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SURFACE-WAVE INTERACTION WITH A DEEPLY SUBMERGED
CIRCULAR DUCT
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Abstract

The interaction of a surface wave of angular frequency u with a deeply submerged,
vertical, open-mouthed, circular duct of radius a is considered. The resulting boundary-
value problem is solved by the Wiener-Hopf technique. The pressure-amplification factor
(the ratio of the complex amplitude of the pressure in the depths of the duct to that of the
incident wave in the plane of the mouth) is determined in closed form as a function of the
dimensionless wave number K — u2a/g.

1. Introduction

Submerged ducts provide a promising mechanism for extracting energy from
ocean swell and have been studied extensively in the United Kingdom during the
past few years. A description of the basic program has been given by Lighthill [3],
and I note here only that the ducts may be designed to resonate with the
incoming swell, thereby providing an amplification of the response that at least
partially compensates for the diminution associated with the submergence of the
mouths (which is required for the integrity of the ducts during storms). The basic
theoretical problem is to determine the wave-induced pressure fluctuations that
are excited in the depths of a periodic row of submerged, vertical, open-mouthed,
circular ducts; however, the analysis for even this idealized model is rather
complicated, and it therefore is worthwhile to consider even simpler models.

Lighthill [3] has considered what is perhaps the simplest, non-trivial model,
namely a single, deeply submerged, two-dimensional duct (as a limiting case of a
single, two-dimensional duct with mouth at finite depth). I consider here a deeply
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[2 ] Circular duct 85

submerged circular duct in an ocean of infinite depth (Figure 1). Deeply sub-
merged implies that the effect of the free surface on the interaction between swell
and duct is negligible, which assumption presumably is valid for u2h/g » 1,
where <o is the angular frequency of the surface wave and h is the depth of the
mouth; the circular duct with unrestricted u2h/g has been considered by Simon
[6]. The primary reason for the present ("local" in Lighthill's terminology)
approximation is the relative simplicity of both the analysis and the results
vis-a-vis the original problem; in addition, this approximation provides an
excellent trial function for variational approximations for the more complicated
problem of a periodic row of ducts (Miles [4]).

I posit the wave-induced pressure in the form

p = Re{pQ<t,(r,z,6)e'»'}, (1.1)

where p0 is a reference pressure, a is the radius of the duct, <j> is the complex
amplitude of the dimensionless pressure (hereinafter designated simply as the
pressure), and r, z, 6 are dimensionless, cylindrical coordinates with the reference
length a and origin in the center of the mouth of the duct (Figure 1). The
boundary-value problem for an incompressible, inviscid fluid is prescribed by

V2<f> = 0, (1.2)

<}> ~ exp(-iKrcos 0 - Kz) = <t>x ( r -» oo), (1.3)

8r4> = 0 ( r = 1,0 < z < oo), (1.4)

where K = u2a/g is the dimensionless wave number of the incident wave. (Note
that <f> may be interpreted as a dimensionless complex velocity potential if p and
p0 are correspondingly reinterpreted.)

r =

Figure 1. Semi-infinite, circular duct.
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The perturbation pressure induced by the duct, <f> — >̂00, may be expressed as a
functional of the pressure jump

x ( z , 8) = *(1 - , z, 0) - *(1 + , z, 6). (1.5)

Continuity and the requirement that the velocity not be more singular than z~1/2

near the lip of the duct (the latter condition may be inferred from the requirement
that the energy in the neighbourhood of the lip be bounded) imply

X = 0 ( - o o < z < 0 ) ; x = o(z 1 / 2 ) (*-»()+) . (1.6a, b)

It proves expedient for the subsequent development of the Wiener-Hopf
solution to suppose that the fluid is slightly compressible and replace (1.2) by the
Helmholtz equation

( v 2 + e2)* = 0, (1.7)

where

e = ua/c = a- ifi (0 < 0 « a « 1), (1.8)

c is the sonic speed in the fluid, a is the (dimensionless) acoustical wave number,
and P > 0 implies a slow growth of the disturbance from a state of rest at
t = — oo (see Lighthill [2, Section 3.9] for a more detailed description of this
artifice). The final results for the incompressible fluid follow through the limit
a,fiiO.

The pressure-amplification factor, defined as the ratio of the complex ampli-
tude of the pressure in the depths of the duct (z -> oo) to that of the incident
wave in the plane of the mouth, is given by (I anticipate that <j> tends to a constant
as z -» oo with r < 1 and vanishes as z -» oo with r > 1)

P= Urn *(r, z,d) = Xo(oo) ( r < l ) , (1.9)
z—oa

where Xo(z) 1S the axisymmetric component in the Fourier expansion of x(z, 0).

