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Jussieu-Paris Rive Gauche, UMR 7586, CNRS, Université Paris Diderot,
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Abstract. We give new tools for homotopy Brouwer theory. In particular, we describe
a canonical reducing set called the set of walls, which splits the plane into maximal
translation areas and irreducible areas. We then focus on Brouwer mapping classes
relative to four orbits and describe them explicitly by adding a tangle to Handel’s diagram
and to the set of walls. This is essentially an isotopy class of simple closed curves in the
cylinder minus two points.
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1. Introduction
1.1. Homotopy Brouwer theory. Homotopy Brouwer theory was introduced by Handel
in [Han99] to prove his famous fixed point theorem for planar homeomorphism, which
has many applications to surface homeomorphisms (for examples, see the introduction
of [LC06]). This theory has been used by John Franks and Michael Handel, for example to
study Hamiltonian surface diffeomorphisms, in [FH03b] and prove the Zimmer conjecture
for area preserving diffeomorphisms of surfaces in [FH03a].

Homotopy Brouwer theory can be seen as the study of the elements of the mapping
class group of the plane minus Z which are classes of Brouwer homeomorphisms relative
to a finite number of orbits. More precisely, consider a Brouwer homeomorphism h: that
is, a fixed point-free homeomorphism of the plane preserving the orientation. Choose a
finite number of disjoint orbits of this homeomorphism and denote their union by O.
Classical Brouwer theory tells us that each orbit of a Brouwer homeomorphism is properly
embedded in the plane: that is, intersects every compact set of the plane in only a finite
number of points (see, for example, [Gui94]). Hence O is homeomorphic to Z in the
plane. Denote by MCG(R2, O) the mapping class group of the plane relative to O: that is,
the quotient of the group of orientation-preserving homeomorphisms of the plane which
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globally fix O by its connected component of the identity for the compact-open topology.
Now we can look at the class of h in MCG(R2, O): since h is a Brouwer homeomorphism,
this class is said to be a Brouwer mapping class. We denote it by [h; O]. Two Brouwer
mapping classes [h; O] and [h′; O′] are said to be conjugate if there exists an orientation-
preserving homeomorphism φ of the plane such that φ(O)= O′ and [φhφ−1

; φ(O)] is
equal to [h′; O′] in MCG(R2

; O′). One aim of homotopy Brouwer theory is to describe
(up to conjugacy) every Brouwer mapping class relative to a finite number of given orbits.

1.2. Brouwer mapping classes relative to one, two and three orbits. In [Han99],
Michael Handel gives a complete description of Brouwer mapping classes relative to
one and two orbits. He shows that, relative to one orbit, there exists only one Brouwer
mapping class up to conjugacy: the class of the translation relative to one of its orbits.
Relative to two orbits, he proves that they are exactly three Brouwer mapping classes (up
to conjugacy): the class of the translation, the class of the time-one map R of the Reeb
flow and the class of R−1.

In [LR13], Le Roux gives a complete description of Brouwer mapping classes relative
to three orbits and uses this description to define an index for Brouwer homeomorphisms.
In particular, he shows that there are only a finite number of Brouwer mapping classes
relative to three orbits, and that each of them contains the time-one map of a flow
(see [LR13] for more details and the complete description of this classes).

The situation changes if we look at the Brouwer mapping classes relative to more than
three orbits: indeed, if r ≥ 4, there are a infinite number of Brouwer mapping classes
relative to r orbits, and only a finite number of them contain the time-one map of a flow.
One aim of this paper is to give a complete description of Brouwer mapping classes relative
to four orbits.

1.3. Walls. In [Han99], Michael Handel defines reducing lines of a Brouwer mapping
class [h; O]: such a line is homotopic to its image by h and splits the set of orbits into two
smaller sets. He proves that every Brouwer mapping class relative to more than one orbit
has at least one reducing line [Han99, Theorem 2.7].

We propose to call the isotopy class of a reducing line 1 a wall if every other reducing
line is homotopically disjoint from 1. The set of walls is clearly a conjugacy invariant for
Brouwer mapping classes. We prove the following theorem.

THEOREM 3.5. Let [h; O] be a Brouwer mapping class. Let W be a family of pairwise
disjoint reducing lines containing exactly one representative of each wall for [h; O]. If Z
is a connected component of R2

−W, then exactly one of the following holds:
• Z is an irreducible area;
• Z is a maximal translation area; or
• Z does not intersect O.

Precise definitions of irreducible and maximal translation areas will be given in §3. A
translation area Z is, in particular, an area which is invariant under h and on which h
has very simple dynamics: indeed, up to conjugacy, h is conjugated to a homeomorphism
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FIGURE 1. Examples of diagrams with walls: the one on the left is determinant, and the one on the right is
non-determinant.

whose restriction to Z is a translation. Contrariwise, an irreducible area has more complex
dynamics and cannot be reduced into more simple areas: it does not contain any reducing
line. It will follow that if the complement of the walls of a Brouwer mapping class does not
contain an irreducible area, then we will easily be able to understand the Brouwer mapping
class, which will indeed be a time-one map of a flow (see §3). Moreover, we will prove
that if the complement of the walls of a Brouwer mapping class has an irreducible area,
then it also has at least two maximal translation areas.

1.4. Diagrams. Following, essentially [Han99, LR13], we can associate to every
conjugacy class of Brouwer mapping class a unique diagram, for which a precise definition
will be given in §3. This diagram is a disk with r arrows, where r is the number of orbits
that we consider; each arrow represents an orbit. The cyclic order of the endpoints of the
arrows is determined by the existence of a nice family of homotopy translation arcs (see
§3). A diagram of Brouwer mapping class is said to be determinant if there exists only one
conjugacy class of Brouwer mapping class associated to it. Every diagram for Brouwer
mapping class relative to one, two or three orbits is determinant. For four orbits or more,
there exist diagrams which are not determinant.

We can add the set of walls on this diagram: we obtain a diagram with walls, which
is again a conjugacy invariant for Brouwer mapping classes (see Figure 1 for examples).
This invariant is more precise than the diagram without walls, but it is still not total for
Brouwer mapping classes relative to more than three orbits. Again, we can define the
notion of deteminant diagram with walls (which corresponds to only one conjugacy class).
We give an elementary combinatoric condition to identify the determinant diagrams among
diagrams with walls without crossing arrows.

PROPOSITION 3.8. A diagram with walls and without crossing arrows is determinant if
and only if there is no irreducible area in the wall complement.

1.5. A total conjugacy invariant for Brouwer mapping class relative to four orbits.
For Brouwer mapping classes relative to four orbits, we add a new invariant to the non-
determinant diagrams with walls: the tangle. This invariant is an isotopy class of curves on
the cylinder with two marked points (up to horizontal twists). See Figure 2 for an example.
Using, in particular, the set of walls and the description of determinant diagrams with four
orbits, we get a total conjugacy invariant.
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FIGURE 2. Example of a couple (diagram with walls, representative of the tangle).

THEOREM 3.13. Two Brouwer mapping classes relative to four orbits are conjugated if
and only if they have the same couple (diagram with walls, tangle).

We finally get a complete description of Brouwer mapping classes relative to four
orbits.

In the first section, we recall useful tools for homotopy Brouwer theory from [Han99,
LR13]. A precise description of the results will be given in §3. The remainder of the text
is devoted to proofs.

2. First tools of homotopy Brouwer theory
We recall the following definitions and properties (see [Han99, LR12, LR13]). Let [h; O]
be a Brouwer mapping class: that is, the isotopy class of a Brouwer homeomorphism
h relative to a finite set of orbits O. Denote by r the number of orbits of O. We choose a
complete hyperbolic metric of the first kind on R2

− O. Even if it is not explicitly specified,
we will always consider complete hyperbolic metrics of the first kind on surfaces: that is,
such that the surface is isomorphic to H2/0, where 0 is of the first kind (see [Mat00] for
details).

2.1. Examples: flows and product with a free half-twist.

Flows. For abbreviation, we say that a homeomorphism f is a flow if it is the time-one
map of a flow. If a Brouwer homeomorphism f is isotopic to a flow without fixed points
relative to O, then we say that [ f ; O] is a flow class.

Example A. The first example is the flow class of Figure 3. In this example, we choose
5 streamlines of a flow f and get a Brouwer mapping class relative to five orbits:
O1, O2, O3, O4 and O5. We denote by O their union.

Free half-twist. We call a half-twist any homeomorphism that is:
• supported in a topological disk D of R2 which contains exactly two points of O,

denoted by x and y; and
• isotopic to a homeomorphism supported in D which is a rotation of a half turn on a

disk included in D, which exchanges x and y.
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FIGURE 3. Example of a Brouwer mapping class [ f ; O] relative to five orbits.

FIGURE 4. Example B: the Brouwer mapping class [g; O′].

If h is a Brouwer homeomorphism, we call an h-free half-twist every half-twist µ
supported in an h-free disk: that is, in a disk D such that hn(D) ∩ D = ∅ for every non-
zero n ∈ Z. Note that µh is a Brouwer homeomorphism.

Example B. Our second example is the product of f with the free half-twist µ of Figure 4,
which exchanges the two points of the disk which are in O. We denote the product µ f
by g. For i = 1, 2, 3, 4 we choose xi on Oi , as in Figure 4, and denote the g-orbit of xi

by O′i : that is, {gn(xi )}n∈Z. In particular, O1 = O′1 and O2 = O′2. We denote the union of
the O′i by O′. Note that O′ coincides with O1 ∪ O2 ∪ O3 ∪ O4. We consider the Brouwer
mapping class [g; O′].

2.2. Arcs and topological lines in R2
− O. We call an arc an embedding α of ]0, 1[ in

R2
− O such that it can be continuously extending to zero and one with α(0), α(1) ∈ O.

By abuse of notation, we will denote the image of the embedding α(]0, 1[) by α and call it
an arc again. The extensions α(0) and α(1) are said to be the endpoints of α. A topological
line is an embedding α of R in R2

− O which is proper in R2: that is, an embedding α
such that for every compact K of the plane, there exists t0 ∈ R such that if |t |> |t0|, then
α(t) /∈ K . Again, by abuse of notation, we denote by α the image of R by α in R2

− O and
call it a (topological) line.
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2.3. Isotopy classes of arcs and lines. We say that two arcs (respectively, two lines)
α and β are isotopic relative to O if there exists a continuous and proper application H :
]0, 1[×[0, 1] → R2

− O such that:
• H(·, 0)= α(·) and H(·, 1)= β(·); and
• if α and β are arcs, H can be continuously extended to [0, 1] × [0, 1] in such a way

that the endpoints coincide: that is, for every t ∈]0, 1[, α(0)= H(0, t)= β(0) and
α(1)= H(1, t)= β(1).

If α is an arc or a line of R2
− O, we denote the geodesic representative in the isotopy

class of α relative to O by α#. It is known that this geodesic representative is unique and
that if α and β are two arcs or lines, then α# and β# are in minimal position. In particular,
if α and β are homotopically disjoint (that is, they have disjoint representatives in their
isotopy classes), then α# and β# are disjoint.

2.4. Straightening principle. We will need the following lemma, which is
from [Han99, Lemma 3.5] (see also [LR13, Lemmas 1.4, 3.2 and Corollary 1.5]).

LEMMA 2.1. (Straightening principle) Let F1 and F2 be two locally finite families of lines
and arcs of R2

− O such that:
• the elements of F1 (respectively, F2) are mutually homotopically disjoint; and
• if α ∈ F1 and β ∈ F2, then α and β are in minimal position.
Then the following statements hold.
(1) There exists a homeomorphism u isotopic to Id relative to O such that, for every

element γ in F1 ∪ F2, u(γ )= γ#, where γ# is the geodesic representative of the
isotopy class of γ .

(2) If h is an orientation preserving homeomorphism of the plane such that h(O)= O,
then there exists h′ ∈ [h; O] such that, for every α in F1 ∪ F2, h′(α#)= h(α)#.

Remark 2.1.
• We get (2) by applying (1) to h(F1 ∪ F2).
• Note that the h′ of (2) may not be a Brouwer homeomorphism.

2.5. Homotopy translation arc. A homotopy translation arc for [h; O] is an arc α such
that:
• there exists x ∈ O such that α(0)= x and α(1)= h(x); and
• for every n ∈ Z, hn(α) is homotopically disjoint from α.
In particular, every translation arc for h with endpoints in O is a homotopy translation arc
for [h; O]. In general, there exist homeomorphisms h and arcs which are not homotopic to
translation arcs for h, but which are homotopy translation arcs for [h; O].

Example A. Figure 5 (left) shows different homotopy translation arcs for example A: the
arcs β and γ are homotopy translation arcs for [ f ; O]. The arc α is not a homotopy
translation arc for [ f ; O]. Note that, however, if we forget the orbit O5, α is a homotopy
translation arc for [h; O1 ∪ O2 ∪ O3 ∪ O4].
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FIGURE 5. Examples of homotopy translation arcs and homotopy streamlines.

2.6. Half homotopy streamlines. If α is a homotopy translation arc for [h; O], we define
the homotopy streamline by

T (α, h, O) :=
⋃
n∈Z
(hn(α([0, 1[)))#.

