
Preliminaries

A Fano variety, named after Gino Fano, is a proper variety X whose anti-
canonical bundle ω−1

X is ample. This class of varieties is central to several
mathematical fields, including higher dimensional geometry. In fact, while
originally people were mostly interested in smooth Fano manifolds, from
the viewpoint of minimal model program, it became natural to consider
Fano varieties with mild singularities, as they are one of the three building
blocks of an arbitrary variety, up to birational equivalence.

A Fano variety may have multiple “optimal” birational models, and
birational maps to connect different models are complex. This complexity
makes the birational geometry of Fano varieties a fascinating but challeng-
ing topic. An important related question involves understanding the limits
of a family of Fano varieties, which often present numerous possibilities.
So some kind of stability condition needs to be added. However, for higher
dimensional varieties, Mumford’s geometric invariant theory (GIT) (Mum-
ford et al., 1994) is not an ideal framework because it depends on a choice
of embeddings (see Wang and Xu, 2014). Therefore, researchers seek for a
more intrinsic theory.

Another deep question about Fano varieties is whether it admits a
Kähler–Einstein metric. This traces back to the long tradition in people’s
study on Einstein metrics, with the Kähler condition added in the complex
setting. More precisely, recall that a Kähler–Einstein metric on a compact
manifold X if the Kähler form ω satisfies the Einstein equation:

Ric(ω) = λ · ω , (0.1)

where λ is a constant. If we take the class of (0.1), then

[Ric(ω)] = c1(X ) = −KX = λ · [ω] .
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2 Preliminaries

If λ < 0, this is established independently in Aubin (1978) and Yau
(1978). When λ = 0, this follows from the solution of the Calabi con-
jecture in Yau (1978). Moreover, these two results are generalized to the
case that X contains canonical singularities in Eyssidieux et al. (2009).
See Guedj and Zeriahi (2017) for a comprehensive study of singular
Kähler–Einstein metrics.

The remaining case λ > 0 is subtler, as in this case, a Kähler–Einstein
metric does not always exist. This fact was known for a long time, for exam-
ple, Matsushima (1957) shows that a Kähler–Einstein Fano manifold X
satisfies Aut(X) is reductive, but finding out a sharp geometric condition to
characterize the existence of Kähler–Einstein metrics is challenging. A simi-
lar question for a vector bundle E was extensively studied, which is to search
the right condition to characterize the existence of Hermitian–Einstein met-
rics. The solution, called the Hitchin–Kobayashi correspondence, says it is
equivalent to the slope stability of E; see Narasimhan and Seshadri (1965),
Donaldson (1985), Uhlenbeck and Yau (1986), and Donaldson (1987).
Inspired by this, in Mabuchi (1986), the K-energy function, on the space
H of Kähler metrics with the same class, was defined, and it is shown that
a Kähler metric ω satisfies (0.1) if and only if it is a minimizer of the K-
energy function. Moreover, using the convexity of the K-energy function,
it is shown in Bando and Mabuchi (1987) that a Kähler–Einstein metric, if
exists, is unique up to an element in the connected component of Aut(X ).

In order to understand the existence of a Kähler–Einstein metric, one
must address this infinite-dimensional minimizing problem, ideally using
geometric constructions. In Ding and Tian (1992), the (generalized) Futaki
invariant was introduced to attack the problem. It is defined for a one-
parameter group (normal) degeneration X0 of X , called a test configuration,
as the Futaki invariant Fut(X0) for Gm � X0 introduced earlier in Futaki
(1983). Moreover, they showed that the existence of a Kähler–Einstein
metric ω on X implies the non-negativity of Fut(X0), because the test con-
figuration induces a ray emitting from ω, and the Futaki invariant is the
derivative of the K-energy along this ray. This significantly expands the
range of geometric tests that can be applied, as previously Futaki only con-
sidered the product case. The natural question is whether these tests are
sufficient. In Tian (1997), it was proved that the existence of a minimizer
was implied by a suitably defined properness of the K-energy function, and
it was also conjectured that all tests as above provided a sufficient condi-
tion for the properness. Not long after that, it was realized in Donaldson
(2002) that the Futaki invariant can be defined completely using algebraic
terms, and more generally for all polarized varieties. Thus the proposed
geometric tests are indeed algebraic, confirming the speculation by Yau in
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Characterizations of K-stability 3

the 1980s. The notion is called K-stability. There are a lot of later devel-
opments in the analytic theory, but now we switch our discussion to the
algebro-geometric theory.