2. Integral-equation formulation

The pressure of the incident wave, as given by (1.3), admits the Jacobi-Anger
expansion

<*>«, = *~Kz 2 enr"Jn(Kr)cosn8, (2.1)

where e0 = 1, en = 2 (w = 1,2,...), and /„ is a Bessel function. The perturbation
pressure may be expressed as a functional of x through the application of Green's
second theorem to 4> and the Green's function determined by

( v 2 + e2)G= - f i ( r - p ) , (2.2)
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where S is Dirac's delta function, and r and p are dimensionless vectors; cf.
Levine and Schwinger [1]. The end result may be expressed in the form

* = I enr"<t>n(r,z)cosn0, (2.3)

where

n{r, z\ P, S) |P=,X,,tt) #, (2.4)

n(r,z;p,$)=—

(2.6)

(2.7)

and /„ and Kn are modified Bessel functions. The parameter K is an analytic
function of the complex variable k in a complex plane (see Figure 2) cut from ±e
to ±a + zoo (alternative signs are vertically ordered) and has the limiting (e -» 0)
value | A: | on the real axis. The branch points tend to the real axis in the limit
P 10, in which limit arg K — {IT for any of — a < k < a, arg k = + \-n, or
arg k = - \w.

That (2.3) satisfies (1.7) follows through separation of variables; that it satisfies
(1.3) is evident from the exponential decay of Kn(icr) as icr -» oo; that it satisfies
(1.5) and (1.6a) follows from Fourier's theorem and the Wronskian relation

rn(K)KH(K)-In(K)K'n{K)=K-K (2.8)

-

- € -

X

i m k

€

Re k

Figure 2. Complex-A: plane with cuts for K = (A: 2 — E 2 ) I / 2 , e = a — ifi
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It remains to satisfy the kinematic boundary condition (1.4). Combining (2.3)
and (2.4) therein, we obtain the Wiener-Hopf integral equation

(/! = 0 , l , 2 , . . . , 0 < z < o o ) (2.9)

with the kernel

8n(z -£)= ~WMr' Z> P' 0 lr=p=l (2-10a)

= --J- r K2rJK)K'U)eik«-z)dk. (2.10b)
2.TT J-x

3. Wiener-Hopf solution

Following Noble [5], we introduce the sectional transforms

F+(k) = (2ir) I f(z)e'kz dz, F_(k) = (2ir) I f(z)e'kz dz
Jo • ' - o o

(3.1a, b)

and extend (2.9) into — oo < z < 0. Fourier-transforming the extended equation
with the aid of the convolution theorem, we obtain

-K2I'n(K)K'n(K)Xn+ (k) = %+ (k) + *„_ (k), (3.2)

where Xn± is the sectional transform o f x n ( ^ ) i n z ^ 0 and similarly for tyn±.. It
follows from (1.6a, b) that

and from (2.9) that

•ifrn+(k)= -{2iryX/2KJ^{K){K- ik)~\ (3.4)

The functions Xn+(k) and ^n_(k) are unknown, although only Xn+(k) is
required in the present context.

We consider first the axisymmetric problem, n = 0. Dropping the subscript
n = 0, factoring K2 = (k — e)(k + e), introducing and factoring

H{k) = -2I^(K)K^K) = 2/,(IC)^I(IC) = H+ (k)H_ (k), (3.5)

where H± (k) (see below) is analytic in Im k ^ +(i, and dividing (3.2) through
by j(k + e)H_ (k), we rewrite (3.2) in the form

(* - e)H+ (k)X+ (k) = 2{(k + e)H_ (A:)}" '{^+ (k) + * _ (A:)}., (3.6)
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Separating out the contribution of the pole at k = — iK to the right-hand side of
(3.6), we obtain

(* - e)H+ (k)X+ (k) - 2{{-iK + t)H_ (-iK)yi*+ (k)

(0<lmk<P). (3.7)

The left-hand side of (3.7) is analytic in the half-plane Im k > 0 (i.e. above the
poles of X+ at k — 0 and ^ + at k = —iKand the branch point of H+ at k = e);
the right-hand side is analytic in the half-plane Im k < /? (i.e. below the branch
point of H_ at k = e). Moreover, it can be shown (cf. Levine and Schwinger [1,
Appendix B]) that

H+(k)~(-ik)~x/2 (fc-> oo,ImA: > 0), (3.8)

which, in conjunction with (3.3b) and (3.4), implies that the left-hand side of (3.7)
is O(k~l) as k -» oo in the upper half-plane. It then follows from Liouville's
theorem that the left- and right-hand sides of (3.7) are analytic representations,
with the overlapping domain 0 < Im k < /?, of the integral function F(k) = 0.
Solving for X+ and letting e -» 0, we obtain

X+(k) = i(2/v)l/2Jy(K){H_(-iK)H+(k)k(K- ik)}~1

(e = 0, ImJfc>0). (3.9)