Since α is a homotopy translation arc, the geodesic iterates are mutually disjoint, and hence
T (α, h, O) is an embedding of R, which can eventually be non-proper.

We also define the backward (respectively, forward) homotopy streamline T−(α, h, O)
(respectively, T+(α, h, O)) by

T−(α, h, O) :=
⋃
n≤0

(hn(α([0, 1[)))#,

T+(α, h, O) :=
⋃
n≥0

(hn(α([0, 1[)))#.

Example A. The streamline T (β, f, O) of example A is proper and coincides with the
horizontal streamline which contains O1. The streamline T (γ, h, O) is drawn on Figure 5.
It is not proper, but T+(γ, h, O) is proper.

2.7. Backward proper and forward proper arcs. Let α be a homotopy translation arc.
If the backward homotopy streamline T−(α, h, O) is the image of R− under a proper
embedding, that is, if for every compact K of the plane there exists n0 ≤ 0 such that for
every n ≤ n0, (hn(α))# does not intersect K , then α is said to be a backward proper arc
for [h; O]. Similarly, if the forward homotopy streamline T+(α, h, O) is proper, then α is
said to be a forward proper arc for [h; O].

Example A. In the example of Figure 5, β is a backward proper and forward proper arc,
and γ is a forward proper arc but it is not a backward proper arc. Note that if h is a flow,
then every homotopy translation arc which lies on a flow streamline is backward proper
and forward proper.

Example B. In Figure 6, we draw iterates of an arc lying on a streamline of f which
intersects the support of the free half-twist µ. We see that this arc is backward proper but
not forward proper (the iterates are ‘stuck’ by the orbit O′1).
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FIGURE 6. Example of a homotopy streamline for [g; O′].

Translation. If a Brouwer homeomorphism f is conjugate to a translation relative to O,
then we say that [ f ; O] is a translation class. In this case, every homotopy translation arc
for [ f ; O] is backward proper and forward proper.

2.8. Nice family (α±i )1≤i≤r . A nice family (α±i )1≤i≤r associated to [h; O] is a family
of homotopy translation arcs for [h; O] such that:
• for every 1≤ i ≤ r :

– α−i is a backward proper arc;
– α+i is a forward proper arc; and
– α−i and α+i have the same endpoints, lying in the orbit Oi ;

• the backward proper half-streamlines T−(α−i , h, O) are mutually disjoint; and
• the forward proper half-streamlines T+(α+i , h, O) are mutually disjoint.

Note that if (α±i )i is a nice family for a Brouwer mapping class [h; O], then the previous
proper half-streamlines T±(α±i , h, O) are mutually disjoint outside a topological disk of
the plane.

Examples. Figure 7 give an example of a nice family for [ f ; O] with some arcs not
homotopic to arcs included in streamlines, and an example of a nice family for [g; O′]. In
particular, α+3 (respectively, α−4 ) is constructed with an iteration by g−1 (respectively, g)
of an arc lying on the f -streamline of O4 after the support of µ (respectively, of an arc
lying on the f -streamline of O3 before the support of µ).

The following theorem of Handel [Han99] allows us to consider a nice family for every
Brouwer mapping class in the following sections.

THEOREM 2.2. [Han99] For every [h; O], there exists a nice family associated to [h; O].

Remark 2.2. For a statement closer to this one, see [LR13], proposition 3.1. Here we
describe a way to deduce our statement from [LR13, Proposition 3.1], where the statement
is given for generalized homotopy half-streamlines. As seen in Figure 8, in any open
neighborhood of a generalized homotopy half-streamline there exist disjoint homotopy
streamlines whose union contains every point of O included in the generalized homotopy
half-streamline. It follows that the result is still true with the statement given here (that
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FIGURE 7. Example of nice families for [ f ; O] and [g; O′].

FIGURE 8. Finding disjoint homotopy half-streamlines in a neighborhood of a generalized homotopy half-
streamline.

is, when we replace disjoint generalized homotopy half-streamlines by (non-generalized)
disjoint homotopy half-streamlines).

2.9. Reducing line. We say that a line of R2 splits a given set of points X included in
R2
−1 if both connected components of R2

−1 intersect X .
A reducing line 1 for [h; O] is a line in R2

− O such that h(1) is properly isotopic
to 1 relative to O and such that 1 splits O. Note that all the elements of a same orbit
of O are included in the same connected component of R2

−1. Indeed, according to the
straightening principle 2.1, there exists h′ ∈ [h; O] such that h′(1)=1. Figure 9 gives
examples.

FIGURE 9. Examples of reducing lines for [ f ; O] and [g; O′].
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We will need the following (Handel’s) theorem. See [LR13, Proposition 3.3], for this
formulation.

THEOREM 2.3. [Han99] Let [h; O] be a Brouwer mapping class relative to more than one
orbit. Let (α±i )i be a nice family for [h; O]. There exists a reducing line for [h; O] which
is disjoint from every backward proper half-streamline T−(α−i , h, O).

2.10. Homotopy Brouwer line. A homotopy Brouwer line L for [h; O] is a topological
line in R2

− O such that:
• L is homotopically disjoint from h(L);
• L is not isotopic to h(L); and
• if we denote by V the connected components of R2

− L# containing h(L)#, then we
have h(V )# ⊂ V , where h(V )# is the connected component of R2

− h(L)# which does
not contain L#.

This definition does not depend on the chosen metric on R2
− O. Figure 10 gives examples

of Brouwer lines for [ f ; O] and [g; O′].

FIGURE 10. Examples of Brouwer lines for [ f ; O] and [g; O′].

3. Description of the results
Here we give the main definitions and statements of the paper. Proofs will be given in the
following sections.

3.1. Adjacency areas, diagrams and special nice families (§4).

3.1.1. Cyclic order of a nice family. Let [h; O] be a Brouwer mapping class and let
(α±i )i be a nice family for [h; O]. There is a natural cyclic order on the elements of the
nice family (α±i )i given by the order of the homotopy half-streamlines generated by the
α±i at infinity: if we choose a big enough topological circle which intersects each half-
streamline only once, with transverse intersections, the order on the half-streamlines is
given by the order of these intersections (which is independent of the choice of the circle).
In the following, we will call this cyclic order the cyclic order of the nice family.
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3.1.2. Adjacency. If several forward proper arcs (respectively, several backward proper
arcs), are consecutive for the cyclic order of the nice family, then they are said to be
adjacent. A subfamily of the nice family consisting only of consecutive arcs of the same
type (all backwards or all forwards) is said to be a subfamily of adjacency. If two orbits
have forward proper arcs (respectively, backward proper arcs) in the same nice family
which are adjacent, they are said to be forward adjacent (respectively, backward adjacent).
The following proposition is essentially due to Handel [Han99] (a proof will be given
in §4).

PROPOSITION 3.1. Let [h; O] be a Brouwer mapping class. If (α±i )i and (β±i )i are two
nice families for this class, then they have the same cyclic order up to permutation of arcs
of (β±i )i inside the same subfamilies of adjacency.

3.1.3. Diagram associated to a Brouwer mapping class. Using Proposition 3.1, we can
associate a diagram to each Brouwer mapping class (see Figures 11 and 12 for examples).

(1) Let [h; O] be a Brouwer mapping class relative to r orbits. Choose a nice family
(α±i )1≤i≤r .

(2) On the boundary component of a disk, choose one point for each arc of (α±i )i in such
a way that the 2r chosen points respect the cyclic order of (α±i )i .

(3) For every i , draw an arrow from the point representing α−i to the point representing
α+i . Label this arrow with i .

(4) Exchange the points in a same subfamily of adjacency, if necessary, to eliminate as
many crossings as possible between the arrows.

We identify two diagrams if they have the same combinatorics.

PROPOSITION 3.2. The diagram associated to a Brouwer mapping class is a conjugacy
invariant: if two Brouwer mapping classes are conjugated, then they have the same
diagram.

We say that a diagram D is determinant if, up to conjugacy, there exists only one
Brouwer mapping class whose associated diagram is D. It is a natural question to ask
which diagrams are determinant.

For Brouwer mapping classes relative to one, two and three orbits, the diagram is a total
invariant: every diagram with one, two or three arrows is determinant (see [Han99] for
one and two orbits and [LR13] for three orbits).

However, for Brouwer mapping classes relative to more than three orbits, the diagram
is not a total invariant. For example, consider the flow f and the f -free half-twist µ of
examples A and B. The Brouwer mapping classes [µ2 f ; O′] and [ f ; O′] have the same
diagram but are not conjugated (we will prove later that they are not conjugated). In §6, we
will give combinatorial conditions on diagrams to prove that some of them are determinant.
In §8 we will describe all the determinant diagrams for Brouwer mapping classes relative
to four orbits.
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FIGURE 11. Diagrams associated to [ f ; O] and [g; O′] (examples A and B of §2).

FIGURE 12. An example of step 4 (this is Example 2.9 of Handel [Han99]).

3.1.4. Special nice families. A reducing set is a union of mutually disjoint and non-
isotopic reducing lines. Any connected component of the complement of a reducing set is
said to be a stable area. In particular, every stable area for [h; O] is isotopic to its image by
h relative to O. If the reducing lines of a given reducing set R are geodesic, then, according
to the straightening principle 2.1, there exists h′ ∈ [h; O] such that for every stable area Z
of the complement of R h′(Z)= Z . The following proposition will be proved in §4.3.

PROPOSITION 3.3. Let [h; O] be a Brouwer mapping class. Let (1k)k be a reducing
set. There exists a nice family (α±i )i for [h; O] such that, for every k, α−i and α+i are
homotopically disjoint from 1k for every i .

3.2. Walls for a Brouwer mapping class (§5). We define a canonical reducing set (the
walls) and prove that this set splits the plane into three types of stable area: stable areas
disjoint from O, translation areas and irreducible areas. In the next section, we will give
combinatorial conditions for the existence of irreducible areas.

3.2.1. Translation areas. Henceforth, if Z is a stable area of [h; O], whenever we say
‘orbits of Z ’, it means ‘orbits of O contained in Z ’.

Definition 3.1. (Translation area) Let [h; O] be a Brouwer mapping class. We say that a
stable area Z of [h; O] is a translation area if all the orbits of Z are backward adjacent and
forward adjacent for [h; O].

Moreover, a translation area Z is said to be maximal if there exists no translation area
Z ′ non-isotopic to Z and is such that Z ⊂ Z ′.

Note that every translation area is included in a maximal translation area.
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FIGURE 13. Example of a Brouwer class whose diagram has two backward and forward adjacent arrows which
are not in the same translation area.

Remark 3.1. The orbits of a same translation area for a Brouwer mapping class are
represented by arrows which are backward and forward adjacent in the diagram associated
to the Brouwer class. However, some arrows which are backward and forward adjacent
do not represent orbits of a translation area. For an example, see Figure 13: the Brouwer
class that we consider is the product of a flow with a double free half-twist between the
two arrows that intersect the gray disk of the figure. The two arrows on the bottom of the
diagram are backward and forward adjacent but not in the same translation area.

The following proposition implies that every Brouwer class has flow streamlines on its
translation areas. It will be proved in §5.1.

PROPOSITION 3.4. If Z is a translation area, every backward (respectively, forward)
proper arc of a nice family which is included in Z is also forward (respectively, backward)
proper.

3.2.2. Irreducible areas.

Definition 3.2. (Irreducible area) Let [h; O] be a Brouwer mapping class. We say that a
stable area Z of [h; O] is an irreducible area if:
• Z contains at least two orbits of O; and
• there is no reducing line of [h; O] strictly included in Z (that is, homotopically disjoint

from every boundary component of Z and non-isotopic to any of those).

3.2.3. Walls.

Definition 3.3. (Wall) Let [h; O] be a Brouwer mapping class. An isotopy class of a
reducing line 1 for [h; O] is called a wall for [h; O] if every reducing line for [h; O]
is homotopically disjoint from 1.

The proof of the following theorem is the aim of §5.

THEOREM 3.5. Let [h; O] be a Brouwer mapping class. Let W be a family of pairwise
disjoint reducing lines containing exactly one representative of each wall for [h; O]. If Z
is a connected component of R2

−W, then exactly one of the following holds:
• Z is an irreducible area;
• Z is a maximal translation area; or
• Z does not intersect O.
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FIGURE 14. Examples of reducing lines for a translation relative to three orbits.

FIGURE 15. Diagrams with walls associated to [ f ; O] and [g; O′] (examples A and B of §2).

Remark 3.2. A maximal translation area has either one or two boundary components.

Remark 3.3. The set of walls is empty if and only if [h; O] is a translation class.

Proof. Assume that [h; O] is a translation class relative to r ≥ 2 orbits, then it is
conjugated to the unitary horizontal translation relative to Z× {1, . . . , r}. Hence there
are r − 1 horizontal non-homotopic reducing lines (see Figure 14). Every non-horizontal
reducing line intersects at least one horizontal line and, for every horizontal line 1, there
exists at least one reducing line which intersects 1 (see Figure 14). Thus the set of walls
of [h; O] is empty.