Characterizations of K-stability

The earlier attempt to study K-stability algebraically is using the framework
of GIT. However, in Odaka (2013b), it was first observed that K-stability
notion relates to the minimal model program. This surprising connection
became more explicit in Li and Xu (2014), where minimal model program
was used to show that testing K-stability for all test configurations is equiv-
alent to only testing it in the case X0 is a klt Fano variety, that is, the
test configuration is special. In particular, this confirms Tian’s definition of
K-stability is equivalent to Donaldson’s for any Fano variety. Li and Xu
(2014) is the first one in a sequence of works, which show that K-stability
can be equivalently defined in several different ways, but to establish the
equivalences is highly nontrivial.

In Berman (2016), inspired by the work of Ding (1988) that introduced
the Ding energy functional whose minimizers are also Kähler–Einstein met-
rics, Berman shows that this functional yields the algebraic notion of Ding
invariants for test configurations and uses it to define Ding stability. In
analytic studies, the Ding functional has the advantage that it requires less
regularity than K-energy. Similarly, in the algebraic side, Ding invariants
behave better than Futaki invariants in various operations, especially in an
approximating process. This was first observed in Fujita (2018), where it
is proved that Ding invariants D(F ) can be extended to all filtrations. The
extension from test configurations to general filtrations can be regarded as
an algebraic analog to the operation of taking completion with respect to
suitable norms for the infinite-dimensional space of Kähler metrics. Besides,
it gives more flexibility to test the stability, and it also yields a right ambient
space for taking limits. In particular, this is a necessary step to construct a
canonical test object.

Further foundational properties for invariants of filtrations are obtained
in Blum and Jonsson (2020), using the theory of Okounkov bodies. In fact,
one can skip the notion of K-stability and only focus on Ding stability to
use it to build the entire algebraic theory. Nevertheless, following Li and
Xu (2014), it was shown by Fujita (2019b) and Berman, Boucksom, and
Jonsson that K-stability and Ding-stability are equivalent for Fano varieties,
as they are the same when test on special test configurations. In Xu and
Zhuang (2020), it is noticed that for a filtration F , one may define base
ideals
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4 Preliminaries

Im,λ = the base ideal of (F λH0(−mKX ) ⊆ H0(−mKX )) ,

and D(F ) can be defined using the slope μ such that lct(X , I (μ)• ) = 1,
where I (μ)• = {Im,mμ}. This yields a conceptually more satisfying definition
of D(F ).

Another key progress is to test the stability using valuations. In Fujita
(2019b) and Li (2017), they defined a new type of invariants, called the
Fujita–Li invariant,

FL(v) = AX (v) − SX (v) ,

where AX (v) is the log discrepancy and SX (v) is the expected vanishing order.
The Fujita–Li invariant is markedly easier to calculate, and when v arises
from a special test configuration, FL(v) is equal to the Ding invariant (as
well as the Futaki invariant) of the test configuration. The Fujita–Li crite-
rion, independently established in Fujita (2019b) and Li (2017), says that
FL(v) gives an equivalent characterization of the notions of Ding stability.

From the Fujita–Li criterion, one easily sees the stability threshold

δ(X ) = inf
v

δX (v), where δX (v) := AX (v)
SX (v) ,

gives a quantitative measure of how stable X is. When δ(X ) ≤ 1, by Berman
et al. (2021) and Cheltsov et al. (2019), this invariant indeed has an analytic
explanation

δ(X ) = sup { t |Ric(ω) ≥ t · ω for a Kähler form ω }.

To further advance the algebraic theory, the question of whether there is a
divisorial valuation computing δ(X ) plays a central role. We will come back
to this topic in the “Minimizers of δ” section.

It is observed by Blum, Liu, and Xu in Blum et al. (2022a) that any
valuation induced by the irreducible special fiber of a weakly special test
configuration precisely corresponds to an lc place of a Q-complement.
We call these valuations weakly special. The latter description using Q-
complements makes them more transparent to study in birational geometry.
For instance, one can show when δ(X ) < n+1

n , δ(X ) can be approximated
by δX (Ei) for a sequence of weakly special divisors Ei. This yields an explicit
explanation of the Fujita–Li criterion.

When X admits a torus T-action, we need the notion of reduced stability,
as defined in Hisamoto (2016), given by invariants module the equivalence
of the torus orbit. This is necessary when treating K-polystability.
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Minimizers of δ 5

Figure 0.1 Test stability by different objects

Minimizers of δ

A key question in K-stability theory is to understand minimizers of δ(X ) in
the space Val(X ) of valuations. The aim is to show that when δ(X ) < n+1

n ,
one can find a divisor E such that δ(X ) = δX (E). Such a divisor E yields
a special test configuration minimizing the normalized Futaki invariant,
which is an optimal destabilization. This can be regarded as an algebro-
geometric analog to the regularity question for the minimizer of a functional
in geometric partial differential equation. It is a key technical step to several
central geometric questions.