Setting n = 0 and JQ = —Jx in (3.4), substituting the result into (3.9), and
inverting the resulting Fourier transform (recall that X_ =0) , we obtain

x(z) = (2-n)-x/1 r+w X+ (k)e~""dk (c > 0) (3.10a)
J-<x+ic<x+ic

•nH_(-iK) J-n+.c^K - ik)H+ (k) "

The factoring of H(k) follows Noble [5, Section 3.4], in whose notation
H(k) = K(a), but the branch cuts for the present K differ from those for his y in
consequence of the respective choices exp(/w/) and exp( — iut) for the complex
time dependence. The initial factoring (which follows from Cauchy's integral
theorem) yields

L / - i ^ * (Im^O) (3.11a)

Jo t
2 - k 2

in which the principal branch of the logarithm is implicit. The improper integral
in (3.1 la) is to be interpreted as the limit of the integral from t= —Ttot= T as
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T -> oo, and (3.11b) follows from (3.11a) by virtue of H(-t) = H(t). Letting k
tend to the real axis and indenting the contour for H± below/above t = k, we
obtain

J^fl^M^} (Im* = 0), (3.12)

in which the integral is a Cauchy principal value.
We turn now to the evaluation of P, as given by (1.9). Letting / = x

Im k > 0 in (3.1a), integrating by parts, and letting k -* 0, we obtain

P = - (27r)1/2lim/A:X+(A:) (Im* = 0 + ) . (3.13)
/c->0

Substituting (3.9) into (3.13) and substituting H+(0) = 1 and H_( — iK) from
(3.12) and (3.1 lb), respectively, we obtain

P = 2Jx(K){KH+(0)H_(-iK)}~] (3.14a)

which is plotted in Figure 3. The zeros of Jt(K) correspond to transverse
resonances of the duct. The present result for P is close to Simon's [6, Figure 7]
(P = KA and jit = K in Simon's notation) for h/a = 4 but falls below that plot
f o r / O 1.3.

Letting K -» 0 and K -> oo, we obtain

P=l + CK+O(K2) (*•-»(>) , C=-~r l O g H } - t > dt = 0 . 6 1 3 3 . . . ,

(3.15a, b)

and

P ~ (8/7r)1/2A:-|sin(/s:- i» ) (Jf-»oo). (3.16)

The solution of (3.2) for n— 1,2,... follows (3.5)-(3.9) with only minor
changes. In place of (3.5), we choose

Hn{k) = -2n-'K2I'n{^)K'n{K)=Hn+{k)Hn_{k) (n > 0), (3.17)

which is normalized to Hn = 1 at K = 0. The counterpart of (3.6) then is obtained
by deleting the factors k ± e and yields

Xn+ (*) = 2{nHn_ {-iK)Hn+ (k)}~l%+ (k) (e = 0, Im k > 0),

^,(3-18)

where the factors Hn± are given by (3.11) and (3.12) with H replaced by Hn

therein, and %+ is given by (3.4). It follows from (3.18) that Xn + (0) is bounded,
and hence that xn(°°) = 0, as anticipated in (1.9).
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4. Approximate solution

91

The interpolation

#(A0 = ( l + / c T 1 / 2 (e = 0) (4.1)

between the limits H(0) = 1 and H(k) ~ \/k is in error by less than 5% in
0 < k < oo. The corresponding approximations

H±(k) = (l +ikYx/1 (Imfc^+l) (4.2)

may be obtained either by factoring (4.1) directly and then invoking analytic
continuation or by substituting (4.1) into (3.1 lb).

1.25

1.00 '-

0.75 -

0.50 -

0.25 -

Figure 3. The pressure amplification factor P, as given by (3.14) (—) and (4.3) (—).
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Substituting (4.2) into (3.14a), we obtain

P = 2K~\\ +K)X/2JX{K), (4.3)

which is compared with (3.14b) in Figure 3. It follows from this comparison that
the maximum error associated with (4.3) is 1.2%.

Substituting (4.2) into (3.10b) and invoking (4.3), we obtain

X [ Z ) •

iKP
O+/C k(K-ik)

= />[erf(z'/2) - (1 - AT)1/2e-^erf{(l - K)V2z1/2}] (z > 0),

(4.4b)

where erf signifies the error function [the integral in (4.4a) may be evaluated with
the aid of a table of inverse Laplace transforms after letting s — —ik or directly
by contour integration]. Letting z | 0 and z T <x> in (4.4b), we obtain

X ( z ) = 2 * / > ( z A ) 1 / 2 (ziO) (4.5)

and

1 - (1 - K)V2e-K2

= 1,Z-* OO ) . (4.6)

The counterparts of (4.1) and (4.2) for n > 0 are, from (3.17),

.21 1/2 , _ - v

and

Substituting (4.8) into (3.18) and proceeding as above, we obtain

X n ( z ) + - 2 t f ( « 2 - ^ 2 ) - | / 2 { 1

(4.7)

(4.8)

f. (4.9)
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