Conversely, assume that the set of walls of [h; O] is empty; then, according to
Theorem 3.5, R2 is either an irreducible area or a maximal translation area. But, according
to Theorem 2.3, every Brouwer mapping class relative to more than one orbit admits
at least one reducing line, and hence R2 is never an irreducible area. Thus [h; O] is a
translation class. �

Since there exists a nice family disjoint from the walls (according to Proposition 3.3),
it makes sense to add the set of walls on the diagram defined in §4 (see Figure 15 for
two examples). We can see the maximal translation areas on this diagram: the backward
ends of their arrows are adjacent in the diagram and the forward ends of their arrows
are adjacent in the diagram. Consequently, according to Theorem 3.5, we can also see
the irreducible areas. To help the reader, we have colored the irreducible areas gray. The
resulting diagram with walls is a conjugacy invariant of the Brouwer mapping class which
is more precise than the diagram (without walls), but still not total. In the next section we
will give conditions to determine which diagrams with walls are determinant.

https://doi.org/10.1017/etds.2015.122 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2015.122


1780 J. Bavard

3.3. Determinant diagrams and irreducible areas (§6).

3.3.1. Determinant diagrams. The following propositions motivate the search for
necessary combinatoric conditions on diagrams (without walls) for the existence of
irreducible areas. They will be proved in §6.1.

PROPOSITION 3.6. A Brouwer mapping class [h; O] is a flow class if and only if no
connected component of the complement of the set of walls for [h; O] is an irreducible
area.

PROPOSITION 3.7. If two flow classes have the same diagram, then they are conjugated.

PROPOSITION 3.8. A diagram with walls and without crossing arrows is determinant if
and only if there is no irreducible area in the wall complement.

3.3.2. Combinatorics of irreducible areas. If [h; O] is a Brouwer class relative to r
orbits, we denote by 2r ′ the number of adjacency subfamilies of [h; O]. If r ′ = r , then we
say that the orbits of [h; O] alternate (in this situation, every adjacency subfamily has only
one element). We will prove Proposition 3.9 in §6.2.

PROPOSITION 3.9. (Combinatorics of irreducible areas) Let [h; O] be a Brouwer mapping
class and let Z be an irreducible area for [h; O]. Then:
(1) the orbits of Z are not all backward adjacent, nor all forward adjacent for [h; O];
(2) Z has at least two boundary components; and
(3) the orbits of [h; O ∩ Z ] do not alternate.

This proposition gives tools for knowing which diagrams are determinant. In particular,
we have the following corollary, which will be proved in §6.3.

COROLLARY 3.10. Let [h; O] be a Brouwer mapping class relative to r orbits. Denote by
2r ′ the number of adjacency subfamilies of [h; O]. If r ′ = 1, 2 or r , then [h; O] is a flow
class.

Remark 3.4. It was proved in [Han99] (for r ′ = 1) and [LR13] (for r ′ = r ) that if r ′ = 1
or r ′ = r , then [h; O] is a flow class (see [LR13, Proposition 3.1 and Lemma 3.6]).

COROLLARY 3.11. Let [h; O] be a Brouwer mapping class relative to r orbits.
(1) If r ≥ 3, there exist at least two disjoint and non-isotopic reducing lines for [h; O].
(2) If r ≥ 2, there exist at least two translation areas for [h; O] which have exactly one

boundary component.
(3) There exists a nice family (α±i )i and j 6= k such that:

• relative to O, α−j is isotopic to α+j and α−k is isotopic to α+k ; and
• in the cyclic order, α−j and α+j (respectively, α−k and α+k ) are neighbors.

The third point of Corollary 3.11 can be reformulated as follows.

COROLLARY 3.12. Let [h; O] be a Brouwer class relative to r ≥ 2 orbits. There exist at
least two disjoint backward and forward proper streamlines T and S for [h; O].
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Moreover, the orbits which are neither in T nor S are included in the same connected
component of the complement of S ∪ T .

3.4. Classification relative to four orbits (§8). The aim of §8 is to give a complete
description of Brouwer mapping classes relative to four orbits. We first find every diagram
with walls which are not determinant. For the Brouwer mapping classes with a non-
determinant diagram, we define a new conjugacy invariant, the tangle (see §8.2.2). This
tangle is an isotopy class of curves on the cylinder with two marked points, up to horizontal
twists (see Figure 16 for an example). We set that the tangle of Brouwer mapping classes
without irreducible area is the empty set. We claim that the couple (diagram with walls,
tangle) is a total conjugacy invariant for Brouwer mapping classes relative to four orbits.

FIGURE 16. Example of a couple (diagram with walls, representative of the tangle).

THEOREM 3.13. Two Brouwer mapping classes relative to four orbits are conjugated if
and only if they admit the same couple (diagram with walls, tangle).

We describe which tangles are realized by Brouwer mapping classes and call them
adapted tangles.

Finally, every couple (diagram with walls, adapted tangle) is realized by:
• a flow if the diagram is determinant or if the tangle is trivial; and
• a product of a flow and a finite number of free half-twists if the diagram is not

determinant and the tangle is not trivial.
This gives a complete description of the Brouwer mapping classes relative to four orbits.

4. Adjacency areas, diagrams and special nice families
4.1. Adjacency areas. Let [h; O] be a Brouwer mapping class. Let (α±i )1≤i≤r be a
nice family. Let {α+i1

, . . . , α+in
} be a subfamily of adjacency for [h; O]. For simplicity of

notation, we assume that ik = k for every 1≤ k ≤ n. Choose a complete hyperbolic metric
on R2

− O. Let L be a geodesic topological line in R2
− O such that (see Figure 17):

• one connected component of R2
− L , denoted by A, contains an infinite component

of each T+i for 1≤ i ≤ n;
• for every 1≤ i ≤ n, L intersects T+i := T+(α+i , h, O) at exactly one point; and
• A does not contain any point of O outside those n half-streamlines.
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FIGURE 17. Example of a forward adjacency area.

Definition 4.1. (Adjacency area) With the previous notation, we say that A is a forward
adjacency area for [h; O]. A forward adjacency area for [h−1

; O] is said to be a backward
adjacency area for [h; O].

Note that every adjacency area can be obtained with the following construction.

Construction of an adjacency area. With the previous notation, suppose that the α+i for
i = 1, . . . , n are ordered from α+1 to α+n in the cyclic order of the nice family. Choose one
point xi ∈ Oi in every T+i . Denote by L i the unbounded component of T+i − {xi }.
• If n = 1, let U be an open neighborhood of L1 which is homotopic to L1 relative to O.
• If n > 1, denote by γi a geodesic arc of R2

− O which admits xi and xi+1 as endpoints
for every i ≤ n − 1, and such that one connected component of L i ∪ γi ∪ L i+1 does
not intersect O. In particular, note that {hn(γi )#}n≥0 is locally finite. Now consider
the line L̃ := L1 ∪ γ1 ∪ · · · ∪ γn ∪ Ln . Let V be the connected component of R2

− L̃
which contains L2 if n ≥ 3 and which does not intersect O if n = 2. Let U be an open
neighborhood of V, isotopic to V relative to O.

Assume that the boundary component L of the closure of U is geodesic: then U

is an adjacency area. Since there exist pairwise disjoint homotopy half-streamlines
(Theorem 2.2), there exist pairwise disjoint adjacency areas whose union contains an
infinite component of every half-orbit (see Figure 18).

Definition 4.2. Choose an adjacency area for every subfamily of adjacency such that
the chosen areas are mutually disjoint. Such a family is said to be a complete family of
adjacency areas for [h; O].

In particular, the union of the elements of a complete family of adjacency areas contains
every point of O (but a finite number). Moreover, if we consider two complete families of
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FIGURE 18. Example of a complete family of backward and forward adjacency areas.

adjacency areas, then there exists a compact K such that these two families are isotopic
relative to O in R2

− K .
The following theorem is essentially due to Handel [Han99]. This statement is a

reformulation of [LR13, Proposition 3.1].

THEOREM 4.1. (Handel) Let [h; O] be a Brouwer class which is not a translation class.
Choose a complete family of adjacency. There exists a reducing line disjoint from all the
backward adjacency areas of the complete family.

Proof. There exists a family of generalized homotopy half-streamlines such that, for
every backward adjacency area A of the complete family, O ∩ A is included in one of
the backward generalized homotopy half-streamlines. Proposition 3.1 of [LR13] gives a
reducing line disjoint from all the backward generalized homotopy half-streamlines of the
family. The result follows. �

PROPOSITION 4.2. Let A be an adjacency area for [h; O] and let L be its boundary
component.
(1) L is a homotopy Brouwer line.
(2) The family (hk(L)#)k∈N is locally finite.
(3) (Handel) Let β+ be any forward proper arc with endpoints in an orbit of O which

intersects A. There exists k0 such that for every k > k0, hk(β+)# is included in A.

Proof. Every adjacency area can be seen as in the previous construction. Thus (1) and
(2) follow, because {hn(γi )#}n≥0 is locally finite for every i , as well as {hn(L i )#}n≥0. The
constructed U is a neighborhood of a ‘generalized homotopy streamline’ (see [Han99] and
Figure 19), and hence property (3) holds, according to [Han99, Lemma 4.6]. �
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FIGURE 19. Neighborhoods of generalized homotopy half-streamlines are homotopic to adjacency areas.

COROLLARY 4.3. Let [h; O] be a Brouwer mapping class, and let A be an adjacency area
for [h; O]. Then there exists a homeomorphism χ of the plane, preserving the orientation,
such that χhχ−1 is isotopic relatively to χ(O) to a homeomorphism which coincides with
a translation on χ(A).

Proof. This follows from (1) and (2) of Proposition 4.2. �

4.2. Diagrams.

Proofs of Propositions 3.1 and 3.2. Let (α±i )i and (β±i )i be two nice families for a
Brouwer class [h; O]. According to (3) of Proposition 4.2, for every i there exists an
adjacency area A and there exists k0 ∈ N such that for every k > k0, hk(α+i ) and hk(β+i ) are
included in A. We have a similar result for backward arcs. It follows that (α±i )i and (β±i )i
have the same cyclic order up to permutation of arcs of (β±i )i inside the same subfamilies
of adjacency, which is Proposition 3.1.

As a corollary, we get Proposition 3.2: if two Brouwer mapping classes are conjugated,
then they have the same diagram. �

4.3. Special nice families. The aim of this section is to prove Proposition 3.3, that is,
that for every reducing set R, there exists a nice family which is disjoint from R.

4.3.1. Intersections between reducing lines and adjacency areas.

LEMMA 4.4. Let [h; O] be a Brouwer mapping class, with a complete family of adjacency
areas. Let 1 be a reducing line. Then 1 is isotopic relative to O to a topological line 1′

which intersects at most two adjacency areas of the family.
Moreover, for any complete hyperbolic metric on R2

− O, the intersection between the
geodesic representative of 1 for this metric and any adjacency area has at most a finite
number of connected components.

Proof. Let (α±i )i be a nice family for [h; O]. Choose a complete hyperbolic metric on
R2
− O. For every i , we denote by T+i (respectively, T−i ), the homotopy half-streamline

T+(α+i , h, O) (respectively, T−(α+i , h, O)). According to the straightening principle 2.1,
there exists h′ ∈ [h; O] such that h′(T+i )⊂ T+i , T−i ⊂ h′(T−i ) and h′(1#)=1#.

CLAIM 1. Let A be an adjacency area. We denote by ∂A its boundary component. If
1# ∩ ∂A is non-empty, then 1# ∩ h′n(∂A)# is non-empty for every n ∈ Z.
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Proof of the Claim 1. Since 1# ∩ ∂A is non-empty, h′n(1#) ∩ h′n(∂A) is non-empty for
every n ∈ Z. Since 1# and ∂A are geodesic, they are in minimal position. Hence for every
n, h′n(1#) and h′n(∂A) are also in minimal position. It follows that h′n(1#) ∩ h′n(∂A)# is
non-empty. �

CLAIM 2. Let A be an adjacency area. If 1# ∩ A is non-empty, then for every compact
subset K of the plane, (1# ∩ A)− K is non-empty.

Proof of the Claim 2. Assume A is a forward adjacency area (if not, consider h′−1 instead
of h). Let K be any compact subset of the plane. Assume that1# ∩ A is non-empty. Since
(h′n(∂A)#)n∈N is locally finite (according to (2) of Proposition 4.2), there exists k ∈ N
such that h′k(∂A)# does not intersect K . Since ∂A is a homotopy Brouwer line (according
to (1) of Proposition 4.2), h′k(∂A)# is included in A. According to Claim 1, h′k(∂A)#
intersects 1#. Claim 2 follows. �

Denote by (Ai )1≤i≤l the adjacency areas of the chosen complete family. According
to Claim 1, if we prove that for some (ni )i ∈ Zl , 1# intersects at most two of the
h′ni (∂Ai )#, then 1# intersects at most two of the ∂Ai . Hence, up to replacing (Ai )1≤i≤l

by (h′ni (∂Ai )#)1≤i≤l such that1# intersects at most two of the h′ni (∂Ai )#, we can assume
that for every i, j , Ai is disjoint from α−j .

CLAIM 3. There exists a topological disk K of the plane such that every connected
component of 1# − K intersects at most one adjacency area.

