
J. Fluid Mech. (2025), vol. 1011, A40, doi:10.1017/jfm.2025.286

Statistical analysis of vertical velocity
and buoyancy in convective boundary layers

Venecia Chávez-Medina
1

, Juan Pedro Mellado
2

and Michael Wilczek
3,1

1Max Planck Institute for Dynamics and Self-Organization, Göttingen 37077, Germany
2Meteorological Institute, University of Hamburg, Hamburg 20146, Germany
3Theoretical Physics I, University of Bayreuth, Bayreuth 95440, Germany
Corresponding author: Michael Wilczek, michael.wilczek@uni-bayreuth.de

(Received 12 April 2024; revised 16 September 2024; accepted 19 January 2025)

Convective boundary layers are governed by an interplay of vertical turbulent convection
and shear-driven turbulence. Here, we investigate vertical velocity and buoyancy fields in
convective boundary layers for varying atmospheric conditions by combining probability
density function methods and direct numerical simulations. The evolution equations for
the probability density functions of vertical velocity and buoyancy contain unclosed terms
in the form of conditional averages. We estimate these terms from our direct numerical
simulations data, and discuss their physical interpretation. Furthermore, using the method
of characteristics, we investigate how these unclosed terms jointly determine the average
evolution of a fluid element in a convective boundary layer, and how it relates to the
evolution of the probability density functions of vertical velocity and buoyancy as a
function of height. Thereby, our work establishes a connection between the turbulent
dynamics of convective boundary layers and the resulting statistics.
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1. Introduction
The dynamics of convective boundary layers (CBLs) that occur, for example, in mid-
latitudes at midday conditions and over land, are governed by turbulent convection and
shear-driven turbulence. On a scale of the order of the depth of CBLs (1–2 km), fluxes of
momentum, heat and moisture are carried vertically by these turbulent motions (Garratt
1994; Wyngaard 2010). The two physical quantities that are directly linked to this vertical
transport are vertical velocity and buoyancy of a fluid parcel. They are positively correlated
in most of the CBL to form updrafts and downdrafts (see figure 1), which are mainly
buoyant and non-buoyant, respectively (Schumann & Moeng 1991).
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Figure 1. Visualisation of (a) the vertical velocity and (b) the buoyancy fields of a CBL studied in our analysis.
The height of the atmospheric boundary layer zenc is indicated by the grey lines. The visualisation corresponds
to the case Fr0 = 20 and Re0 = 42 at the time corresponding to zenc/L0 ≈ 26 from table 1.

The statistical analysis of CBLs has a long history. While early works tended to describe
CBL mean profiles, structure and depth approximately similarly to an Ekman layer (for a
review, see LeMone et al. 2019), seminal work by Deardorff (1970b, 1974a) showed that
thermodynamic variables are the main indicators of CBL depth. During the same decade,
due to new measurement capabilities, the picture of a well-mixed layer with near-constant
values emerged (Clarke et al. 1971; Kaimal et al. 1976).

At the same time, Deardorff (1970b, 1972, 1974a,b) proved the validity of a so-called
mixed layer scaling by characterising the CBL depth. He also investigated the structure of
velocity and temperature fields under weak convective conditions. He showed that these
fields are organised in coherent structures closely aligned with the mean wind direction
near the ground, while for more convective conditions, updrafts are organised in open
cells. The organisation of velocity and temperature as well as of velocity and buoyancy
fields became a central topic in the study of CBLs through the work of Grossman (1982)
and Schmidt & Schumann (1989). Moeng & Sullivan (1994) and Fedorovich et al. (2004a)
also investigated the velocity field by considering not only its organisation, but also
the vertical profiles of the second- and third-order moments, and the turbulence kinetic
energy budget. In addition, Conzemius & Fedorovich (2006) investigated the effects of
shear on the tip and surface of a CBL. There is also a long history of parametrisation
schemes of the CBL for weather and climate models (Baklanov et al. 2011; Edwards et al.
2020). Nonetheless, understanding and characterising the structure of CBLs in terms of
a comprehensive analysis of what regulates the distribution of convective vertical motion
remains a challenge.
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For example, it is still crucial to know how the vertical velocity is distributed between
updrafts and downdrafts to correctly represent vertical transport and its link to different
atmospheric processes and models (Siebesma et al. 2007; Suselj et al. 2019; Witte et al.
2022). In cloud processes, the updraft speed plays a key role in the formation of cloud
droplets (Donner et al. 2016; Fitch 2019). In weather forecasting and boundary layer
parametrisation, the simulated intensity and structure of hurricanes depend on the various
methods used for representing turbulent fluxes and vertical mixing (Kepert 2012; Tang
et al. 2018). For the development of pollution dispersion models, it is important to
correctly characterise the vertical structure of the wind (Bærentsen & Berkowicz 1984;
Quintarelli 1990; Weil et al. 1997; Cimorelli et al. 2005). When the updrafts enter the free
atmosphere, they create an intermittent pattern of turbulent and non-turbulent regions, and
this intermittency strongly affects the properties of the entrainment zone (Sullivan et al.
1998; Fedorovich et al. 2004b; Fodor et al. 2022). Large-scale updrafts and downdrafts
are also responsible for deviations from the Monin–Obukhov similarity theory (e.g. Li
et al. 2018; Fodor et al. 2019; Salesky & Anderson 2020), which assumes that within
the boundary layer, all flow characteristics near the surface are solely determined by
the friction velocity, surface buoyancy flux, and distance from the ground (Monin &
Obukhov 1954).

