CORRIGENDUM

NOTE ON THE DIVISIBILITY OF THE CLASS NUMBER OF CERTAIN IMAGINARY QUADRATIC FIELDS – CORRIGENDUM

By YASUHIRO KISHI

Department of Mathematics, Fukuoka University of Education, Munakata, Fukuoka 811-4192, Japan e-mail: ykishi@fukuoka-edu.ac.jp

doi:10.1017/S001708950800462X, Published by Glasgow Mathematical Journal Trust 10 December 2008.

In the proof of [1, Lemma 2.3], the lines 12–14 on page 190 – 'Then *p* must be equal to 3, and hence we have $2^{k+3} = 1 + 3b^2D$ by (2.2)' – is incorrect. The author would like to thank Akiko Ito for pointing out this error to him. As a consequence, the statement of [1, Lemma 2.3] is lacking in the condition $(k, n) \neq (2, 3)$. The following revised version of [1, Lemma 2.3] is correct.

LEMMA. Let k and n be positive integers with $2^{2k} < 3^n$, $n \ge 3$ and $(k, n) \ne (2, 3)$, and put $\alpha := 2^k + \sqrt{2^{2k} - 3^n} \in \mathbb{Q}(\sqrt{2^{2k} - 3^n})$. Then $\pm \alpha$ is not a pth power in $\mathbb{Q}(\sqrt{2^{2k} - 3^n})$ for any prime p.

Proof. Let *p* be a prime number. In the same way of the proof of [1, Lemma 2.3], let us lead a contradiction by assuming that α is *p*th power in $\mathbb{Q}(\sqrt{2^{2k} - 3^n})$. Let α denote

$$\alpha = \left(\frac{a + b\sqrt{D}}{2}\right)^p \quad (a, b \in \mathbb{Z}, \ a \equiv b \pmod{2}),$$

where D is the square-free part of $2^{2k} - 3^n$. The proofs in [1] are not wrong for the cases where 'p = 2', ' $p \ge 3$ and a even', and ' $p \ge 3$, a odd and k = 1'. Now we consider the case where $p \ge 3$, a odd and $k \ge 2$. In this case, it must hold that p = 3 as we have seen in the proof of [1, Lemma 2.3]. Then we have

$$2^{k} + \sqrt{2^{2k} - 3^{n}} = \left(\frac{a + b\sqrt{D}}{2}\right)^{3}.$$
 (1)

Noting that $a = \pm 1$, we have

$$2^{k+3} = a(1+3b^2D).$$

Since D is negative, a must be equal to -1. Then we have

$$3b^2D = -2^{k+3} - 1. (2)$$

YASUHIRO KISHI

Taking the norm of both sides of equation (1), on the other hand, we have

$$3b^2 D = 3 - 4 \cdot 3^{(n+3)/3}.$$
 (3)

By equation (2) and equation (3), we get the equation

$$2^{k+1} - 3^{(n+3)/3} = -1.$$

We note here that the equation $2^x - 3^y = \pm 1$ has only three positive integer solutions (x, y) = (1, 1), (2, 1), (3, 2) (see [1, Lemma 2.1]). Hence it must hold that (k, n) = (2, 3). This implies that we get a contradiction if $(k, n) \neq (2, 3)$. Thus the lemma is now proved.

Therefore the statement of [1, Theorem 1.2] must be changed as follows:

THEOREM. For any positive integers k and n with $2^{2k} < 3^n$ and $(k, n) \neq (2, 3)$, the class number of the imaginary quadratic field $\mathbb{Q}(\sqrt{2^{2k} - 3^n})$ is divisible by n.

REMARK. In case of (k, n) = (2, 3), the class number of $\mathbb{Q}(\sqrt{2^{2k} - 3^n}) = \mathbb{Q}(\sqrt{-11})$ is equal to 1.

REFERENCE

1. Y. Kishi, Note on the divisibility of the class number of certain imaginary quadratic fields, *Glasgow Math. J.* **51** (2009), 187–191.