Proof of the Claim 3. Assume, by contradiction, that for every K , one connected
component of 1# − K intersects two adjacency areas. Then there exist two adjacency
areas, say A−i and A+j , such that 1# ∩ A−i and 1# ∩ A+j have an infinite number of
connected components. Moreover, taking K which intersects every adjacency area of the
complete family, we can suppose that A−i follows A+j in the cyclic order at infinity of the
adjacency areas. Hence we can suppose that A−i is a backward adjacency area, and A+j is
a forward adjacency area.

It follows that there exists a subsegment γ of 1# such that γ is the concatenation of
three smaller subsegments γ1 ? γ2 ? γ3 such that (see Figure 20):
• γ1 ⊂ A−i and its endpoints are included in ∂A−i ;
• γ3 ⊂ A+j and its endpoints are included in ∂A+j ; and

• γ2 does not intersect Å−i not Å+j , where Å denotes the interior A − ∂A of A.
Moreover, we can choose γ outside any chosen topological disk of the plane: in particular,
we choose it disjoint from the α−i . Since1# and the boundary components of the adjacency
areas are in minimal position, it follows that:
• γ1 intersects a backward homotopy half-streamline T−i of A−i ;
• γ2 does not intersect any homotopy half-streamline of the family (T±k )k ; and
• γ3 intersects a forward homotopy half-streamline T+j of A+j .

Hence there exists a subsegment δ of γ , which contains γ2, such that its endpoints are
in T−i and T+j but its interior does not intersect any T±k . Since h′ acts as a translation on
the T±k , it follows that h′(δ) intersects δ. This gives a contradiction because1# is invariant
by h′ and without self-intersection (see Figure 21). �
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FIGURE 20. Example of a configuration with some K and some γ .

FIGURE 21. Image of δ under h′.

Let K be a topological disk given by Claim 3. Since 1# is proper, there are only
two unbounded connected components in 1# − K . According to Claim 2, as 1# and the
boundary components of the adjacency areas are in minimal position, every connected
component of 1# − K which intersects an adjacency area is unbounded. Hence 1#

intersects at most two adjacency areas. Moreover, since 1# and ∂Ak are geodesics, the
second part of the lemma follows. �

Remark. If a reducing line intersects two adjacency areas, it does not necessarily intersect
one backward adjacency area and one forward adjacency area: some reducing lines
intersect two adjacency areas of the same type (see Figure 22 for an example).

The following lemma will be used in the proof of (2) of Proposition 3.9.

LEMMA 4.5. Let [h; O] be a Brouwer class which is not a translation class. Choose
a complete family of adjacency areas. There exists a reducing line 1 such that the
intersection of 1 with the complement of the forward adjacency areas is bounded.

Proof. Let (α±i )i be a nice family such that each α−i intersects the boundary component
of a backward adjacency area of the chosen family (such a family exists: to find it, we can
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FIGURE 22. Example. Let [ f ; O] be a flow class with this diagram: the reducing line 1 intersects two forward
adjacency areas.

take well-chosen iterates of the arcs of any nice family). Since [h; O] is not a translation
class, according to Theorem 4.1, there exists a reducing line1which is disjoint from every
backward adjacency area. Choose a complete hyperbolic metric on R2

− O. Suppose 1 is
geodesic. Let K be a topological compact disk of the plane such that:
• the boundary component ∂K of K is geodesic;
• K intersects every adjacency areas of the family; and
• the union A of K with all the adjacency areas of the family contains O.
Since 1 is proper, it intersects ∂K only a finite number of times. Denote the two
unbounded components of 1− K by 1+ and 1−. Since 1+ and 1− are disjoint from
the backward adjacency areas, we can isotopy each of them, if necessary, to include 1 in
a forward adjacency area. �

4.3.2. Proof of Proposition 3.3.

PROPOSITION 3.3. Let [h; O] be a Brouwer mapping class. Let (1k)k be a reducing
set. There exists a nice family (α±i )i for [h; O] such that for every k, α−i and α+i are
homotopically disjoint from 1k for every i .

Proof. Choose a complete hyperbolic metric on R2
− O. As usual, we denote by L# the

geodesic representative of any line or arc L . Choose a complete family of adjacency
areas for [h; O]. In every adjacency area, we will construct pairwise disjoint backward or
forward proper arcs for each orbit which intersects the area, such that every constructed arc
is disjoint from the reducing set. By iterating those arcs so that the backward and forward
arcs of a given orbit have the same endpoints, we get the required nice family. Let A be
an adjacency area of the complete family of adjacency. Suppose A is a forward adjacency
area (if not, consider h−1). Note that ∂A is geodesic (by definition). For simplicity of
notation, we assume that 11, . . . , 1N are the reducing lines of (1k)k intersecting A. We
assume that these reducing lines are geodesic. According to Lemma 4.4, each of them has
an unbounded connected component included in A. Denote this unbounded component
for 1k by 1k

+. Suppose that O1, . . . , Om are the orbits of O which intersect A. We will
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find m mutually disjoint forward proper arcs (β+i )1≤i≤m for [h; O], included in A and
homotopically disjoint from 1k for every k.

Applying the straightening principle 2.1 to the families (1k)k and (hn(∂A))n≥0, we can
find h′ ∈ [h; O] such that h′(1k)=1k for every k and (h′)n(∂A)= hn(∂A)# for every n.
Note that h′ is conjugate to the translation on A (according to Corollary 4.3).

Let C be the quotient of A by h′. Denote by π the quotient map. In particular:
• C is a topological cylinder;
• π(O ∩ A) is a set of m points x̂1, . . . , x̂m on C;
• for every k, π(1k

∩ A)= π(1k
+) is a separating topological circle of C−

{x̂1, . . . , x̂m}; and
• the π(1k

∩ A) are mutually disjoint.
For simplicity of notation, we see C as a vertical cylinder. There exists a homeomorphism
φ of C sending each π(1k

∩ A) on a horizontal circle γk and the family (x̂i )i on points
of C with mutually distinct heights. Now, for every 1≤ i ≤ m, consider the horizontal
circle γ ′i containing φ(x̂i ). Every γ ′i is disjoint from φπ(1k

∩ A) for every k. Hence
(φ−1(γ ′i ))i is a family of mutually disjoint curves disjoint from π(1k

∩ A) for every k.
For every i , choose a lift β+i of φ−1(γ ′i ) included in A: that is, an arc included in A
such that π(β+i )= φ

−1(γ ′i ). Such a β+i is a translation arc. Since {h′n(∂A)#}n≥0 is locally
finite (Proposition 4.2), the β+i are forward proper . They are disjoint from the 1k , as
required. �

5. Walls for a Brouwer mapping class
The main aim of this section is to prove that the set of walls splits R2 into translation areas,
irreducible areas and stable areas that do not intersect O (Theorem 3.5).

5.1. Translation areas.

LEMMA 5.1. Let Z be a stable area of a Brouwer class such that all the orbits of Z are
forward adjacent. Then every backward proper arc included in Z is forward proper.

Proof. Let [h; O] be a Brouwer class with a complete family of adjacency areas. Let Z
be a stable area for [h; O] which intersects only one forward adjacency area. Denote by
A this adjacency area. Up to replacing h by h′ ∈ [h; O], according to the straightening
principle 2.1, we can assume that h(Z)= Z . Let (α±i )i be a nice family for [h; O] disjoint
from the boundary components of Z (such a family exists, according to Proposition 3.3).
We prove the following claim, which is a consequence of Theorem 5.5 of Handel [Han99].

Claim. For every i such that α−i is in Z , there exists n such that hn(α−i )# is in A.

We use the definitions and notations of Handel [Han99, §5] (‘fitted family’). We
denote by W the Brouwer subsurface R2

−
⋃

k A+k , where
⋃

k A+k is the union of forward
adjacency areas. If α−i ∈ Z is such that for every n ≥ 0, hn(α−i )# ∩W 6= ∅, then there
exists a fitted family T ⊂ RH(W, δ+W ) such that:
• every s ∈ T is included in Z (because the elements of T are subsegments of iterates of

α−i , which is included in Z , and h(Z)= Z ); and
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• there exists t ∈ T whose endpoints lie on distinct components of δ+W (this is [Han99,
Theorem (5.5.c)]).

Since δ+W ∩ Z has only one component (the boundary component of A), the last point
does not hold, and thus every α−i ∈ Z is such that, for every sufficiently big n, hn(α−i ) is
homotopically included in A. It follows that every α−i ∈ Z is forward proper. �

PROPOSITION 3.4. If Z is a translation area, every backward (respectively, forward)
proper arc of a nice family which is included in Z is also forward (respectively, backward)
proper.

Proof. By definition, all the orbits of a translation area are backward adjacent and forward
adjacent. The result is a consequence of Lemma 5.1 applied to the Brouwer class, and
respectively, to its inverse. �

5.2. Intersections between reducing lines.

LEMMA 5.2. (Intersection of two reducing lines) Let [h; O] be a Brouwer mapping class
and let1 and1′ be two reducing lines for [h; O]. We assume that1 and1′ are in minimal
position. Then one of the following situations holds.
(1) 1 ∩1′ = ∅.
(2) 1 ∩1′ contains exactly one point.
(3) 1 ∩1′ is an infinite set.

Proof. Choose a complete hyperbolic metric on R2
− O. Taking their images by isotopies

if necessary, we can suppose that 1 and 1′ are geodesic. We use the straightening
principle 2.1 to find a homeomorphism h′ ∈ [h; O] such that h′ preserves 1 and 1′.

If 1 ∩1′ contains more than one point, then there exists a bounded connected
component of R2

− (1 ∪1′) which contains one point x ∈ O. Denote this component
by Cx . Then h′(Cx ) is a bounded component of R2

− (1 ∪1′) that is different
from Cx . Indeed, if h′(Cx ) coincides with Cx , then h′n(Cx )= Cx for every n ≥ 0.
Hence {h′n(x)}n≥0 is included in Cx . This is not possible because h′n(x)= hn(x) for
every n: since h is a Brouwer homeomorphism, {hn(x)}n≥0 is not bounded [Gui94,
Proposition 3.5].

For the same reasons, for every k < n ∈ N, hn(Cx ) is disjoint from hk(Cx ). Thus there
exists an infinite number of bounded connected component of R2

− (1 ∪1′). Hence 1
and 1′ have an infinite number of intersection points. �

LEMMA 5.3. (Intersection between a reducing line and a translation area) Let [h; O] be a
Brouwer mapping class and let Z be a translation area for [h; O]. Let 1 be a reducing
line. If there exists a boundary component L of Z such that L and1 are not homotopically
disjoint, then 1 ∩ L is an infinite set.

Proof. The line L is a reducing line,and hence it is isotopic to its image by h. Choose
a complete hyperbolic metric on R2

− O. Suppose that L and 1 are geodesic. For every
orbit Oi of O included in Z , we choose a homotopic proper translation arc αi included in
Z such that the αi are mutually disjoint (given by Proposition 3.3). If α is one of these
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homotopy translation arcs, we denote the proper streamline
⋃

n∈Z hn(α)# by Tα . Since
L and 1 are not homotopically disjoint, there exists αi such that Tαi ∩1 6= ∅. Since Tα j

and L are disjoint for every j , the straightening principle 2.1 gives us a homeomorphism
h′ ∈ [h; O] which preserves L , 1 and Tα j for every i .

Suppose that 1 ∩ L is not infinite. According to Lemma 5.2, since this intersection is
not empty, it contains only one point, say x . In particular, we have h′(x)= x . Choose an
orientation on 1. Let y be the first intersection point between 1 and Tαi after x on 1.
Denote the segment of 1 between x and y by [xy]. We have h′(y) ∈ Tαi and h′(]xy[) ∩
(L ∪ Tαi )= ∅, and hence y = h′(y). This gives a contradiction because y is contained in
a proper translation arc for h′. �

LEMMA 5.4. (Intersection between reducing lines: infinite set case) Let [h; O] be a
Brouwer mapping class and let 1 and 1′ be two reducing lines for [h; O]. We assume
that 1 and 1′ are in minimal position.

If 1 ∩1′ is an infinite set, then 1 ∪1′ is included in a translation area.

Proof. Choose a complete hyperbolic metric on R2
− O. Isotopying if necessary, we can

assume that 1 and 1′ are geodesic. The straightening principle 2.1 gives us h′ ∈ [h; O]
which preserves1 and1′. Choose a complete family of mutually disjoint adjacency areas
for [h; O]. Choose a bounded connected component Cx of the complement of 1 ∪1′

which contains a point x of an orbit Oi of O. Denote by A− and A+ the backward and
forward adjacency areas of the chosen complete family which are intersected by Oi . As
shown in the proof of Lemma 5.2, h′(Cx ) is a bounded connected component of R2

−

(1 ∪1′) that is different from Cx . Hence every path from x to h′(x) intersects 1 ∪1′.
According to Proposition 3.3, there exists a forward proper arc α+ for Oi which joints x

to h′(x) and which is disjoint from1′. Denote the forward half-streamline
⋃

n≥0 hn(α+)#

by T+(α+). Note that T+(α+) is disjoint from 1′. According to Proposition 4.2, there
exists an unbounded component of T+(α+) which is included in A+. Since T+(α+) is
proper and disjoint from 1′, the straightening principle 2.1 gives us h1 ∈ [h; O] which
preserves T+(α+), 1 and 1′. The arc α+ intersects 1, and hence hn

1(α
+) also intersects

1 for every n ∈ N. It follows that 1 intersects A+.
The same argument with a backward proper arc α− disjoint from 1′ shows that 1 also

intersects A−. According to Lemma 4.4, every geodesic reducing line intersects at most
two adjacency areas: for 1, these adjacency areas are A− and A+. Interchanging 1 and
1′, we get, by the same argument, that 1′ also intersects A− and A+.

