
such that C<= [ J e W and Fr([/)= 0 . 

Proof. Define P<= Y by 
P = {y e Y I there is a separation Y= RUT with C<^ R and y e T). 

Clearly P is open, so its complement Q - Y—P is closed. 
Suppose O is not connected. Then we have a separation Q = AUB. The 

component C^Q, so assume C <= A. The sets A and JB are compact, hence 
there are disjoint open neighborhoods WA and WB for which A c WA and 
B c WB. Fr WA <= p? so for each p e Fr WA, there is a separation Y=UpUVp 

such that C^UP and pe Vp. 
The collection {Vp} covers the compact set Fr WA, so we may extract a finite 

subcollection, {Vt : i = 1, 2 , . . . , n} which also covers Fr WA. Each Vt is both 
open and closed, so it follows that V= U {Vt} is also open and closed. 

Now let Û= WA - V and note that Û is open and closed; open because V is 
closed and closed because V is open and Fr WA c= V. Thus Y= (7U ( Y - U) is 
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a separation with C c Û and JB <= Y- Û, which means that B c p, a contradic­
tion. So Q is connected, and Q = C. 

Since Y-W<^P, it is true that for every xeY-W there is a separation 
Y = J R X U T X with C^RX, xeTx. Now Y - W is compact, so if 
{Tj : i = 1, 2 , . . . , m} is a finite subcover of {Tx}, then T= U {TJ is both open 
and closed. Thus U= Y-T is an open neighborhood of C such that (7<= W 
and Fr U = 0 . 

We are now ready for the theorem that is the basis of all other results in this 
paper. 

THEOREM 2.1. Suppose Z is a connected Hausdorff space with an n-point 
compactification and X<=Z is open and such that Z — X has at least k compact 
components. If all components of Z — X are compact, then X has an (n + k)-point 
compactification. Otherwise, X has a (fc + 1)-point compactification. 

Proof. Let aZ be an n-point compactification of Z and let K= aZ — X. 
Define a decomposition 2 of aZ by taking the elements of 3 to be the 
individual points of X and the components of K. 

We need to show that 3 is upper semicontinuous. To do this, let d e 3 and 
U be an open subset of aZ containing d. We must find an open VczJJ 
containing d so that if ee2 and V f l e ^ 0 , then e^V. If d={x} for jceX, 
this is trivial, so assume d is a component of K. 

We apply Lemma 2.1 to the space K and conclude that there exists an open 
set V c [J for which d^VDKc: UHK and (Fr V)HK= 0. Thus if ee3 and 
V H e ^ 0 , it must follow that e c y c [ / . This establishes the upper semicon-
tinuity of 3. 

Let X be the decomposition space induced by 3 and let h denote the natural 
map of aZ onto X. From the upper semicontinuity of 3), X is a compact 
Hausdorff space. The continuous map is one to one on X and X = h_ 1h(X) is 
an inverse set, so h \ X is a homeomorphism. As usual, we shall identify h(X) 
with X and refer to X as a subspace of X. Note that X is open in X, so X - X 
is compact. 

Suppose A is a connected subset of the remainder X - X . Then h~\A) is a 
connected subset of K since h is a compact monotone map and must lie 
completely in one component of K. Thus A = {p}, a single point. Or in other 
words, X —X is totally disconnected. 

The space aZ is connected, so X is connected. To see that X must be dense 
in X, suppose p is a point in the interior of X —X The points of X —X are the 
components of this space, so Lemma 2.1 yields the existence of an open 
neighborhood U of p for which U<=X-X, and Fr U= 0 , contradicting the 
connectedness of X Hence X is a compactification of X 

Suppose C is a compact component of K = Z - X, and let N be a compact 
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neighborhood of such that Nn(aZ-Z) = 0 . Then C is a component of 
NHK, and we can once again apply Lemma 2.1 to obtain an open neighbor­
hood V of C so that V c N and (Fr V) H K = 0 . This, of course, means that C 
is also a component of aZ - X, which shows that the number of components of 
aZ-X is at least as large as the number of compact components of K = Z- X. 