One of them is the question of characterizing the existence of Kähler–
Einstein metrics. As we explained, we need to understand whether the
geometric construction of test configurations provides enough tests to
the existence of a minimizer of the K-energy functional or Ding-energy
functional, namely the Yau–Tian–Donaldson conjecture.

The Yau–Tian–Donaldson conjecture was first proved for smooth Fano
manifolds (see Chen et al. 2015a, 2015b, 2015c; Tian 2015; and Székelyhidi
2016). A main recipe is to show that a sequence of Kähler–Einstein Fano
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6 Preliminaries

manifolds or log smooth Fano pairs admits a Kähler–Einstein limit. Unfor-
tunately, for now the smoothness assumption is essential to the existence
of the Kähler–Einstein limit. The algebraic analog is that a sequence of K-
stable Fano varieties admits a K-(poly)stable limit. We will see in the next
section that the existence of a minimizer E for δX (·) plays a central role in
showing this.

To solve the Yau–Tian–Donaldson conjecture for all Fano varieties
including singular ones, one can apply a different set of analytic tools,
for example, the pluripotential theory, to characterize the existence of
a Kähler–Einstein metric. This is called the variational approach, and it
requires less regularity than the aforementioned Riemannian geometry
method. Initiated by Berman, Boucksom, and Jonsson in Berman et al.
(2021), and completed by Li, Tian, and Wang in Li et al. (2022) and Li
(2022), it is proved that uniform K-stability gives a necessary and sufficient
condition for the existence of a (weak) Kähler–Einstein metric (in the case
when the automorphism group is discrete). To complete the solution, one
needs to show the equivalence between uniform K-stability and K-stability,
which immediately follows from the existence of a minimizer E in the case
when δ(X ) = 1.

The proof of a minimizer E consists of two steps.
Since δ(X ) can be approximated by δX (Ei) for a sequence of divisors Ei

which are weakly special, as we mentioned before, one can apply Birkar
(2019) to conclude that, all these valuations are lc places of a bounded
family of complements. Then after passing to an infinite subsequence, we
can assume all Ei are lc places of one complement. So after possibly passing
to an infinite subsequence again, we may assume the rescaling 1

AX (Ei)
ordEi

has a limit v, which is a quasi-monomial valuation and satisfies δ(X ) =
δX (v). This was proved in Blum et al. (2022a).

To obtain a divisorial valuation, it is noticed in Li and Xu (2018) that for
R = ⊕

m∈r·NH0(−mKX ), if GrvR is finitely generated, then for a rational
perturbation of w = c · ordE , GrvR ∼= GrwR, and

δ(X ) = δX (v) = δX (w),

that is, any small rational perturbation yields a divisor that computes δ(X ).
The finite generation of GrvR was first proved by Liu, Xu, and Zhuang in
Liu et al. (2022), and later stronger results were given in Xu and Zhuang
(2023). In both proofs, the key is to prove the birational geometry statement
that a special valuation has the sought-after finite generation properties.
Then one verifies that any minimizer v is special.
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Moduli of Fano Varieties 7

Figure 0.2 Solving a PDE by variational method

Figure 0.3 Optimal destabilization

We draw a flowchart to compare solving a partial differential equation,
for example the Kähler–Einstein problem, with the optimal destabilization
in algebraic K-stability theory (Figures 0.2 and 0.3).

Moduli of Fano Varieties

One major application of K-stability is that it provides an approach to
parametrizing Fano varieties. The concept of a family of higher dimensional
varieties X → S (or more generally a family of log pairs (X ,�) → S), is
rather subtle and it has been addressed in Kollár (2023). Then to make
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8 Preliminaries

it a well-behaved moduli functor, one needs to add a natural polarization,
for example, ωX/S or ω−1

X/S is relatively ample. In the case of ωX/S being
ample, the functor is called the KSB moduli (or KSBA moduli), and it has
been investigated in detail in Kollár (2023).