We choose an orientation on 1 and 1′ such that they are oriented from A− to A+.
There exists an unbounded connected component of the complement of 1 ∪1′ which is
on the left of1 and1′. We denote its boundary component by Ll . Likewise, we denote by
Lr the boundary component of the unbounded connected component of the complement
of 1 ∪1′ which is on the right of 1 and 1′. The two lines Ll and Lr are proper, because
they are unions of segments of two topological lines. Moreover, they are preserved by h′.

Now we have the following cases, depending on the positions of the orbits.
• If Lr and Ll split the set of orbits, then their geodesic representatives (Lr )# and (Lg)#

are disjoint reducing lines which intersect the same adjacency areas. Denote by Z the
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FIGURE 23. Neighborhood of 1 ∪1′.

stable area bounded by (Lr )# and (Lg)#. Thus Z intersects only two adjacency areas,
A− and A+, and hence Z is a translation area, which contains 1 and 1′.

• If neither Lr nor Ll split the set of orbits, then there exist only two adjacency areas.
Hence [h; O] is a translation, and the whole plane is a translation area.

• If only one of Lr and Ll splits the set of orbits, Lr , for example, then Lr is a reducing
line for [h; O]. The connected component of R2

− (Lr )# which contains 1 and 1′ is
a translation area. �

LEMMA 5.5. (Intersection between reducing lines: case with exactly one point) Let [h; O]
be a Brouwer mapping class and let1 and1′ be two reducing lines for [h; O]. We assume
that 1 and 1′ are in minimal position.

If 1 ∩1′ contains exactly one point, then there exist four reducing lines that are
mutually non-isotopic and homotopically disjoint and disjoint from 1 and 1′.

Moreover, if we denote the intersection point by p and the two half-lines of 1− {p}
(respectively, of 1′ − {p}) by 11 and 12 (respectively, 1′1 and 1′2), these four reducing
lines are isotopic relative to O to 11 ∪12, 1′1 ∪12, 11 ∪1

′

2 and 1′1 ∪1
′

2.

Proof. Choose a complete hyperbolic metric on R2
− O. Isotopying if necessary, we can

assume that 1 and 1′ are geodesic. The straightening principle 2.1 gives us h′ ∈ [h; O]
which preserves 1 and 1′.

Consider a proper open neighborhood U of 1 ∪1′ which does not intersect O and
which is isotopic to 1 ∪1′ relative to O (as in Figure 23). The complement of U has four
connected components. Each of them contains at least one orbit, because 1 ∪1′ are in
minimal position. Hence the boundary component of the closure of U in R2 is a union of
four reducing lines which are mutually non-isotopic, mutually disjoint, and each of them
is disjoint from 1 ∪1′. �
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5.3. Study of the set of walls.

5.3.1. Maximal translation areas. We show that there exist a finite number of maximal
translation areas (Proposition 5.6), and that the boundary components of these areas are
walls (Proposition 5.7).

PROPOSITION 5.6. Let [h; O] be a Brouwer mapping class. Up to isotopy, there exist a
finite number of maximal translation areas. Moreover, they are mutually homotopically
disjoint.

Remark 5.1. The statement 5.6 is generally false if we replace maximal translation area by
translation area. Indeed, if a translation area Z of a Brouwer class [h; O] contains at least
two orbits, then there are an infinite number of non-isotopic subtranslation areas included
in Z . See Figure 24 for examples of reducing lines for the translation.

FIGURE 24. Example of two reducing lines for the translation: the complements are translation areas.

Proof of Proposition 5.6. We choose a complete hyperbolic metric on R2
− O and a

complete family of adjacency areas for [h; O]. Let Z and Z ′ be two non-homotopic
maximal translation areas. Denote by A−, A+ (respectively, B−, B+), the adjacency areas
intersected by Z (respectively, Z ′). We claim that:
(1) the boundary components of Z and Z ′ are homotopically disjoint; and
(2) no boundary component of Z is included in Z ′.

Proof of (1). If a boundary component L of Z intersects a boundary component L ′ of Z ′,
then L and L ′ have an infinite number of intersection points (according to Lemma 5.3).
Hence L and L ′ are included in the same translation area (according to Lemma 5.4).
Denote this translation area by Z ′′, and the two adjacency areas intersected by Z ′′ by C−

and C+. Since L and L ′ are reducing lines, they intersect at most two adjacency areas: C−

and C+. The cyclic order of the adjacency areas at infinity is such that backward areas and
forward areas alternate (by definition of adjacency areas). It follows that A− = B− = C−

and A+ = B+ = C+.

According to Lemma 2.1, there exists h′ ∈ [h; O] such that h′(Z)= Z and h′(Z ′)= Z ′.
It follows that the boundary components of Z ∪ Z ′ are reducing lines, and hence Z ∪ Z ′
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is a stable area. Since Z ∪ Z ′ intersects only two adjacency areas (C− and C+), it is a
translation area. This gives a contradiction with the maximality of Z and Z ′ as translation
areas.

Proof of (2). If a boundary component L of Z is included in Z ′, then there exists an
orbit Oi included in Z ∩ Z ′. Hence, again, A− = B− and A+ = B+, which gives a
contradiction.

We complete the proof of Proposition 5.6. Every maximal translation area contains at
least one orbit. Since there are a finite number of orbits and since these areas are mutually
disjoint, there are a finite number of maximal translation areas. �

PROPOSITION 5.7. Let [h; O] be a Brouwer mapping class and let Z be a maximal
translation area. Each isotopy class of a boundary component of Z is a wall of [h; O].

Proof. Let L be a boundary component of a maximal translation area Z . We need to show
that if 1 is a reducing line which is non-isotopic to L , then 1 ∩ L = ∅. According to
Lemma 5.3, if a reducing line 1 intersects L , then 1 ∩ L is an infinite set. According
to Lemma 5.4, it follows that L ∪1 is included in a translation area. Since maximal
translation areas are mutually disjoint (according to Proposition 5.6), 1 is included in
Z (which contains L): this is impossible, hence every reducing line 1 is homotopically
disjoint from L . �

5.3.2. Outside the translation areas. This subsection completes the picture: there are
a finite number of maximal translation area which are mutually homotopically disjoint,
and outside those areas there are only a finite number of geodesic reducing lines which
intersect mutually in zero or one point.

LEMMA 5.8. Let [h; O] be a Brouwer mapping class. Let 1 and 1′ be two disjoint
reducing lines. If 1 and 1′ split the orbits into the same two subfamilies, then 1 and
1′ are isotopic.

Proof. The set1 ∪1′ splits the plane into three connected components. One of them (the
one in the middle) is disjoint from O. �

PROPOSITION 5.9. Let [h; O] be a Brouwer mapping class. Outside the maximal
translation areas, there exists only a finite number of non-isotopic reducing lines.

Proof. We prove that there exists only a finite number of non-isotopic reducing lines in
every connected components of the complement of the union of the translation areas. If two
such reducing lines are not homotopically disjoint, then they have only one intersection
point (according to Lemmas 5.2 and 5.4). Hence they do not split the orbits into the
same subfamilies. This remark, together with Lemma 5.8, imply that if we choose a
partition of the orbits in the chosen component into two subfamilies, then there exists
at most one reducing line included in the complement which splits the orbits into the same
partition. Since there exist only a finite number of different partitions of the orbits into two
subfamilies, there are only a finite number of isotopy classes of reducing lines. �
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5.3.3. Proof of Theorem 3.5.

THEOREM 3.5. Let [h; O] be a Brouwer mapping class. Let W be a family of pairwise
disjoint reducing lines containing exactly one representative of each wall for [h; O]. If Z
is a connected component of R2

−W, then exactly one of the following holds:
• Z is an irreducible area;
• Z is a maximal translation area; or
• Z does not intersect O.

Proof. Choose a complete hyperbolic metric on R2
− O. Up to isotopy relative to O,

we can assume that the elements of W are geodesic. According to Proposition 5.7, the
isotopy classes of boundary components of maximal translation areas are walls. Let Z be
a connected component of R2

−W which is not a translation area. Suppose that Z is not
irreducible. Then there exists a reducing line included in Z which is not homotopic to
any boundary component of Z . According to Proposition 5.9, Z contains a finite number
of mutually non-isotopic reducing lines. Since they are not walls, each of them intersects
another one. In particular, there are at least two reducing lines included in Z which are not
homotopic to any boundary component of Z .

Denote by U the finite union of geodesic reducing lines included in Z which are not
homotopic to any boundary component of Z . Denote by Ũ a tubular neighborhood of U
which does not intersect O (see Figure 25). Choose Ũ such that the boundary components
of its closure are geodesic. Denote by L one of them. We make the following claim.

CLAIM. The line L is a reducing line for [h; O].

Proof of the claim. The line L is homotopic to a union L ′ of a finite number of segments
included in distinct reducing lines (see Figure 26). The number of segments is finite
because of the following properties.
(1) The area Z is homotopically disjoint from the translation areas.
(2) Up to isotopy there are only a finite number of reducing lines outside the translation

areas (according to Proposition 5.9).
(3) If two reducing lines outside the translation areas intersect, then their intersection is

exactly one point: according to Lemma 5.2, this intersection is either one point or
infinite and, according to Lemma 5.4, if the intersection is infinite then the reducing
lines are included in a translation area.

Denote this number by n, and the segments whose union is L ′ by δ1 ∪ · · · ∪ δn . We assume
that the δi are in this order on L ′ (as in Figure 25). For every i , denote by1i a reducing line
of U which contains δi . Denote by L1 the line obtained as the union of δ1 and the half-line
of 12 whose endpoint is the intersection point between δ1 and δ2 and which contains δ2.
According to Lemma 5.5, L1 is a reducing line for [h; O]. For every 2≤ i ≤ n − 1, denote
inductively by L i the line obtained as the union of the half-line L i−1 which contains δ1 and
the half-line1i+1 which contains δi+1 (both half-lines have the intersection point between
endpoints δi and δi+1). Applying Lemma 5.5 inductively, we see that L i is a reducing line
for every i . Hence L ′ = Ln−1 is a reducing line for [h; O]. �
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FIGURE 25. Example of U, Ũ and a boundary component L isotopic to δ1 ∪ · · · ∪ δ6.

FIGURE 26. Proof of the claim in the case of the example.

End of the proof of Theorem 3.5. Since L is in Z but not in U, it is homotopic to a boundary
component of Z (by definition of U). Hence ∂Ũ is included in ∂Z ,and thus Z is included
in Ũ (because they both are intersections of topological half-planes). It follows that Z is
isotopic to Ũ relative to O, and hence Z does not intersect O. �

Remark 5.2. Note that a stable area is irreducible if and only if it is an irreducible area
of the complement of the set of walls. In particular, the isotopy classes of the boundary
components of any irreducible area are walls.

6. Determinant diagrams and irreducible areas
6.1. Determinant diagrams. We prove here Propositions 3.6, 3.7 and 3.8. We use the
following two lemmas of [LR13] in the proofs.
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LEMMA 6.1. [LR13, Lemma 1.8] Let F be a finite family of pairwise disjoint topological
lines in the plane. Let h0 be an orientation preserving homeomorphism of the plane. Let
Hh0 be the space of orientation preserving homeomorphisms that coincide with h0 on the
union of the elements of F. Then Hh0 is arcwise connected.

LEMMA 6.2. [LR13, Lemma 1.6] The Brouwer mapping class [h; O] is a fixed point free
flow class if and only if it admits a family of pairwise disjoint proper geodesic homotopy
streamlines whose union contains O.

PROPOSITION 3.6. A Brouwer mapping class [h; O] is a flow class if and only if no
connected component of the complement of the set of walls for [h; O] is an irreducible
area.

Proof. If [ f ; O] is a flow class, then, according to Lemma 6.2, we can choose a family of
pairwise disjoint proper geodesic homotopy streamlines whose union contains O. We find
reducing lines in the neighborhood of each streamline, and hence there is no irreducible
area.

We now prove that if the set of walls W of a Brouwer mapping class [h; O] is such that
no component of the complement of W is irreducible, then it is a flow class. According
to Proposition 3.3, there exists a nice family (α±i )i for [h; O], disjoint from the walls.
According to Theorem 3.5, every connected component of the complement of W which
contains orbits is a translation area. According to Proposition 3.4, every backward proper
streamline which is included in a translation area is also forward proper: it follows that
every T (α−i , h, O) is a proper streamline. Lemma 6.2 gives us the conclusion. �

PROPOSITION 3.7. If two flow classes have the same diagram, then they are conjugated.