Here, we contribute to this line of research and investigate vertical velocity and
buoyancy fields in CBLs for different conditions of surface heating, wind and buoyancy
stratification by combining probability density function (PDF) methods and direct
numerical simulations (DNS). The PDFs of these two fields feature non-trivial, height-
dependent shapes. For example, the PDF of the vertical velocity features a negative mode
(Wyngaard 2010; Berg et al. 2017). The mean vertical velocity, i.e. the first moment of the
PDF of vertical velocity in boundary layers, including CBLs, is close to zero, whereas the
normalised third moment, or skewness, in CBLs is positive and increases with height
(Moeng & Rotunno 1990; Wyngaard 2010). This characteristic shape of the PDF for
vertical velocity contains information about the structure of the CBL and its updrafts and
downdrafts. Understanding how the PDFs for vertical velocity and for buoyancy evolve
and behave along the depth of CBLs allows us to characterise the relevant statistics of
these two quantities, enabling statistical insights into the structure of CBLs.

Evolution equations for PDFs can be derived from the equations of motion; see e.g.
Lundgren (1967), Monin (1967)and Novikov (1967). In the framework of so-called PDF
methods popularised by Pope (1981, 1985), this approach has been used successfully for
statistical modelling. Combined with DNS data, the approach can be used to investigate
the connection between turbulent dynamics and statistics; see e.g. Friedrich et al. (2012)
for a review. Lülff et al. (2011, 2015) used such a combination of PDF methods and DNS
data to study the PDFs of temperature and velocity in Rayleigh–Bénard convection (RBC)
cells. In the work presented here, we use the same approach to understand and characterise
the PDFs of buoyancy and velocity in a CBL, which is also convectively driven but without
the top-down symmetry present in RBC. Thus this work will also allow us to understand
how the results are different from those of RBC.

This top-down asymmetry intrinsic to CBLs is known to generate strong updrafts that
occupy a small horizontal area and that are surrounded by downdraft regions with smaller
velocities that occupy larger horizontal areas (Deardorff 1972); furthermore, as height
increases, the updrafts become stronger and narrower. This height-dependent change
suggests a mass flux between updrafts and downdrafts. In fact, the concept of mass flux in
CBLs has its roots in the cloud modelling community in which vertical turbulent transfer
in CBLs is parametrised by assuming a two-stream system governed by an upward-moving
stream and a downward-moving one (Chatfield & Brost 1987; Siebesma et al. 2007;
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Gentine et al. 2013; Fitch 2019; Suselj et al. 2019; Witte et al. 2022). By extending our
PDF analysis to the study of updrafts and downdrafts, we analyse their area fraction, and
derive an equation that allows us to characterise the dynamical nature of the mass flux.

The statistical analysis of CBLs in this work builds on the PDF method approach, and
focuses on single-time, single-point PDFs for vertical velocity and buoyancy. We derive
an exact evolution equation for the joint PDF of vertical velocity and buoyancy, then
project it onto the evolution equation of the marginal PDFs for the vertical velocity and
the buoyancy. These equations feature unclosed terms in the form of conditional means of
buoyancy, the negative of the vertical pressure gradient (vertical pressure gradient force
from now on), viscous diffusion, vertical velocity, heat diffusion and vertical advection,
which we determine from DNS of CBLs for different atmospheric conditions. By using the
method of characteristics, we investigated how these effects jointly determine the average
evolution of a fluid element in CBLs, and how this relates to the evolution of the PDF as a
function of height.

This paper is structured as follows. In § 2, we describe the CBLs analysed in this study,
as well as their governing equations and the numerical methods that we use to simulate
them. In § 3, we recount the statistical analysis by presenting a detailed account of PDF
methods and the method of characteristics. There, we analyse separately vertical velocity
and buoyancy, including an analysis of the first moments of their PDFs, and a study of
their area fractions. Finally, in § 4, we discuss and interpret the findings.

2. Description of the CBL
We study idealised CBLs for conditions that are characteristic for midday and over land.
We model them as cloud-free, barotropic CBLs that develop over a homogeneous, flat and
aerodynamically smooth surface, and that penetrate into a free atmosphere with a constant
buoyancy gradient. Despite its simplicity compared to real atmospheric conditions, this
idealised configuration has provided notable insight into the CBL, for instance, regarding
the relevance of the convective velocity scale (Deardorff 1970a) and the cellular and roll-
like organisation of the flow (Schmidt & Schumann 1989; Moeng & Sullivan 1994), as
well as entrainment properties (Sullivan et al. 1998; Fedorovich et al. 2004a).

For the considered cases, all within the limit of zero Coriolis parameter following work
by Haghshenas & Mellado (2019), convection is forced and maintained by a constant
buoyancy flux at the surface. Shear is imposed by a mean wind velocity. Details of the
formulation and the simulations are provided by Haghshenas & Mellado (2019), but we
summarise them here for convenience.

2.1. Governing equations
The CBL that we consider is governed by the conservation equations for mass, momentum,
and buoyancy following the Oberbeck–Boussinesq approximation. They represent the
CBL as an incompressible fluid by assuming that the density varies linearly with
temperature with only small variations. The resulting set of coupled partial differential
equations (PDEs) describes the evolution of velocity U and buoyancy b in space and time
(Stull 1988):

∇ · U(x, t) = 0, (2.1a)
∂

∂t
U(x, t) + U(x, t) · ∇U(x, t) = ν ∇2U(x, t) − ∇ p(x, t) + b(x, t) ez, (2.1b)

∂

∂t
b(x, t) + U(x, t)·∇b(x, t) = κb ∇2b(x, t). (2.1c)

1011 A40-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

28
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.286


Journal of Fluid Mechanics

Here, U(x, t) is the velocity field with components (Ux , Uy, Uz) in the streamwise,
spanwise and normal directions, respectively; it depends on the spatial position
x = (x, y, z) and on time t . Also, ez = (0, 0, 1) is the unit vector in the vertical direction,
and p is the kinematic pressure, i.e. the pressure divided by a constant reference density.
The buoyancy b is linearly related to the virtual potential temperature θν as

b ≈ g

(
θν − θν,0

θν,0

)
, (2.2)

where θν,0 is a constant reference value at the surface, and g is the gravitational
acceleration. Using a constant reference value θν,0 instead of the mean potential
temperature at each height and time simplifies the evolution equation for b and the
analysis (Garcia & Mellado 2014; Haghshenas & Mellado 2019). The kinematic molecular
viscosity and thermal diffusivity are denoted by ν and κb, respectively.