Next observe that if all components of K are compact, no point of aZ-Z is 
an accumulation point of a component of K. Thus each r e aZ — Z is a 
component of aZ-X. We have now shown that if all components of Z-X are 
compact, there are at least (n + /c) components of aZ-X. Hence either X — X 
is finite and contains at least (n + k) points or it is infinite and totally 
disconnected. In either case, we may conclude that there is an (n + k)-point 
compactification of X. (Chandler [3], Theorem 6.32, p. 77; and Lemma 6.13, 
p. 72.) 

Next suppose Z — X has at least one non-compact component G In this case, 
we can conclude only that aZ — X has at least k + 1 components, or X — X 
contains at least fc + 1 points. 

3. Mappings onto spaces with finite compactifications. Recall that if /:X—> 
f(X) = Y is a continuous mapping of one locally compact Hausdorff space onto 
another, then the singular set S of / is the collection of all points peY such 
that in every neighborhood of p there is a compact set with non-compact 
inverse image ([1], [6]). The set S is closed and a mapping (continuous) is 
compact (inverse images of compact sets are compact) if and only if S = 0 
([1],[6]). 

THEOREM 3.1. Suppose Y has an n-point compactification, X is connected, 
and f : X—» f(X) = Y is a continuous mapping for which the singular set S has at 
least k compact components. If all components of S are compact, then S has an 
(n + k)-point compactification. Otherwise, X has a (k + \)-point compactification. 

Proof. Let (Xw,fw) be the Whyburn compactification of the map /. That is, 
fw :XW —>/(Xw)= Y, /w is compact and continuous, Xw is locally compact 
Hausdorff and contains X as a dense subspace, fw\X = f, and fw \ (Xw - X ) is a 
homeomorphism onto S. (See [2] and [7]). 

From Magill's result [6] Xw has an n-point compactification. Also, X w - X 
and S are homeomorphic, so the conclusions of the theorem follow directly 
from Theorem 2.1. 

The following example shows that this theorem is the "best" one can hope to 
get, in that if S has at least one non-compact component, then almost anything 
is possible. 

EXAMPLE. Let y = [0, l ]x [0 , l ] - { ( i l ) , ( if)}. It is obvious that Y has a 
2-point compactification. Let A <= [0, 1] x [0, 1] x [0, 1] be given by A = 
{(i y, l H < y < | } and define X - Yx[0, 1 ] - A. It is easy to see that X has a 
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one-point compactification; that it does not have an n -point compactification ; 
for n> 1 follows easily from Theorem (2.6) of Magill [5]. Let / : X - > / ( X ) = Y 
be defined by setting f(x, y, z) = (x, y). We see that / is continuous and X does 
not have an n-point compactification for n>l although Y has a 2-point 
compactification. It should be clear from this example how one could similarly 
construct examples of continuous maps of a space X onto a space Y in which X 
and Y have arbitrary finite compactifications. 

Finally we give a characterization of those spaces having an n -point compac­
tification. 

THEOREM 3.2. A connected locally compact Hausdorff space X has an n-point 
compactification if and only if there is a continuous mapping of X onto a compact 
Hausdorff space so that the singular set of the mapping consists of exactly n 
points. 

Proof. Suppose there is a continuous / : X —> f(X) = Y with Y compact and 
S having exactly n points. Then the existence of an n-point compactification of 
X follows at once from Theorem 3.1. 

Now suppose there is an n-point compactification aX of X Let 
Uu l / 2 , . . . , Un be disjoint compact neighborhoods in aX of the points of 
aX — X Define the decomposition 3) of aX by taking U l 5 . . . , Un to be 
members of 2 and the individual points of a X — U i Ut as members of 3). 
Clearly 2? is upper semicontinuous, so the decomposition space Y induced by 
3) is compact Hausdorff. Let h denote the natural map of aX onto Y, and 
define / : X —» Y by / = h | X The map / carries X onto Y since each U{ meets 
X, and the singular set S = {h{Ui), i - 1 , . . . , n). 

REMARK. E. U. Choo [4] has proved a similar result. He essentially estab­
lishes the characterization given in the previous theorem, except the continuous 
mapping is real valued and bounded. (Choo's "accumulation point" of a 
continuous real valued map is the same as a singular point.) 
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