Proof. Let [ f ; O] and [g; O′] be two flow classes with the same diagram. According to
Lemma 6.2, there exists a nice family (α±i )i for [ f ; O] and a nice family (β±i )i for [g; O′]
such that, for every i , α−i is isotopic to α+i and β−i is isotopic to β+i . We set αi := α

−

i = α
+

i
and βi := β

−

i = β
+

i . Since [ f ; O] and [g; O′] have the same diagram, (α±i )i and (β±i )i
have the same cyclic order at infinity (we permute the numbering of the orbits of O′, if
necessary). Thus the Schoenflies theorem provides a homeomorphism of the plane which
send T (αi , h, O) to T (βi , h, O) for every i . Lemma 6.1 gives the conclusion. �

PROPOSITION 3.8. A diagram with walls and without crossing arrows is determinant if
and only if there is no irreducible area in the wall complement.

Proof. Let D be a diagram with walls without crossing arrows. Suppose D is determinant.
Since D is without crossing arrows, there exists a flow class [ f ; O] whose associated
diagram is D (this is [LR13, Lemma 1.7]). Since [ f ; O] is a flow class, every orbit of
O is included in a translation area, hence in a maximal translation area. In this situation,
Theorem 3.5 imply that every connected component of the complement of walls which
contains orbit is a maximal translation area. The result follows.

If a diagram with walls D has no irreducible area in the wall complement, then,
according to Theorem 3.5, it has only translation areas and areas without orbits. According
to Proposition 3.6, [h; O] is a flow class. If [h′; O′] is another Brouwer class whose
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associated diagram with walls is D, then [h′; O′] is also a flow class. It follows from
Proposition 3.7 that [h; O] and [h′; O′] are conjugated. Hence the diagram with walls D is
determinant. �

6.2. Combinatorics of irreducible areas. We first prove a criterion for reducing lines
and then use it to prove Proposition 3.9.

6.2.1. A criterion for reducing lines.

LEMMA 6.3. Let [h; O] be a Brouwer mapping class and let (α±i )i be a nice family for
[h; O]. If 1 is a topological line of R2

− O such that:
(1) 1 is a topological line;
(2) both components of R2

−1 contain points of O; and
(3) for every i , 1 is homotopically disjoint from hk(α−i ) relative to O for every k ∈ Z.
Then 1 is a reducing line for [h; O].

Proof. We need to show that 1 and h(1) are isotopic relative to O. Choose a hyperbolic
metric on R2

− O. Taking its image by an isotopy relative to O, if necessary, we can assume
that1 is geodesic. We denote by f a representative of [h; O]mapping1 onto h(1)#. Such
an f exists, again according to the straightening principle 2.1. Hence 1 and f (1) are
geodesic. We need to show that 1= f (1). Suppose that 1 6= f (1). We know that these
two streamlines are in minimal intersection position (because they are geodesic), and we
study the three possible cases separately: either 1 and f (1) have several intersection
points, either they have only one intersection point or they do not intersect. These three
cases lead us to contradictions.

FIGURE 27. Example where 1 and f (1) have several intersection points.

If 1 and f (1) have several intersection points. We consider a subsegment γ1 of f (1),
whose endpoints are intersection points between 1 and f (1), denoted by a1 and b1, such
that the open segment γ̊1 is disjoint from1 (see Figure 27). Denote by δ1 the subsegment of
1 between a1 and b1. Since δ1 is compact, it contains a finite number of intersection points
between 1 and f (1). Denote by n the number of intersections between 1 and f (1). Let
us show that we can assume that n = 0. If n > 0, choose an intersection point a2 between δ̊1
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and f (1). Consider the half-line f (1)+ defined as the connected component of f (1)−
a2 which has a subsegment with endpoint a2 and which is included in the topological disk
bounded by γ1 ∪ δ1. Because f (1)+ is proper, it goes out to the topological disk bounded
by γ1 ∪ δ1. Hence it intersects δ1 again , because f (1) is without self-intersection. Denote
by b2 the first intersection point between f (1)+ and δ1. The subsegments δ2 and γ2 of 1
and f (1) with endpoints a2 and b2 have the same properties as δ1 and γ1, but the number
of intersection points between 1 and f (1) on δ2 is less than on δ1. Hence, by recurrence,
there exists k and two subsegments δk ⊂1 and γk ⊂ f (1) with endpoints ak and bk , such
that δk ∩ f (1)= γk ∩1= ak ∪ bk .

Denote by D the topological disk bounded by δk ∪ γk . We claim that D does not
intersect O: if it contains a point of an orbit Oi , denote by xi this point. Let n ∈ Z
be such that xi is an endpoint of hn(α−i ). The family (hk(α−i ))k≤n is proper, because
α−i is backward proper. Applying again the straightening principle 2.1, we find a
homeomorphism g, isotopic to h, which maps 1 on h(1)# = f (1) and hk(α−i ) on
(hk+1(α−i ))# for every k ≤ n. Moreover, the family (hk(α−i ))k≤n is homotopically disjoint
from 1, according to the third hypothesis of the lemma. Hence gk(αi ) is disjoint from 1

and f (1) for every k ≤ n. It follows that {hk(xi )}k≤n is included in D. Since the orbits
of a Brouwer homeomorphism are proper, this gives a contradiction: D should be disjoint
from O, and hence it is a bigone, which is also not possible because 1 and f (1) are in
minimal position.

If 1 and f (1) have exactly one intersection point. The set 1 ∪ f (1) splits R2 into four
connected components. Each of those connected components contains at least one orbit of
O: if not, we can find an isotopy relative to O which eliminates the intersection point, and
hence 1 and f (1) are not in minimal position. Choose an orientation on 1 and consider
the induced orientation by f on f (1). Then there exists at least one orbit of O which is
on the left of 1 and on the right of f (1). We claim that this is not possible.
• 1 splits R2 into two topological half-plane, denoted by P and Q.
• 1 splits the orbits of O into two families: the family P is the orbits included in P and

the family Q is the orbits included in Q.
• For every orbit Oi of O, f (Oi )= Oi .
Then f (1) splits R2 into f (P) and f (Q), and hence the orbits into f (P)= P and
f (Q)= Q.

If1 and f (1) have no intersection point. The set1 ∪ f (1) splits R2 into three connected
components. One of them is between 1 and f (1). This component contains at least one
orbit, because 1 and f (1) are not isotopic. Now the same argument as in the previous
case leads us to a contradiction: choose an orientation on 1 and consider the induced
orientation by f on f (1). There exists at least one orbit of O which is on the left of1 and
on the right of f (1). This is not possible. �

COROLLARY 6.4. Let [h; O] be a Brouwer mapping class. Let Z be a stable area for
[h; O] which contains at least two orbits of O. Choose a complete family of adjacency
areas for [h; O ∩ Z ]. Let 1 be a reducing line for [h; O ∩ Z ] which is included in Z and
disjoint from every chosen backward adjacency area. Then1 is a reducing line for [h; O].
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Proof. Choose a complete hyperbolic metric on R2
− O. We suppose that the boundary

components of Z and 1 are geodesic. The straightening principle 2.1 gives us h′ ∈ [h; O]
which preserves Z . Let (α±i )i be a nice family, disjoint from the boundary component of
Z , such that every α−i of Z is included in an adjacency area of the chosen family.

Since 1 is disjoint from every chosen backward adjacency area, it is disjoint from α−i
for every i such that α−i is in Z . Hence, for every k ∈ Z, 1 is homotopically disjoint from
h′k(α−i ) relative to O ∩ Z (because 1 is isotopic to its image by h′ relative to O ∩ Z ).
Since h′k(α−i ) is compact and included in Z , which is preserved by h′, we get that 1 and
h′k(α−i ) are homotopically disjoint relative to O and not only relative to O ∩ Z .

It follows from Lemma 6.3 that 1 is a reducing line for [h; O]. �

6.2.2. Proof of Proposition 3.9.

PROPOSITION 3.9. (Combinatorics of irreducible areas) Let [h; O] be a Brouwer mapping
class and let Z be an irreducible area for [h; O]. Then:
(1) the orbits of Z are not all backward adjacent, nor all forward adjacent for [h; O];
(2) Z has at least two boundary components; and
(3) the orbits of [h; O ∩ Z ] do not alternate.

Proof of (1). Assume that Z intersects only one forward adjacency area. According to
Lemma 5.1, every α−i ∈ Z is forward proper. Hence Z is not irreducible.

Proof of (2). Let [h; O] be a Brouwer mapping class. Let Z be a stable area for [h; O]
which has only one boundary component and at least two orbits. Denote this boundary
component by L . Suppose that Z is not a translation area. We will find a reducing line
for [h; O], which is included in Z and non-isotopic to L . Let (α±i )i be a nice family for
[h; O] that is disjoint from L . There is a subfamily of (α±i )i which is a nice family for
[h; O ∩ Z ]. Denote this subfamily by (β±i )i . We consider the cyclic order of (β±i )i , and
look at where is L in this cyclic order: the position of L in the cyclic order is the position
of L in the plane relative to the homotopy half-streamlines generated by the β±i . There are
two different cases:
(a) if L is between two backward proper arcs or between two forward proper arcs in the

cyclic order of (β±i )i ; or
(b) if L is between one backward proper arc and one forward proper arc in the cyclic

order of (β±i )i .

Case (a). If L is between two backward proper arcs or between two forward proper arcs
in the cyclic order of (β±i )i , we claim that there exists an adjacency area for [h; O ∩ Z ]
which contains L . Indeed, assume that L is between two backward proper arcs (the same
proof holds with two forward proper arcs, replacing h by h−1 when it is necessary).
Denote by β−i and β−j these two backward proper arcs, and suppose that their endpoints
are xi , h(xi ) and x j , h(x j ), respectively. Then there exists an arc γ , disjoint from L ,
whose endpoints are h(xi ) and h(x j ) and such that one connected component of the
complement of T−(β−i , h, O) ∪ γ ∪ T−(β−j , h, O) does not intersect O ∩ Z . This shows
what we claimed. Now Handel’s Theorem 4.1 implies that there exists a reducing line 1
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for [h; O ∩ Z ] which is disjoint from every backward adjacency area. Hence1 is included
in Z and, according to Corollary 6.4, it is a reducing line for [h; O].

Case (b). Assume L is between one backward proper arc and one forward proper arc in the
cyclic order of (β±i )i . Denote these two arcs by β−i and β+j . Following the construction 4.1,
we get a complete family of adjacency areas for [h; O ∩ Z ] disjoint from L . Now let 1
be a reducing line for [h; O ∩ Z ] given by Lemma 4.5, that is, such that the intersection
between 1 and the complement of the forward adjacency areas of [h; O ∩ Z ] is bounded.
It follows that 1 intersects L at most in a finite set (because L is disjoint from the
adjacency areas). Isotopying 1 if this set is not empty, we can suppose that 1 ∩ L = ∅.
Since 1 is also disjoint from every backward adjacency area of [h; O ∩ Z ], according to
Corollary 6.4, it is a reducing line for [h; O].

Proof of (3). According to Proposition 3.3, there exists a nice family (α±i )i for [h; O]
which is disjoint from the boundary components of Z . We consider the subfamily (α±j ) j∈J ,
where J is the set of indices j such that α±j is in Z : (α±j ) j∈J is the subfamily of arcs
corresponding to the orbits of O ∩ Z . A backward or forward proper arc relative to O is
again backward or forward proper relative to O ∩ Z , and hence (α±j ) j∈J is a nice family
for [h; O ∩ Z ].

By contradiction, assume that the orbits of [h; O ∩ Z ] alternate. According to [LR13,
Lemma 3.6], every family of alternating orbits satisfies the uniqueness of homotopy
translation arcs. It follows that, for every j ∈ J , α−j and α+j are isotopic relative to O ∩ Z .
Since they are included in Z , they are also isotopic relative to O. Hence, for such a j ,
T (α−j , h, O) is a proper streamline. At least one of the boundary components of a tubular
neighborhood of this streamline is a reducing line included in Z . Thus Z is not irreducible.

6.3. Corollaries of Proposition 3.9.

6.3.1. Proof of Corollary 3.10.

COROLLARY 3.10. Let [h; O] be a Brouwer mapping class relative to r orbits. Denote the
number of adjacency subfamilies of [h; O] by 2r ′ . If r ′ = 1, 2 or r , then [h; O] is a flow
class.

