ON A DIOPHANTINE PROBLEM

J. B. ROBERTS

Introduction. If a,, a, ..., a, are relatively prime positive integers then
the equation
(1) a1+ .. g =0

always has solutions in non-negative x; for » sufficiently large. Sylvester
called the number of non-negative solutions of (1) the denumerant of the

equation. We shall denote the denumerant by n(a, . . ., a;).
We define Nj(ay, ..., a;) to be the smallest positive integer such that
n(ay, ...,a;) >jforal n> Nay...,a).

Using the known result
n(l,2,3) = [(n? 4+ 6n + 15)/12]

we can readily show that

In general the computation of N;(ay, . .., a;) is a difficult job. Our interest
here is in Ni(ay, ..., a;). The present author has given (4) the value of
Ni(ai, ..., a;) when the a; are in arithmetic progression. Brauer and Seel-
binder (2; 3) have given various upper bounds for Ni(ay, ..., a;) in the
general case. In this paper we concern ourselves with an upper bound for

Ni(m,m 4+ a, m + b) where (a,b) = 1. Our upper bound is in many cases
best possible. We also give a theorem concerning an upper bound for

Niim,m 4+ ay, ..., m + a)

where @y, ay, . . ., @, are relatively prime positive integers.

1. Three lemmas. Throughout this section
0<a<bd (a,b)=1,P=(a—1)0b—1).

Since Ni(a,b) = P (1, p. 124), the equation ax + by = n is solvable in non-
negative integers for all # > P. The non-negative solution with smallest x
is denoted by x,, v,. If x, v is any non-negative solution of ax 4+ by = n then

X4y 2>x,+ y.
Also
xn+h + yni—h = X + yn + 1
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Since (a, b) = 1, the numbers aa for 0 < o < b — 1 constitute a complete
system of residues modulo b. Hence n = aa(mod b) has a unique solution with
0 < a < b — 1. Denote this solution by a,.

LEMMA 1. %, = o, ¥, = (n — aay,)/b.

Proof. Clearly
aa, + b((n — aay)/b) = n.

Hence all solutions of ax 4+ by = » are given by
a, + bt, (n — aa,)/b — at.
For non-negative solutions we must have
t> —ay/b> — 1.
Hence all non-negative solutions have x > «,.

LEmma 2. If n > P, o, =b—1 and 1 <c<n— P then
Xp A Yn 2> Xu—e + Yu—e + 1.

Proof. We have
X+ Ve =a,+ (n —aa,)/b = (n+ a,(b —a))/b

4+ 0—-10-=-a)/b> 7 —c+a.(b —a)/b
Xn—e + Vi—o-

Il

Il

LEMMA 3.
max (x, + y,) < b — 2 + [m/b]

neK

where K consists of those n satisfying P < n < P+ m — 1, m > 1.

Proof. Let B be the smallest integer greater than P + m — 1 which has
ag = b — 1. Then

B>P+m—1>n

and therefore B — n > 1. Also B — n < B — P. Hence taking the n, ¢ of
[Lemma 2 to be B, B — n respectively, we see that

Xp + ¥ > Xp—s—n) + Vp—3—w + 1 = Xy + u + 1.
This is true for all » € K, so

max (xn+yn> <x8+yB - 1= (B +C¥B(b - a))/b — 1.
neK

For arbitrary m we have
B=P+ [m/b]b—1+4b.
Hence

max (x, +v,) < P+ [m/b)b—1+b+ (b—1)(b—a))/b—1
neK =b— 2+ [m/d).
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2. The main theorem.

TuEOREM 1. Ni(m,m + a,m +b) < m(b — 2+ [m/b]) + (a — 1)(b— 1)
where 0 < a < b, (a,b) =1, m > 2.

Proof. Let P, K, x,, v, be as in §1. Define
Q = max (x, + ).
nekK
Now define &;, 7, Z; for j > P by the following :

;= %4 §; = ¥;for j =1 (mod m), PLi<P+m-—1,
i =0+ [ —P)/m]—2%;,— 7,

[STRRST]

Then
@) mz; + (m + a)%; + (m + b)g; = m(Z; + Z; + 75 + ai; +_bg,- i
= mQ + m[(j — P)/m] + aZ; + b7,
As j runs over
P4+sm,P+sm+1,..., P+sm+m—1
for s > 0, the right side of this equation runs over
mQ+ms +P, mQ+ms+P+1,... mQ+ms+ P+ m— 1.

Hence as j runs over the integers greater than or equal to P and s runs over the
integers greater than or equal to 0, the left side of (2) runs over the integers
greater than or equal to P 4 m(Q. Replacing Q by its upper bound from
Lemma 3 now gives the desired result.

Essentially the same proof yields the following :

THEOREM 2. Ni(m, m + ay, ..., m + ar) < P 4+ mQ where a4, as, . . . , a;
are relatively prime positive integers,

P = Ni(ay,...,a;), Q=max (x1, + ...+ xzn),

neK

K is the set of n such that P < n < P+ m — 1, and x1,, . . ., Xn 15 @ noN-
negative solution of (1) with smallest sum.

3. Special cases. Let N; (m, m + a, m + b) denote the upper bound in
Theorem 1. We compare N; with NV; in a few special cases.

(a) By the main result in (4; see also 2, Theorem 7, p. 310),
Nim,m + 1,m 4+ 2) = m[im] = Ny(m,m + 1, m + 2).
(b) By a result stated in (4),
Ni(m,m + 1,m +b) = Ny(m,m + 1, m + b)

for
m = — 1 (mod d), m > 0b2— 5b-+ 3;
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and
Ni(m,m + 1,m 4+ b) = Ny(m,m + 1, m + b) — (m — b[m/b])
for
m= —1(modb), m >>b>— 4b+ 2.
(¢) By direct evaluation it is not difficult to show
Nim,m + 2, m +3) = Ny(m,m + 2, m + 3).
(d) By computation for 2 < m < 16 we find
Nim,m + 2,m + 5) = Ny(m, m + 2, m + 5)

for

3
I

5, 8,10, 13, 14, 15
and not for
m=2,3,4,6,7,9, 11, 12, 16.
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