For the bottom boundary, we supplement these equations with impermeable, no-
slip boundary conditions for velocity, and Neumann boundary conditions for buoyancy,
∂zb = −B0/κb. Such conditions represent a CBL with a flat, smooth surface, forced by a
constant and homogeneous surface buoyancy flux B0. At the top, impermeable, free-slip
and Neumann boundary conditions are applied for velocity and buoyancy, respectively,
with ∂zb = N 2

0 to maintain fixed constant fluxes. Here, N0 is the Brunt–Väisälä frequency,
or buoyancy frequency. For the streamwise and spanwise directions, periodic boundary
conditions are applied. Furthermore, when a shear-driven CBL is considered, an initial
mean wind velocity U0 is imposed in the streamwise direction. For barotropic boundary
layers such as the one considered here, U0 is constant with height in the free atmosphere.
Finally, the initial buoyancy field increases linearly with height as N 2

0 . The mean vertical
profile of buoyancy, as shown in figure 1, establishes the structure of the CBL, with distinct
changes across its three main regions: the surface layer, mixed layer and entrainment
zone. Near the surface, buoyancy decreases, influenced by surface properties. In the mixed
layer, turbulent mixing results in a relatively uniform buoyancy profile. At the entrainment
zone, buoyancy increases rapidly as more buoyant, stratified air from the free atmosphere
interacts with less buoyant air from the mixed layer. This transition creates a buoyancy
gradient, with the one-way process of entrainment allowing the mixed layer to grow
upwards as more buoyant air is mixed downwards into the boundary layer.

2.2. Control parameters and dimensional analysis
The CBL described in the previous subsection can be fully characterised by the control
parameters {ν, κb, B0, N0, U0}. Based on these five control parameters, one can define
three non-dimensional parameters that characterise the full system. In this study, we anal-
yse the impact of shear over the statistical behaviour of CBLs, and compare it in particular
to the shear-free case (U0 = 0). Therefore, we follow previous work by Haghshenas &
Mellado (2019), and we choose B0 and N0 to non-dimensionalise the system.

In particular, N−1
0 is the reference time scale, and the Ozmidov length

L0 ≡
(

B0

N 3
0

) 1
2

(2.3)

is the reference length scale. The latter represents the size of the larger turbulent motions
that are unaffected by a background stratification induced by N 2

0 , and it characterises the
entrainment zone thickness. Furthermore, we consider the reference buoyancy Reynolds
number
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Re0 ≡ B0

νN 2
0
, (2.4)

as well as the reference Froude number

Fr0 ≡ U0

(B0L0)
1
3
. (2.5)

On account of the statistical homogeneity in streamwise and spanwise directions, the
single-point statistical properties of the system are functions of only height and time (z, t).
Of particular relevance for our analysis is the height dependence. We non-dimensionalise
z as ẑ = z/zenc with the encroachment length scale zenc:

zenc(t) ≡
[

2N−2
0

∫ z∞

0
[〈b〉(z, t) − N 2

0 z]dz

] 1
2
. (2.6)

The upper limit of the integral, z∞, is located far enough above the encroachment zone
and well into the free atmosphere; this ensures that the integral is independent of z∞.
Here, angle brackets represent an average over the horizontal directions. The encroachment
length scale provides a measure of the depth of the CBL and its growth over time in
both sheared (Haghshenas & Mellado 2019) and shear-free (Carson & Smith 1975) CBLs.
Integrating the evolution equation for the mean buoyancy vertically, one can obtain the
following relationship (Haghshenas & Mellado 2019)

zenc

L0
= [2(1 + Re−1

0 )N0(t − t0)] 1
2 ≈ (2N0t)

1
2 , (2.7)

where t0 is a constant of integration and the approximation is valid for large enough
Reynolds numbers and large enough times. We will use this approximate relationship
between the encroachment length and time in the following sections.

2.3. The DNS
The simulations employ a finite-difference method with Cartesian coordinates and a
structured grid. A sixth-order spectral-like compact scheme is used to evaluate the
spatial derivatives (Lele 1992); a fourth-order low-storage Runge–Kutta scheme is used
to advance the fields in time (Carpenter & Kennedy 1994). The incompressibility of the
fluid is imposed by a Fourier decomposition of the Poisson equation for the pressure in the
horizontal directions (Mellado & Ansorge 2012).

A non-uniform grid is used in the vertical direction near the surface and above the tur-
bulent boundary layer in the free atmosphere. Near the surface, the vertical grid is refined
to provide the required higher resolution. In the free atmosphere, well above the turbulent
boundary layer, the vertical grid is coarsened to move the top of the computational domain
far away from the boundary layer and thus reduce its spurious effects.

The grid in the horizontal directions is uniform and isotropic, except for the case
Fr0 = 20. The anisotropic grid in horizontal directions when Fr0 = 20 serves to save
computational time while still meeting the necessary resolution constraints. As indicated
before, further details about the grid and simulation set-up can be found in Haghshenas &
Mellado (2019). The specific grid choice of some simulations varies slightly from those
outlined in Haghshenas & Mellado (2019) due to the simulations being performed on a
different cluster. Table 1 shows the grid size for the simulations that we analyse.