Proof. If [h; O] is not a flow, then there is an irreducible area in its wall complement
(according to Proposition 3.6). This irreducible area has at least two boundary components
(according to Proposition 3.9), which are reducing lines. Denote by 11 and 12 these two
boundary components. The complement of 11 ∪12 has three components, denoted by
Z1, Z2 and Z . Assume that Z is the area in the middle, which contains the irreducible
area. Choose a nice family (α±i )i for [h; O] which is disjoint from 11 and 12 (use
Proposition 3.3). Since Z contains an irreducible area, according to Proposition 3.9, it
intersects at least two different backward adjacency areas of [h; O] and at least two
different forward adjacency areas of [h; O], and the orbits of [h; O ∩ Z ] do not alternate.
Hence the situation is the one of Figure 28: there exists a subfamily (α−i1

, α+i2
, α−i3

, α+i4
) of

(α±i )i containing only arcs included in Z and such that the cyclic order of this subfamily
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FIGURE 28. Combinatorics of an irreducible area.

is (α−i1
, α+i2

, α+i4
, α−i3

), with 11 between α+i2
and α+i4

and 12 between α−i3
and α−i1

. Since Z1

and Z2 contain at least one orbit (because 11 and 12 are reducing lines), there exists a
backward proper arc of (α±i )i in Z1, denoted by α−i5

, and a forward proper arc of (α±i )i
in Z2, denoted by α+i6

. It follows that (α±i )i has a subfamily of arcs whose cyclic order at
infinity is (α−i1

, α+i2
, α−i5

, α+i4
, α−i3

, α+i6
). Hence r ′ ≥ 3. It was shown in [LR13, Lemma 6.6],

that r ′ < r . �

6.3.2. Proof of Corollary 3.11.

COROLLARY 3.11. Let [h; O] be a Brouwer mapping class relative to r orbits.
(1) If r ≥ 3, there exist at least two disjoint and non-isotopic reducing lines for [h; O].
(2) If r ≥ 2, there exist at least two translation areas for [h; O] which have exactly one

boundary component.
(3) There exists a nice family (α±i )i and j 6= k such that:

• relative to O, α−j is isotopic to α+j and α−k is isotopic to α+k ; and
• in the cyclic order, α−j and α+j (respectively, α−k and α+k ) are neighbors.

Proof of (1). Let r be greater than two. Theorem 2.3 gives us a first reducing line. This
line splits the plane into two stable areas. One of them contains at least two orbits.
According to (2) of Proposition 3.9, every stable area with one boundary component which
contains at least two orbits contains at least one reducing line non-isotopic to the boundary
component: this gives a second reducing line. �

Proof of (2) and (3). If r = 2 then any reducing line of [h; O] splits the plane into two
translation areas. If r ≥ 3 we find two reducing lines as seen in the proof of (1). In the
complement of these two reducing lines we have, in particular, two stable areas with one
boundary component. In each of these areas, by finding again a reducing line in the area
as in (1), if necessary, we find, inductively, a stable area with one orbit and one boundary
component: this gives (2) and (3). �
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7. Deflectors
This section is independent of §§4–6. The main result is Proposition 7.1, which we will
need to prove Theorem 3.13.

PROPOSITION 7.1. Let τ : R2
→ R2 be the horizontal translation (x, y) 7→ (x + 1, y).

Let n ∈ N. Let (αi )1≤i≤n and (βi )1≤i≤n be two families of translation arcs for τ such that:
• for every i , αi and βi join (0, i) to (1, i); and
• the αi (respectively, the βi ) are mutually disjoint.
Then there exists a homeomorphism µ of R2 with a compact support such that:
(1) µ(Z× {1, . . . , n})= Z× {1, . . . , n};
(2) for every sufficiently large k ∈ N, (µτ)k(αi ) is isotopic relative to Z× {1, . . . , n} to

τ k(βi ) for every i; and
(3) µτ is a Brouwer homeomorphism. More precisely, µ is a finite product of τ -free

half-twists disjointly supported.

Definition 7.1. Such a homeomorphism is called a deflector associated to (αi , βi )1≤i≤n .

Let Cn be the open vertical cylinder with n marked points at distinct heights. Recall that
MCG(Cn) is defined as the quotient of the group of homeomorphisms of the cylinder,
fixing each boundary puncture and fixing the set of marked points (not necessarily
pointwise) by its connected component of the identity (for the compact-open topology). In
particular, it is the subgroup of the braid group of the (n + 2)-punctured sphere Bn+1(S2)

which fixes two punctures.
We use the following lemma in the proof of Proposition 7.1.

LEMMA 7.2. Let (γi )1≤i≤n be a family of mutually disjoint simple closed curves on Cn ,
such that each curve contains exactly one marked point, and such that each curve is
isotopic in the cylinder without marked point to the separating circle. Let (γ ′i )1≤i≤n be the
family of disjoint horizontal circles on the cylinder, such that each γ ′i contains a marked
point.

Then there exists φ ∈ MCG(Cn) such that:
• for every i , there exists j such that φ(γi ) is isotopic to γ ′j in Cn; and
• φ is a finite product of half-twists.

Proof of Lemma 7.2. We again denote the isotopy classes of γi , γ ′i by γi , γ ′i when there
is no confusion. Let ϕ ∈ MCG(Cn) such that (ϕ(γi ))i = (γ

′

i )i . Then, if T is a product of
horizontal Dehn twists (around one of the γ ′i or around a boundary component), then Tϕ
coincides with ϕ on the γi . Choose ϕ ∈ MCG(Cn), which send the γi on the γ ′i .

Given a braid b on the cylinder, choose b′ supported on a disk such that bb′ is a pure
braid. Then bb′ can be made a ‘parallel braid’ b′′ by several cross changes, where parallel
braid means a braid whose strand is contained in a constant level of the cylinder. A cross
change corresponds to a half-twist. Therefore b′′−1bb′, and hence b′′−1b is a product of
half-twists.

For b = ϕ, it follows that there exists b′′−1
= T a parallel braid (which is also a product

of horizontal Dehn twists) such that φ = Tϕ is a finite product of half-twists, which sends
the γi on the γ ′i . �
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FIGURE 29. Half streamlines T+(αi , µτ, Z× {1, . . . , n}).

Proof of Proposition 7.1. Denote by C the vertical cylinder (quotient of R2 by τ ) and by
Cn the cylinder C with n marked points (quotient of R2

− Z× {1, . . . , n} by τ ). Let π be
the quotient map. For every i , we denote the isotopy class of π(αi ) (respectively, π(βi )),
in Cn by α̂i (respectively, β̂i ). There exists ψ ∈ MCG(Cn) such that ψ(α̂i ) is isotopic in
Cn to the horizontal circle containing the marked point xi = π(Z× {i}). There exists χ ∈
MCG(Cn) such that χ(β̂i ) is isotopic in Cn to the horizontal circle containing the marked
point xi = π(Z× {i}). We set φ := χ−1ψ . Hence φ(α̂i ) is isotopic in Cn to β̂i . According
to Lemma 7.2, we can assume that φ := ν1 · · · νk is a finite product of half-twists supported
in topological disks of C. We want to use φ to construct the desired homeomorphism µ

(Figure 29 gives the main idea of the proof). �

Local lift of a half-twist. We first construct a homeomorphism of R2 which lift the action of
one half-twist of Cn to the lift of the curves. Let ν be a half-twist of Cn . Choose a lift Dν of
the support of ν in R2. Denote by ν̃ the homeomorphism of R2 such that πν̃|Dν := νπ|Dν ,
and such that ν̃ coincides with Id outside Dν . Note that Z× {1, . . . , k} is preserved by
ν̃τ . We say that ν̃ is a local lift of ν.

Choice of disks. To lift the action of φ := ν1 · · · νk , we choose a local lift ν̃k of νk supported
in a disk Dk on the right of the αi and, for every 1≤ j < k, we choose a local lift ν̃ j of ν j

supported in a disk D j on the right of D j+1 (and disjoint from D j+1).

Conclusion. Let µ̃ be ν̃1 · · · ν̃k . For every x which is on the left of the D j , for every n
sufficiently large, there exists (n j ) j ∈ Nk+1 such that

(µ̃τ )n = τ nk+1 ν̃1 · · · ν̃k−1τ
n2 ν̃kτ

n1(x).
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Moreover,

πν̃ = νπ,

πτ = π.

Hence we get:
π(µ̃τ )nαi = πβi .

8. Classification relative to four orbits
8.1. Identification of the determinant diagrams. Here we want to identify which
diagrams are determinant diagrams. In the next section, we will study the diagrams
which are not determinant. Note that all the diagrams with four orbits are represented
in Appendix A.

For every Brouwer mapping class relative to four orbits, we denote the number of sub-
families of adjacency by 2r ′ .

PROPOSITION 8.1. A diagram for a Brouwer mapping class relative to four orbits is non-
determinant if and only if it is one of the seven in Figure 30.

Proof. According to Proposition 3.9, every irreducible area for Brouwer mapping classes
relative to four orbits is as in Figure 31. �

FIGURE 30. Non determinant diagrams for r = 4.

FIGURE 31. Possible irreducible areas for r = 4.
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8.2. Study of the non-determinant diagrams.

8.2.1. Brouwer mapping classes which realize non-determinant diagrams. If h is a
homeomorphism of the plane, recall that an h-free disk is a topological disk D which
is disjoint from every hn(D), with n 6= 0. If [h; O] is a Brouwer mapping class and if D is
an h-free disk containing exactly two points of O, then we call any half-twist supported in
D that permutes the two points of D ∩ O a free half-twist.

Remark 8.1. Each non-determinant diagram can be realized by a Brouwer mapping class.
• For each non-determinant diagram without crossing, there exists a flow having this

diagram relative to some of its orbits (see [LR13, Lemma 1.7]).
• For each non-determinant diagram with a crossing, we can obtain it by composing a

flow by a free half-twist (as in example B of §2).

8.2.2. Tangle of the irreducible area. Let [h; O] be a Brouwer mapping class relative
to four orbits which is not a flow class: the diagram with walls of [h; O] is as in Figure 32.
To simplify the notation, suppose that the two orbits of the irreducible areas are O1 and
O2. To define the tangle, we will forget about O3 and O4 for a while.

FIGURE 32. Diagrams with an irreducible area for r = 4.

Choose a nice family (α±i )i for [h; O]. Choose a complete hyperbolic metric on R2
−

(O1 ∪ O2). According to Corollary 3.10 and Proposition 3.7 (see, also, Handel [Han99]),
the diagram relative to two orbits is a total conjugacy invariant, and hence [h; O1 ∪ O2]

is a translation class. It follows that the four homotopic trajectories relative to O1 ∪ O2

given by

T+1 :=
⋃
k∈Z

hk(α+1 )#,

T−1 :=
⋃
k∈Z

hk(α−1 )#,

T+2 :=
⋃
k∈Z

hk(α+2 )#,

T−2 :=
⋃
k∈Z

hk(α−2 )#

are proper homotopic lines. Moreover, the T+i (respectively, the T−i ) are mutually disjoint.
Let φ be a homeomorphism of the plane that preserves the orientation and sends, for
i = 1, 2:
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FIGURE 33. Definition of the relative tangle for the example B of §2 (Brouwer class of the product of a free
half-twist with a flow).

• T−i onto R× {i};
• {xi } onto (0, i) and {h(xi )} onto (1, i), where xi and h(xi ) are the endpoints of α−i ;

and
• Oi onto Z× {i}.

Let τ be the horizontal translation of the plane which maps (x, y) ∈ R2 to (x + 1, y).
Let π be the quotient map which quotients R2

− (Z× {1, 2}) by τ and let C2 denote the
quotient pointed cylinder. Note that, if we consider C2 as a vertical cylinder, then π(φ(α−i ))
is homotopic in C2 to a horizontal circle for i = 1, 2 (see Figure 33 for an example).

LEMMA 8.2. With the previous notation, the homotopy classes of the arcs π(φ(α+i )) in C2

are independent of φ.

Proof. If ψ is another homeomorphism with the same properties, then φ and ψ coincide
on the two topological lines T−1 and T−2 . According to Lemma 6.1, φ and ψ are isotopic
relative to O1 ∪ O2, and hence φ(α+i ) is isotopic to ψ(α+i ) for i = 1, 2. �
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Denote by γ a curve which is disjoint from π(φ(α+1 )) and π(φ(α+2 )) and which
separates C2 into two cylinders with a puncture, each of them containing one of the
π(φ(α+i )). Note that γ is unique up to isotopy in C2.

Definition 8.1. We say that the isotopy class of γ ∈ C2 is the tangle of the irreducible area
of [h; O] relative to (α±i )i .

Remark 8.2. Note that γ is never a horizontal circle. Indeed, we could get a horizontal
curve only if we had α−i isotopic to α+i relative to O1 ∪ O2 for i = 1, 2. In this situation,
we get proper streamlines for every orbit, and hence [h; O] is a flow class: this gives a
contradiction because we assumed that there exists an irreducible area for [h; O].

This relative tangle depends on the choice of the nice family (α±i )i , and hence it is not
a conjugacy invariant. However, we have the following lemma.

LEMMA 8.3. Let [h; O] be a Brouwer mapping class relative to four orbits. Suppose that
[h; O] is not a flow class. Then if (α±i )i and (β±i )i are two nice families for [h; O] disjoint
from the walls, then for every i there exists ni such that α−i (respectively, α+i ), is isotopic
to hni (β−i ) (respectively, hni (β+i )) relative to O.

Proof. This will follow from the description of the adjacency areas of [h; O]. Choose a
complete family of adjacency areas for [h; O] and a representative {11, 12} of the set of
walls. For every nice family (α±i )i disjoint from 11 ∪12, there exists (mi , ni )i ∈ (Z2)4

such that hmi (α−i ) and hni (α+i ) are included in adjacency areas. If we fix the endpoints in
the adjacency area, there is only one isotopy class of homotopic translation arc included in
the chosen adjacency area and disjoint from 11 and 12: indeed there is only one isotopy
class of translation arcs for Brouwer class relative to one orbit (according to Corollary 6.3
of Handel [Han99]). �

We denote by T the left Dehn twist around a separating horizontal circle between the
two punctures in C2.