In the case of ω−1
X being ample, one major obstacle is that, as shown

in elementary examples, the Fano condition alone is not enough to make
the family behave well, especially when one looks at degenerations. Only
until the notion of K-stability was introduced, pioneers looked at the mod-
uli problem for Fano varieties again. The progress of using K-stability to
construct a moduli space intertwined with the improving of understanding
the notion itself. After around a decade’s work, it is finally settled that with
the K-stability assumption on the fibers, the moduli functor, called the K-
moduli stack, behaves very satisfactorily; for example, it admits a projective
good moduli space, namely the K-moduli space.

To show the K-moduli stack is of finite type, one only needs to show
that if we fix the numerical invariants, the functor is bounded and open.
Since the volume (ω−1

Xt
)n is a constant in a family, we can simply fix it.

Then to get the boundedness, Jiang (2020) shows that one can reduce it
to the boundedness results established in Birkar (2019, 2021). Later, Xu
and Zhuang (2021), applying deeper local results, reduced it to the earlier
boundedness result proved by Hacon, McKernan, and Xu in Hacon et al.
(2014). The openness is confirmed by Blum, Liu,and Xu in Blum et al.
(2022a) as well as in Xu (2020), by showing that the invariants that test
the K-stability, for example stability threshold or normalized volume, are
constructible for the Zariski topology. One key recipe in both proofs is the
boundedness of complement proved in Birkar (2019).

What distinguishes the K-moduli stack with other functors of families of
Fano varieties, is it admits a projective good moduli space. For an alge-
braic stack, admitting a good moduli space is delicate, which implies strong
properties of the stack. In Alper et al. (2023), Alper, Halpern-Leistner, and
Heinloth show that two valuative criteria, called S-completeness and 	-
reductivity, imply the existence of a separated good moduli space. This can
be viewed as the Artin stack analog to the result of Keel and Mori (1997)
on the existence of separated coarse moduli space for a Deligne–Mumford
stack. For families of K-semistable Fano varieties, these two criteria are ver-
ified by Alper, Blum, Halpern-Leistner, and Xu in Alper et al. (2020b), on
the basis of earlier works studying families of K-semistable Fano varieties
by Li, Wang, and Xu in Li et al. (2021) and by Blum and Xu (2019).

Following Halpern-Leistner’s work on instability theory, one knows the
properness of the good moduli space follows from the existence of a 	-
stratification on the stack of all Fano varieties. It is shown by Blum,
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K-stability for Explicit Fano Varieties 9

Halpern-Leistner, Liu, and Xu in Blum et al. (2021) that this can be deduced
from the existence of a divisor E, such that δ(X ) = AX ,�(E)

S(E) , that is, the δ(X )-
minimizing problem we discussed in the Moduli of Fano Varieties section.

Finally, the projectivity of the good moduli space is obtained by estab-
lishing the ampleness of the Chow–Mumford (CM) (Q)-line bundle. The CM
line bundle can be defined for any family of Fano varieties as in Tian (1997),
but it is not always positive, and the subtlety is to show that it is positive
along the locus parametrizing K-semistable Fano varieties. The algebraic
theory of establishing the connection between the K-stability of fibers and
the positivity of the CM line bundle on the base was first developed in
Codogni and Patakfalvi (2021) by applying the general K-stability theory to
investigate the Harder–Narasimhan filtration on the base. This connection
is elaborated in Xu and Zhuang (2020), which completely addresses the pos-
itivity of the CM line bundle, by developing the notion of reduced uniform
K-stability.

K-stability for Explicit Fano Varieties

One active research topic is verifying whether an explicitly given Fano
variety is K-(semi,poly)stable. In general, this is a quite challenging ques-
tion. The case of smooth surfaces was solved in Tian (1990) decades
ago, but in higher dimension, the knowledge is far from being complete.
Nevertheless, several powerful tools have been developed.

The first one is estimating δ(X ) by studying the singularity in |−KX |Q.
There have been a number of works (see, e.g., Tian 1987, 1990; Cheltsov
2008; Cheltsov and Shramov 2008; and so on and so forth), devoted to
estimate the α-invariant

α(X ) = inf
{

lct(X , D) | 0 ≤ D ∼Q −KX
}
,

and the condition α(X ) > n
n+1 yields K-stability of Fano varieties as δ(X ) ≥

n+1
n α(X ). However, this approach is limited, because the inequality for the

α-invariant only gives a sufficient condition, but usually it is not necessary.
To estimate the δ-invariant, one can use the observation made in Fujita
and Odaka (2018) and Blum and Jonsson (2020) that δ(X ) = limm δm(X ),
where

δm(X ) = inf
{

lct(X , D) |m-basis type divisor D ∼Q −KX
}
.