2.4. Description of simulations and parameter space
Boundary layers in midday conditions and fair weather over land are typically
characterised by the following values of the control parameters (Fedorovich et al. 2004b):
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Re0 Fr0 Grid t∗,min−max w∗,min−max b∗,min−max ( zenc
L0

)min−max Re∗,min−max

42 20 3072 × 4608 × 960 7.5–8.1 2.7–3.0 0.36–0.34 21–26 2355–3234
42 10 2496 × 2496 × 960 8.1–9.1 2.5–3.0 0.35–0.33 23–27 2749–3444
42 00 2560 × 2560 × 896 8.7–10.3 2.9–3.2 0.33–0.31 26–33 3155–4427
25 20 1536 × 1920 × 720 7.9–11.6 2.8–3.4 0.35–0.29 22–39 1750–3752

Table 1. Simulation parameters for the CBLs analysed in this study. Columns 4–6 show the values of the
convective scales at the beginning of the quasi-steady regime, and at the final time that we considered. Column
3 shows the number of grid points in the streamwise, spanwise and vertical directions, respectively. Values are
non-dimensionalised with B0 and N0. The convective Reynolds number is defined as Re∗ = zencw∗/ν.

surface buoyancy flux B0 ≈ (0.3−1.0) × 10−2 m2 s−3, buoyancy frequency in the free
atmosphere N0 ≈ (0.6−1.8) × 10−2 s−1, and wind velocity in the free troposphere U0 =
0−15 m s−1. Under those conditions, one finds L0 ≈ 20−200 m and Fr0 ≈ 0−35. Typical
values of the CBL height are zenc ≈ 500−2000 m, and typical values of the normalised
height are zenc/L0 ≈ 5−50. Furthermore, assuming κb = 2.1 × 10−5 m2 s−1 and ν =
1.5 × 10−5 m2 s−1 results in Re0 ≈ 6 × 105−2 × 107 and a molecular Prandtl number
Pr = ν/κb ≈ 0.7.

In this work, we fix Pr = 1 and study cases for three different Froude numbers, Fr0 =
0, 10, 20. Here, Fr0 = 0 represents a zero-wind boundary layer and Fr0 = 20 a strong-
wind boundary layer, when wind-shear effects are of order one.

Regarding the reference Reynolds number, large-eddy simulations and DNS cannot
reach atmospheric values. Such simulation studies rely on the observation that some
relevant properties become increasingly independent of the Reynolds number once it
reaches a critical value (Dimotakis 2000), which we are reaching for relevant atmospheric
cases such as the CBL (Garcia & Mellado 2014; Haghshenas & Mellado 2019;
Mellado et al. 2017). Compared to large-eddy simulations, DNS have typically a higher
computational cost, but the advantage is that they remove the uncertainty associated with
subgrid scale models, facilitating the analysis and interpretation of results. To explore the
potential sensitivity of our results to the Reynolds number, the main analysis is based on
Re0 ≈ 42, and the results are compared to the case with Re0 ≈ 25.

The size of the computational domain is 215L0 × 215L0 × 130L0, where at zenc/L0 ≈
35, the CBL covers 30 % of it in the vertical direction.

2.5. Convective scales and quasi-steady regime
For CBLs, a central length scale is the (time-dependent) encroachment height zenc. Key
statistical quantities are expected to scale with zenc. For example, velocity fluctuations
scale in magnitude with the convective velocity (Deardorff 1970a; Berg et al. 2017)

w∗ ≡ (B0zenc)
1/3, (2.8)

and buoyancy fluctuations with the convective buoyancy

b∗ ≡ B0

w∗
. (2.9)

Furthermore, we define a convective time scale

t∗ ≡ zenc

w∗
. (2.10)

Note that w∗, b∗ and t∗ depend on zenc. Similarly, central statistical quantities, such as
the PDF of the vertical velocity f (W ), buoyancy f (θ), and the respective moments, are
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expected to become self-similar in their time evolution in the mixed layer when normalised
in height with zenc, and standardised with w∗, b∗, or a combination of them. This self-
similar behaviour is achieved during the equilibrium, or quasi-steady entrainment regime.
Garcia & Mellado (2014) and Haghshenas & Mellado (2019) showed that for shear-free
and sheared CBLs that grow into a linearly stratified free atmosphere, the quasi-steady
entrainment regime is achieved when zenc/L0 ≈ 10 and beyond.

We consider only CBLs that have reached the quasi-steady regime, and scale all the
vertical distributions and statistics of fluctuating velocity and buoyancy with w∗, b∗, zenc,
or a combination of them; see Appendix A. These convective scales characterise the
fluctuation fields in the mixed layer of the CBL (Wyngaard 2010), which is the region
on which we want to focus here.

Table 1 shows an overview of the CBLs that we analyse. We will focus on the case
Re0 = 42 and Fr0 = 20 during the presentation of the results and the discussions, and
will comment on the effects of Reynolds and Froude numbers as needed. As mentioned,
we consider only CBLs that have reached the quasi-steady regime. The table shows the
initial and final values of the convective scales in the regime that we analyse. When
performing the statistical analysis, we considered the statistical homogeneity of the system
in the horizontal directions, and replaced ensemble averages with spatial averages in the
streamwise and spanwise directions. Furthermore, to improve the statistical convergence
of our analysis, spatial horizontal averages are additionally averaged over four planes in
the vertical direction and in time. Hence, when plotting the data, the curves indicate the
running average within a time interval of the quasi-steady regime, and the shaded areas
denote the range within two standard deviations from the presented average.