LEMMA 8.4. With the previous notation, if γ ∈ C2 (respectively, γ ′ ∈ C2) is the tangle of
the irreducible area of [h; O] relative to (α±i )i (respectively, (β±i )i ), then there exists n ∈ Z
such that γ = T nγ ′.

Proof. This is a consequence of Lemma 8.3: this lemma implies that if φ is as in the
previous notation, for i = 1, 2,

T (φ(α±i ), τ, Z× {1, 2})= T (φ(hni (β±i )), τ, Z× {1, 2})= T (φ(β±i ), τ, Z× {1, 2}).

Moreover, φ(hni (xi ))= τ
ni (φ(xi )).

Since φ(xi )= (0, i), it follows that φ(hni (xi ))= (ni , i), and hence

π(φ(β±i ))= T n1−n2(π(φ(α±i ))). �

Definition 8.2. With the previous notation, we define the tangle of [h; O] to be the isotopy
class γ ∈ C2 up to composition by T .

By convention, we set that every flow mapping class has trivial tangle.
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COROLLARY 8.5. The couple (diagram with walls, tangle) is a conjugacy invariant for
Brouwer mapping classes relative to four orbits.

We will need the following result in the §8.3.

LEMMA 8.6. With the previous notation, let γ be the tangle of the irreducible area of
[h; O] relative to (α±i )i , and let γ ′ be T n(γ ) for some n ∈ Z, where T is the left Dehn
twist, as above. Then there exists a nice family (β±i )i for [h; O] such that the tangle of the
irreducible area of [h; O] relative to (β±i )i is the isotopy class of γ ′.

Proof. Define (β±i )i as β±1 := hn(α±1 ) and β±i := α
±

i for i = 2, 3, 4. �

8.2.3. Realized couples (diagram with walls, tangle). In §8.3, we will show that the
couple (diagram with walls, tangle) is a total conjugacy invariant. Here we find which
couples are realized by Brouwer mapping classes relative to four orbits.

Necessary condition to be realized. Not every couple (diagram with walls, tangle) can
be realized by a Brouwer mapping class. Indeed, some tangles are associated to non-
determinant diagrams with crossing arrows, and some other tangles are associated to non-
determinant diagrams without crossing arrows. To be more precise, denote by p and q the
two marked points of C2, and suppose that p is above q . If γ is a curve of C2 representing
the tangle, the marked point of C2 which is above γ (that is, in the connected component of
the complement of γ which contains the top of the cylinder C2) can be p or q, depending
on the tangles.

Moreover, this point represents the orbit whose forward half-streamline is above on the
picture, and hence whose arrow ends above the other on the diagram. It follows that if this
point is p, then the diagram is without crossing, and if this point is q , the diagram has a
crossing. We say that such a tangle is adapted to the diagram. See Figure 34 for these two
examples.
• On the tangle of the left, p is above γ , and hence it is the tangle of a diagram without

crossing.
• On the tangle of the right, q is above γ , and hence it is the tangle of a diagram with

crossing.
Note that there are an infinite number of tangles adapted to each diagram.

Realizing the adapted tangles. Given a couple (diagram with walls, tangle) such that
the tangle is adapted to the diagram, we can produce a Brouwer homeomorphism which
realizes this couple as follows. Denote by (D, τ ) the given couple.
(1) (a) If the diagram D does not have crossing arrows, then we define D′ = D.

(b) If the diagram D has crossing arrows, we consider the diagram D′ obtained
by exchanging the ends of the two crossing arrows. This is a diagram without
crossing arrows.

(2) We choose a flow f which realizes the diagram D′ without walls and such that there
exists an f -free disk which contains one point of each orbit O1 and O2 (as in example
A of §2), where O1 and O2 are the two orbits of the irreducible area of D.
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FIGURE 34. Examples of two diagrams with adapted tangles.

(3) By reversing the process of the definition of the tangle given in §8.2.2, we get two
families of translation arcs. Proposition 7.1 provides us with a finite product µ of
mutually disjointly supported f -free half-twists such that the tangle of [µ f ; O] is τ .
Note also that the diagram associated to [µ f ; O] is D.

8.2.4. Infinite number of Brouwer mapping classes relative to four orbits.

PROPOSITION 8.7. Up to conjugacy, there are an infinite (countable) number of Brouwer
mapping classes relative to four orbits.

Proof. There are an infinite number of tangles adapted to each non-determinant diagram
(see Figure 34 for examples). Each of them is realized by a product of a flow with a
finite number of free half-twists disjointly supported (using Proposition 7.1, see the second
paragraph of §8.2.3). It follows from Corollary 8.5 that there are an infinite number of
Brouwer mapping classes relative to four orbits. �

8.3. A total conjugacy invariant. In this section we want to show Theorem 3.13, namely
that two Brouwer mapping classes relative to four orbits are conjugated if and only if they
have the same invariant couple (diagram with walls, tangle).

The following Lemma 8.8 together with Lemma 8.6 give the proof of Theorem 3.13:
indeed if [h; O] and [h′; O′] have the same invariant couple, then Lemma 8.6 provides us
with a nice family (α±i )i for [h; O] and a nice family (β±i )i for [h′; O′] such that [h; O] and
[h′; O′] have the same tangle relative to their nice family. Hence they satisfy the hypothesis
of Lemma 8.8, which says that they are conjugated.

LEMMA 8.8. Let [h; O] and [h′; O′] be two Brouwer mapping classes relative to four
orbits such that:
• they have the same diagram with walls; and
• there exist two nice families (α±i )i for [h; O] and (β±i )i for [h′; O′] such that the two

Brouwer mapping classes have the same relative tangle relative to their nice family.
Then [h; O] and [h′; O′] are conjugated.

Proof. Note that if the diagram with walls of [h; O] has crossing arrows, then these
two crossing arrows are in an irreducible area: indeed they are in the same connected
component of the walls, which is not a translation area, and hence it is an irreducible area
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(according to Theorem 3.5). If the diagram with walls is without any irreducible area, then
[h; O] and [h′; O′] are conjugated (this is Proposition 3.8).

Let us consider the case when there exists an irreducible area. We suppose that the orbits
which intersect this area are indexed by one and two. Denote by Z and Z ′ the irreducible
areas of [h; O] and [h′; O′], respectively. We assume that h preserves Z and h′ preserves
Z ′. Denote by τ the translation of the plane which maps every (x, y) ∈ R2 onto (x + 1, y).
Denote by φ a homeomorphism of the plane as needed to define the tangle for [h; O]: that
is, which maps:

• T−1 ∪ T−2 onto R× {1, 2};
• {x1, x2} onto {0} × {1, 2}, where xi and h(xi ) are the endpoints of α−i ; and
• O1 ∪ O2 onto Z× {1, 2};

where T±i :=
⋃

k∈Z hk(α±i )#.

Likewise, denote by ψ a homeomorphism which maps:

• T
′
−

1 ∪ T
′
−

2 on R× {1, 2};
• {x ′1, x ′2} on {0} × {1, 2}, where x ′i and h(x ′i ) are the endpoints of β−i ; and
• O′1 ∪ O

′

2 on Z× {1, 2};

where T
′
±

i :=
⋃

k∈Z h
′k(α

′
±

i )#.

Since the two classes have the same tangle relative to their nice families, by definition
of φ and ψ , (φα±i )# = (ψβ

±

i )# for i = 1, 2. Denote by γ±i these arcs.

CLAIM 1. There exists φ′ ∈ [φ; O1 ∪ O2] and ψ ′ ∈ [ψ ′; O′1 ∪ O
′

2] such that φ′Z = ψ ′Z ′.

Proof of the claim. Denote by11 (respectively12), the boundary component of Z which
is disjoint from T−1 ∪ T−2 (respectively, disjoint from T+1 ∪ T+2 ). Since they are disjoint,
we may assume that φ(11) is included in the left half-plane and φ(12) is included in
the right half-plane. Similarly, we denote by 1′1 and 1′2 the boundary components of
Z ′, disjoint from T

′
−

1 ∪ T
′
−

2 and T
′
+

1 ∪ T
′
+

2 , respectively, and we assume that ψ(1′1)
is included in the left half-plane and ψ(1′2) is included in the right half-plane. Now
φ(11) and ψ(1′1) are lines included in the left half-strip between R× {1} and R× {2}:
there exists a homeomorphism λ1 supported in this half-strip which sends φ(11) on
ψ(1′1). Similarly, there exists a homeomorphism λ2 supported in the right half-strip
between

⋃
n≥0 τ

n(γ1) and
⋃

n≥0 τ
n(γ2) which sends φ(12) onto ψ(1′2). It follows that

λ1λ2φ(Z)= ψ(Z ′). Since λ1λ2 is isotopic to the identity relative to R× {1, 2}, λ1λ2φ is
isotopic to φ. �

Back to the proof of Lemma 8.8. Up to isotopying φ relative to O1 ∪ O2 and ψ relative to
O′1 ∪ O

′

2 as in Claim 1, we may assume that φZ = ψZ ′.

According to Proposition 7.1, there exists a finite product of τ -free half-twists disjointly
supported and such that for every sufficiently large k ∈ N, (µτ)k(γ−i ) is isotopic relative
to Z× {1, 2} to τ k(γ+i ) for i = 1, 2. Since µ is compactly supported, we can suppose that
this support is included in φ(Z)= ψ(Z ′).
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CLAIM 2. With the previous notation, we claim that [φ−1µφh; O] and [ψ−1µψh′; O′]
are flow classes.

Proof of the claim. We carry out the proof for [φ−1µφh; O]: relative to O1 ∪ O2, for
every sufficiently large k ∈ N, (φ−1µφh)k(α−i ) is isotopic to hk(α+i ) for i = 1, 2. Because
µ is supported in φ(Z), φ−1µφ is supported in Z and, since h preserves Z , it follows that
φ−1µφh also preserves Z . Since α−i is included in Z , and since O3 and O4 do not intersect
Z , (φ−1µφh)k(α−i ) is isotopic to hk(α+i ) relative to O (and not only relative to O1 ∪ O2).
Since α+i is a forward proper arc for [h; O], it follows that T (α−i , φ

−1µφh, O) is a proper
streamline. Since φ−1µφ is supported in Z , h is equal to φ−1µφh outside Z , and hence
for j = 3, 4, T (α−j , φ

−1µφh, O)= T (α−j , h, O) and thus is also a proper streamline. By
Lemma 6.2, it follows that [φ−1µφh; O] is a flow class. �

Back to the proof of Lemma 8.8. Denote by f and g two flows such that

[ f ; O] = [φ−1µφh; O] and [g; O′] = [ψ−1µψh′; O′].

For every i , denote by Ti (respectively, by T ′i ), the proper streamline T (α−i , f, O)
(respectively, T (β−i , g, O′)). Changing ψ in the complement of Z ′, if necessary, we
assume that φ−1ψ maps T ′3 onto T3, O′3 onto O3, T ′4 onto T4 and O′4 onto O4. This is
possible because the diagrams of [h; O] and [h′; O′] are the same. Note that, for every
k ∈ Z, φ−1ψ(ψ−1µψh′)k(β) is isotopic to (φ−1µφh)k(α−i ) relative to O for i = 1, 2.
Hence Ti = φ

−1ψ(T ′i ) for every i . According to Lemma 6.1,

[φ−1ψgψ−1φ; O] = [ f ; O].

Composing both parts by φ−1µ−1φ, we can check that

[(φ−1ψ)h′(φ−1ψ)−1
; O] = [h; O].

Hence [h; O] and [h′; O′] are conjugated. �
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A. Appendix. Diagrams with four orbits
Here we represent all the diagrams with four orbits (Figures A.1–A.4). If a diagram can be
obtained with a Brouwer mapping class, then we also draw the possible sets of walls, and
color the eventual irreducible areas in gray. We put together in the same dashed box the
diagrams which are the same without walls but which have different possible sets of walls.
We get three different types of diagrams.
(1) The full-framed diagrams are the ones with a Handel’s cycle: according to Handel’s

fixed point theorem [Han99, Theorem 2.3], they cannot be obtained with Brouwer
homeomorphisms. Also, we forget them when describing Brouwer mapping classes
relative to four orbits.
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FIGURE A.1. Diagram for r = 4 and r ′ = 1.

FIGURE A.2. Diagrams for r = 4 and r ′ = 2.

(2) The diagrams without irreducible areas are the determinant ones. Every of them
can be realized by a Brouwer mapping class (according to [LR13, Lemma 1.7]).
Moreover, up to conjugation, this Brouwer mapping class is unique and it is a flow
class (Propositions 3.6 and 3.7).

(3) The diagrams with an irreducible area (in gray) are the eight non-determinant ones.
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FIGURE A.3. Diagrams for r = 4 and r ′ = 3.

Up to conjugation, all of them can be realized by an infinite number of Brouwer
mapping classes. For these diagrams, the tangle allows us to differentiate the different
Brouwer mapping classes (see §§8.2 and 8.3).

We still denote the number of families of adjacency by 2r ′.
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FIGURE A.4. Diagrams for r = 4 and r ′ = 4.
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