A powerful approach to estimate δ(X ) is established in Abban and Zhuang
(2022), called the Abban–Zhuang method. It studies the multigraded linear
series obtained by restricting a linear series along an admissible flag and
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10 Preliminaries

uses the inversion of adjunction to obtain inequalities, which reduces the
estimate of δ(X ) to an estimate of log canonical thresholds of the multi-
graded linear series on lower dimensional subvarieties. Besides the original
application to Fano hypersurfaces in Abban and Zhuang (2022, 2023), it
yields a long list of results for three-dimensional smooth Fano manifolds
(see Araujo et al. 2023; Fujita 2023; Abban et al. 2022, 2023; Cheltsov
et al. 2023, 2024; and many others).

Another approach is to use the existence of K-moduli and study defor-
mations and degenerations of a K-stable variety (see Mabuchi and Mukai
1993). See Odaka et al. (2016) for two-dimensional examples; see Liu and
Xu (2019) and Liu (2022) for higher dimensional examples. In Ascher et al.
(2019, 2023a, 2023b), Ascher, DeVleming, and Liu develop a wall-crossing
theory (see also Gallardo et al. 2021) that gives a geometric understanding
to many birational maps between moduli spaces.

The Organization of the Book

After the introductory Chapter 1, the book can be divided into two parts.
From Chapter 2 to Chapter 6, it discusses the foundational theory of K-
stability. From Chapter 7 to Chapter 9, it focuses on constructing the
moduli space and showing it is a projective scheme.

In Chapter 1, we discuss preliminary results. That includes valuation
theory, asymptotic invariants, and the construction of Okounkov bodies.
We also list results from minimal model program and boundedness that we
need later.

In Chapter 2, we will explain the original definition of K-stability using
test configurations and its variant Ding stability. We show the invari-
ants testing stability decrease, under a suitable minimal model program
sequence. As a consequence, we conclude that K-stability is equivalent to
Ding stability in the Fano setting. In fact, the latter stability notion is the
foundation of the algebraic theory.

In Chapter 3, we introduce the view of studying K-stability using
filtrations. We show that Ding invariants can be extended from test con-
figurations to filtrations. We explain defining Ding invariants for filtrations
by using graded sequences of its base ideals with a fixed slope.

In Chapter 4, we introduce the view of studying K-stability using val-
uations. That includes the definition of the Fujita–Li invariants. We also
explain the theory of (weakly) special valuations, and use it to show
the minimizers of the δ-function are quasi-monomial. We will establish
two applications: the first one is that the notion of K-semistability does
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Prerequisite 11

not depend on the base field and it is equivalent to the equivariant
K-semistability; then we introduce the Abban–Zhuang method and apply
it to verify K-stability of any smooth Fano hypersurface with a large degree
is K-stable.

In Chapter 5, we prove the higher rank finite generation theorem, which
implies that there is always a divisorial valuation computing δ(X ) when
δ(X ) < dim X+1

dim X .
In Chapter 6, we introduce the notion of reduced uniform K-stability

and use it to extend our theory to treat K-polystability.
In Chapter 7, we define the functor of families of Fano varieties. And

we show that if we fix positive lower bounds of the volume and the stability
threshold, the subfunctor is a finite-type global quotient stack.

In Chapter 8, we show that the K-moduli stack admits a good moduli
space by verifying that it is S-complete and 	-reductive. Moreover, we will
prove that the K-moduli space is a proper algebraic space.

In Chapter 9, we define the CM line bundle and prove it is ample on the
K-moduli space.

Prerequisite

The algebraic theory of K-stability builds on the machinery of higher dimen-
sional geometry. This book assumes the reader has basic familiarity with the
subject. For example, the reader should have some knowledge of minimal
model program as introduced in Kollár and Mori (1998) and we also need
the results proved by Birkar, Cascini, Hacon, and McKernan in Birkar
et al. (2010). Some results on asymptotic invariants are needed. Most of
them are covered in Lazarsfeld (2004b). We also need boundedness-type
theorems proved in Hacon et al. (2014), Birkar (2019), and Birkar (2021).
This is sufficient to read Chapters 2–6. All the necessary higher dimensional
geometry results are summarized in Chapter 1.

To read Chapters 7–9 for the construction of K-moduli spaces, we
assume the reader has some knowledge on stacks. In particular, we will need
results in Alper (2013), Alper et al. (2023), and Halpern-Leistner (2022)
for good moduli spaces. We only briefly discuss the notion of a family of
higher dimensional varieties or log pairs over an arbitrary base and refer
to Kollár (2023) for the proofs. We also assume the semi-positivity for the
pushforward of pluri-canonical bundles.
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