3. Statistical description of vertical velocity and buoyancy
We are interested primarily in the statistics of the vertical velocity and buoyancy
fluctuations. Their single-point statistics can be captured comprehensively in terms of
their PDFs f (W ; z, t) and f (θ; z, t). Their joint PDF can be formally introduced as an
ensemble average of the fine-grained distribution (Pope 2000):

f (W, θ; z, t) = 〈δ(Uz(x, t) − W ) δ(b(x, t) − θ)〉. (3.1)

Here, W is the sample-space variable corresponding to the vertical velocity realisation
Uz , θ is the sample-space variable corresponding to the buoyancy realisation b, and δ is
the Dirac delta function. Note that we have already assumed homogeneity in horizontal
directions such that the PDF depends only on the vertical coordinate z. Based on this
definition, and using the equations of motion (2.1), we can derive an evolution equation
for the joint PDF using PDF methods (Pope 1981, 1985, 2000), which takes the form
(see Appendix B)

∂

∂t
f (W, θ; z, t) + W

∂

∂z
f (W, θ; z, t)

= − ∂

∂W

[
f (W, θ; z, t)

〈
b − ∂

∂z
p + ν ∇2Uz

∣∣∣∣W, θ; z, t

〉]

− ∂

∂θ
[ f (W, θ; z, t) 〈κb ∇2b | W, θ; z, t〉]. (3.2)

Here, 〈. . . | W, θ; z, t〉 are conditional averages conditioned on W and θ . Note that the
conditional averages are functions of z and t too. The PDF equation takes the form of a
continuity equation for the probability density. The advection of the PDF represented by
the terms of the left-hand side appear in closed form. The conditional averages on the
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right-hand side represent unclosed terms that can be obtained from our DNS data, and
interpreted in terms of their physical meaning.

The PDF equation describes the evolution of all the relevant statistics of the system
in space and time by considering the influence of the CBLs on its right-hand side.
For example, knowing this PDF means that we also know its first moments, which are
the mean vertical velocity and mean buoyancy, and the second moments, i.e. the Reynolds
stresses and heat fluxes. As we demonstrate in Appendix C, the evolution equations of the
mean velocity and the normal Reynolds stress can be obtained by first projecting (3.2) into
the W -space, then taking moments of the resulting equation. We expand on this in what
follows.

3.1. Vertical velocity

3.1.1. PDF equation
By integrating the equation for the joint PDF (3.2) over buoyancy, we obtain the equation
that governs the evolution of the marginal PDF for vertical velocity only:

∂

∂t
f (W ; z, t) + W

∂

∂z
f (W ; z, t) = − ∂

∂W

[
f (W ; z, t)

〈
b − ∂

∂z
p + ν ∇2Uz

∣∣∣∣W ; z, t

〉]
.

(3.3)

In the quasi-steady regime of CBLs, velocity fluctuations in the mixed layer scale with
the convective velocity w∗ (Deardorff 1970a) as

Ŵ (t) = W

w∗(t)
and f (Ŵ ; z, t) = w∗(t) f (W ; z, t). (3.4)

In Appendix A, we explicitly verify that for our DNS data under this scaling, the PDF
f (Ŵ ; z, t) becomes quasi-stationary to a good approximation. Hence we can assume
stationarity in our equation and consider ∂ f (Ŵ ; z, t)/∂t ≈ 0. In the following, we simplify
the notation and drop the time dependence in the conditional averages and the PDF:
〈. . . | Ŵ ; z, t〉 = 〈. . . | Ŵ ; z〉. Thus we have converted (3.3) into a stationary equation,
which we can further simplify by non-dimensionalising when multiplying the equation by
zenc. Consequently, (3.3) takes the form

Ŵ
∂

∂ ẑ
f (Ŵ ; ẑ) ≈ − ∂

∂Ŵ

[
f (Ŵ ; ẑ)

( 〈
b̂ − ∂

∂ ẑ
p̂ + Re−1∗ ∇̂2Ûz

∣∣∣∣ Ŵ ; ẑ

〉
− 1

6t̂
Ŵ

)]
, (3.5)

where

Re∗ = w∗zenc

ν
(3.6)

is the convective Reynolds number, and

b̂ = b
zenc

w2∗
,

∂

∂ ẑ
= zenc

∂

∂z
, p̂ = p

1
w2∗

, ∇̂2 = z2
enc ∇2, t̂ = t

t∗
. (3.7)

The right-hand side of (3.5) depends on the fluid element acceleration consisting of
the conditional means of the buoyancy, the Laplacian of the vertical velocity, and the
vertical gradient of pressure, and additionally, we obtain an extra term, from now on quasi-
steady term, that originates from evaluating the time derivative in (3.3) using the time-
dependent scaling (3.4). This term results from re-scaling the PDF to a quasi-steady form,
and accounts for the temporal growth of the CBL due to the imposed constant heat flux
and consequently of the convective scales. The temporal growth for which the quasi-steady
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Figure 2. Conditional averages of (a) buoyancy fluctuations conditioned on Ŵ , (b) vertical pressure gradient
force fluctuations conditioned on Ŵ , and (c) the viscous term conditioned on Ŵ . (d) Balance of the different
terms in the conditional mean on the right-hand side of (3.5). The colour gradient indicates the different heights
at which the averages are plotted. The CBL has Re0 = 42 and Fr0 = 20.

term accounts is nonetheless insignificant within the quasi-steady regime that we analyse.
We verified this with our DNS data, as we explain below.

Using our CBL simulations, we can analyse the various unclosed terms in the PDF
equation (3.5), giving insight into the conditional mean of fluid element acceleration, and
in particular on its dependence with height.

Figure 2 shows the fluctuations of some of the individual terms, as well as the balance
of the terms for the different heights indicated by the colour gradient. Note that whereas
for the theoretical derivation of these equations we are assuming an ensemble average, for
evaluating numerical data, this is replaced by a horizontal and time average. Figure 2(a–c)
show only the fluctuations of the different terms since the mean of the buoyancy balances
with the mean of the vertical pressure gradient force. The closed term in (3.5) proportional
to Ŵ is not shown since it is, as expected, negligible in amplitude.

From the figure, let us first analyse buoyancy fluctuations conditioned on Ŵ , 〈b′ | Ŵ 〉.
For positive values of Ŵ , buoyancy fluctuations tend to be positive, and to have larger
magnitudes the closer they are to the surface. This is a direct consequence of the positive
buoyancy flux that is constantly heating up the bottom boundary, thereby accelerating fluid
parcels in contact with it and transferring energy into the system. Buoyancy fluctuations
for negative values of Ŵ behave differently. First, they have a smaller magnitude than those
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for positive velocities. Second, they do not necessarily tend to be all negative as one might
expect; while they are indeed negative for the bottom region of the CBL, as the altitude
increases, buoyancy fluctuations for negative velocities become positive. We interpret this
tendency as a direct consequence of the entrainment of buoyant fluid parcels coming
from the free atmosphere into the mixed layer of the CBL. We support this interpretation
when analysing buoyancy fluctuations for a shear-free CBL (Fr0 = 0). For Fr0 = 0, the
amplitude of the buoyancy fluctuations for negative velocities close to the entrainment
zone is, although still positive, smaller than for the cases Fr0 = 10 and Fr0 = 20 (not
shown). This is consistent with the fact that in shear-free CBLs, the absence of wind
shear reduces the entrainment rate, meaning that less-buoyant parcels of air from the free
atmosphere are entrained back into the mixed layer (e.g. Fedorovich et al. 2004a; Fodor
et al. 2022). Note also that the buoyancy profiles lack the top-down symmetry present, for
example, in RBC cells (Lülff et al. 2015). This asymmetry contributes to the characteristic
positive skewness of vertical velocity in CBLs.

The vertical pressure gradient force in the core of the mixed layer is small in amplitude
compared to the buoyant and viscous terms, regardless of the Froude number. In the
entrainment zone, its magnitude reaches values comparable to those of the buoyant term,
but for positive velocity fluctuations, always with an opposite sign. This represents the
slowing down of the updrafts as they reach the capping inversion. The negative values
for the negative velocity represents the downward acceleration in the downdrafts. Close to
the surface, this term shows an increased value of its magnitude, and its behaviour can be
interpreted similarly; the pressure gradient force accelerates the updrafts and slows down
the downdrafts, a consequence of the impermeability condition of the surface and the mass
continuity equation. In this near-surface region, the vertical pressure gradient force term
is the one that dominates over buoyancy and viscosity. Thus the balance of the conditional
means at, for example, ẑ = 0.05 follows the behaviour of this term. This means that the
acceleration of parcels of fluid close to the surface is determined by the vertical pressure
gradient force.

It is also in this region close to the surface where the behaviour of the vertical pressure
gradient force shows a stronger dependency on the Froude number. In fact, the main
difference for the conditional means between the different Froude number cases occurs
at the bottom of the CBL (not shown).

Figure 2 also shows the behaviour of the viscous term for different heights. This term,
which represents the diffusion of momentum due to viscosity and thus is related to the
dissipation rate of velocity, is negative for positive values of vertical velocity, and positive
for negative values of it. In other words, it has, as expected, a damping effect, decelerating
fluid parcels everywhere in the CBL. Furthermore, near the surface, where viscous effects
are expected to become important, this term is comparable in magnitude to buoyancy for
positive values of velocity, and to buoyancy and the vertical pressure gradient force for
negative values of velocity.

As already mentioned, the main difference between the different Froude number cases
for the balance of the conditional means occurs at the bottom of the CBL (not shown).
For Fr0 = 20, the balance of the conditional means at, for example, ẑ = 0.05 is positive
regardless of the velocity value, varying only in amplitude, whereas for Fr0 = 0, it
becomes negative for the largest velocity fluctuations. When analysing the individual terms
of the conditional mean, it becomes clear that this behaviour has its origins in the vertical
pressure gradient force.

Finally, the sum of all the terms, shown in figure 2(d), dictates the evolution in ẑ of
f (Ŵ ; ẑ) inside the CBL.
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How to interpret such evolution becomes clearer when analysing the system with the
method of characteristics, which we will do in the next subsubsection.

3.1.2. Method of characteristics
The PDF equation (3.5) is a first-order PDE, which can be analysed using the method of
characteristics (Pope 1985; Courant & Hilbert 1989; Lülff et al. 2011, 2015). Using this
method, one can identify trajectories in the phase space along which the PDE transforms
into a set of ordinary differential equations, which yield the so-called characteristics.
For the case of vertical velocity, the phase space is given by the variables on which the
vertical velocity PDF f (Ŵ ; ẑ) depends, i.e. Ŵ and ẑ. The characteristics are defined by
the advection term and the conditional averages in (3.5):( ˙̂W

˙̂z

)
=
⎛
⎝
〈
b̂ − ∂

∂ ẑ
p̂ + Re−1∗ ∇̂2Ûz

∣∣∣∣ Ŵ ; ẑ

〉
− 1

6t̂
Ŵ

Ŵ

⎞
⎠ . (3.8)

The dot notation refers to a derivative with respect to the parameter s on which Ŵ (s) and
ẑ(s) depend, which parametrises their evolution through phase space. The interpretation of
the characteristics is quite intuitive: they describe the average evolution of fluid elements
that share the same sample-space configuration, in this case given by the vertical velocity
in height. The first component of (3.8) describes how the vertical velocity changes due
to buoyancy, pressure and viscous effects, whereas the second component describes the
resulting change in height. The evolution in the resulting vector field can be thought of
as the evolution of conditionally averaged fluid elements (Pope 1985, § 4.5) that trace the
phase-space evolution of the system.

Through the PDF equation, this then connects to the evolution of the PDF. Along a
characteristic parametrised by s starting from Ŵ (s0) and ẑ(s0), the vertical velocity PDF
evolves according to

f
(

Ŵ (s); ẑ(s), s
)

= f
(

Ŵ (s0); ẑ(s0), s0

)

× exp

⎡
⎣−

∫ s

s0

ds′
(

∂

∂Ŵ

〈
b̂ − ∂

∂ ẑ
p̂ + Re−1∗ ∇̂2Ûz

∣∣∣∣ Ŵ ; ẑ

〉
− 1

6t̂

)
(

Ŵ (s′);ẑ(s′),s′
)
⎤
⎦ .

(3.9)

Equations (3.8) and (3.9) offer a descriptive interpretation of the average behaviour of
fluid elements, providing a mathematical framework for the interpretation of (3.5) and
figure 2. Thus (3.8) and (3.9) together encode crucial information about the dynamical
evolution and growth of the CBLs, not only for the development of statistical models,
but also for the accurate computation and physical interpretation of the conditional mean
trajectories and the evolution of the PDF with height. We analyse the trajectories with the
use of DNS data and for different atmospheric conditions.

Figure 3 shows the streamlines of the vector field described in (3.8). It shows the
characteristic trajectories that the mean evolution of fluid elements with a given vertical
velocity at a given height would follow in the phase space spanned by (Ŵ , ẑ). They are
obtained by integrating (3.8) for a grid of arbitrary initial conditions (Ŵ0, ẑ0) in the phase
space.

To interpret figure 3, imagine a fluid element with initial coordinates ẑ = 0.2 and
Ŵ = 1.5 in the phase space. This fluid element will, on average, follow the vector field
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Figure 3. (a) Characteristics of a CBL with Re0 = 42 and Fr0 = 20. The arrows represent the streamlines
defined by the vector field in (3.8). The horizontal coloured lines indicate the heights at which the PDFs of
vertical velocity are shown in (b). (b) The PDFs of vertical velocity at different heights of the CBL. The arrows
in the top and bottom plots show the direction towards which the tail of the PDF evolves as the height increases.

that defines the corresponding characteristic line. It rises up according to a path (black
arrows in figure 3a) given by the conditional averages, changing with it its velocity and
its height. More generally, considering the PDF and not only a fluid element, f (Ŵ ; ẑ)
will evolve in height following a path given by the characteristic lines. Such evolution for
different heights is shown in the three plots in figure 3(b). The black arrows on the tails of
positive Ŵ of the PDFs indicate how the tails of the PDF expand (contract) as the value of
ẑ increases. Hence at any particular height and for positive velocities, a positive value of
the balance of the terms means that the tail of the PDF will expand towards larger values
of Ŵ , while negative values of the sum of the terms mean that the tail of f (Ŵ ; ẑ) will
contract to smaller values of Ŵ . Negative velocities have a similar interpretation: positive
values of the balance of the terms mean that the tail of the PDF will contract to ’less
negative’ values in Ŵ , while negative values mean that the tail of the PDF will expand to
larger ’more negative’ values of the vertical velocity.

There are two more aspects to highlight regarding figure 3 and (3.8). First, notice that
the concentration of particles following any characteristic at a particular location in the
phase space is directly linked to the magnitude of the PDF for vertical velocity at that
point in the phase space f (Ŵ ′; ẑ′). This means that there are more conditional particles
following the characteristics at a point (Ŵ1, ẑ1) than at a point (Ŵ2, ẑ2) if f (Ŵ1; ẑ1) >

f (Ŵ2; ẑ2). Second, the characteristics cannot converge to a limit cycle; instead, they must
shape closed curves; see Lülff et al. (2015), who present a deeper analysis of this argument
for an RBC cell.
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Figure 4. Characteristics of CBLs with Re0 = 42, for different Froude numbers. The arrows represent the
streamlines defined by the vector field in (3.8). Only the higher altitudes (ẑ = 0.7−1.3) of the CBLs are
shown here.

Qualitatively, the characteristics are very similar for the different Froude numbers that
we considered. The main difference for the characteristic trajectories between the different
Froude numbers occurs in the entrainment zone, shown in figure 4, where the boundary
layer starts relaxing into the free atmosphere. The differences are presumably due to the
effect of wind shear or the lack of it.

To summarise, by examining the PDF equation with appropriate scaling, employing the
method of characteristics, and incorporating data from DNS, we gained insights into the
average behaviour of CBLs.

3.1.3. Moments of the PDF
As mentioned, higher-order velocity statistics, in particular third and fourth moments of
the PDF, provide useful information about the structure of turbulence in CBLs (Lenschow
et al. 2012). Skewness is one of the most relevant moments of the PDF of vertical velocity
when studying CBLs since it contains information about the updrafts and downdrafts.
The CBLs are characterised by a trend of positive skewness that increases with height
(Moeng & Rotunno 1990; Wyngaard 2010; Berg et al. 2017; Fitch 2019), which is due to
how turbulence is typically organised in the CBL: strong updrafts, which occupy a small
horizontal area, are located between downdraft areas with lower velocities, which occupy
a larger horizontal area. The increase of skewness with height means that the updrafts
become stronger and narrower.

Figure 5 shows the second moment along with the skewness and kurtosis of f (Ŵ ; ẑ)
for different atmospheric conditions, each with different conditions of shear, i.e. different
values for the horizontal wind in their free atmosphere. The standard deviation exhibits the
expected shape of these vertical profiles (from simulations, Schmidt & Schumann 1989;
Moeng & Sullivan 1994; Garcia 2014; Mellado et al. 2016; Haghshenas & Mellado 2019;
from measurements, Stull 1988; Schmidt & Schumann 1989; Wyngaard 2010; Berg et al.
2017). The observed skewness aligns with the results obtained by others for a midday CBL,
as demonstrated in simulations by Moeng & Rotunno (1990), Lenschow et al. (2012) and
Mellado et al. (2016), as well as in measurements by Lenschow et al. (2012) and Berg et al.
(2017). Additionally, the vertical kurtosis profile depicted in figure 5 indicates that the PDF
of vertical velocities near the top of the CBL, at zenc, exhibits a higher frequency of outliers
compared to lower altitudes. However, the distribution itself tends to be narrower, with an
increased probability of small values around the mean, as evidenced by smaller variance
values at those heights. This observation aligns with the findings reported in Berg et al.
(2017).
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Figure 5. (a) Standard deviation, (b) skewness and (c) kurtosis of f (Ŵ ). The different colours correspond to
the different atmospheric conditions. The horizontal grey line indicates the depth of the CBL, zenc.

To expand the analysis on the third moment, we obtained an evolution equation in height
by multiplying (3.5) with (Ŵ − 〈Ûz〉)2 and then integrating over the velocity space:

∂

∂ ẑ
〈û′3

z 〉 = 2〈û′
z b̂′〉 − 2

〈
û′

z
∂

∂ ẑ
p̂′
〉
+ 2 Re−1∗ 〈û′

z∇̂2û′
z〉 − 1

3t̂
〈û′2

z 〉. (3.10)

Here, we have once more considered that 〈Ûz〉 ≈ 0. See Appendix C for the detailed
derivation as a well as detailed analysis of the equation.

To better understand the impact of the PDF and the conditional means on the vertical
evolution of 〈û′3

z 〉, we analysed the equation leading up to (3.10), i.e. before integrating
over Ŵ . The analysis showed how for the first half of the mixed layer and regardless
of the Froude number values, the buoyancy term in the equation, namely the heat flux,
is the term with the greatest impact on the evolution of the third moment, whereas for
the second half of the mixed layer, the vertical pressure gradient force together with the
dissipative term take over (see figure 14). Furthermore, all along the CBL depth, it is
the positive velocity fluctuations that have the strongest influence on shaping the third
moment’s vertical evolution, hence the positive value for skewness.

We have also analysed the evolution equation for the normal Reynolds stress. This
equation includes terms for turbulent transport, heat flux, pressure redistribution and
dissipation, and a quasi-steady term that comes from the standardisation of (3.3) with
the convective scales; but it has no source term or mean-flow-advection term. From these
terms, the dominant source term for the budget of the Reynolds stress in the mixed layer
is the heat flux; in this region, the pressure transport dominates as a sink term except near
the wall, where dissipation takes over. For the shear-free case, the pressure term dominates
also close to the wall. A deeper analysis of the results is presented in Appendix C.

3.2. Buoyancy
In this subsection, we focus on the buoyancy statistics to complement the analysis of the
vertical velocity statistics and to better understand the similarities, differences and the
relationship between buoyancy and vertical velocity. As in the case of the vertical velocity,
we discuss the marginal PDF, the method of characteristics and the moments of the PDF.
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mean of vertical velocity for various heights; (b) conditional right-hand side of (3.13).

3.2.1. The PDF equation
Just as in the case of the vertical velocity PDF, we obtain an evolution equation for the
PDF of buoyancy by marginalising (3.2). The resulting evolution equation for f (θ; z, t)
takes the form

∂

∂t
f (θ; z, t) + ∂

∂z

[〈Uz | θ; z, t〉 f (θ; z, t)
]= − ∂

∂θ

[
f (θ; z, t) 〈κb ∇2b | θ; z, t〉

]
.

(3.11)
Here, θ is the sample-space variable that corresponds to the buoyancy. Compared to the
closed advective term in (3.3), the advective term on the left-hand side of this equation
contains the unclosed mean velocity conditioned on θ , which we evaluate from our
numerical data below.

When evaluating these numerical data, we have once more replaced the ensemble
average used for the theoretical derivation by a horizontal and time average.

As we demonstrate in Appendix A, the PDF of buoyancy is approximately self-similar
in time and can be collapsed by the rescaling

θ̂ (t) = θ − benc(t)

b∗(t)
and f (θ̂; z, t) = b∗(t) f (θ; z, t), (3.12)

with benc(t) = N 2
0 zenc(t). Following this non-dimensionalisation, the PDF becomes

quasi-stationary. As a result, we obtain the non-dimensional form of (3.11):

∂

∂ ẑ
〈Ûz | θ̂; ẑ〉 f (θ̂; ẑ) ≈ − ∂

∂θ̂

[
f (θ̂; ẑ)

(
Re−1∗ Pr−1 〈∇̂2b̂ | θ̂; ẑ〉 + 1

6t̂
θ̂ − 1

2t̂

benc

b∗

)]
,

(3.13)

where Pr = ν/κb is the molecular Prandtl number. The two extra terms, or quasi-steady
terms, on the right-hand side originate from the time dependence of benc and b∗ used in
the non-dimensionalisation (3.12) of (3.11).

Figure 6 shows the different terms in (3.13) for the different heights. Figure 6(a) shows
the vertical velocity conditioned on θ̂ , which represents the average velocity of fluid
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parcels with a buoyancy value of θ̂ . The behaviour of 〈Ûz | θ̂; ẑ〉 for heights close to zenc is
particularly interesting. For these heights, ẑ = 0.95, 1.0 and 1.05 in the figure, positively
buoyant fluid parcels have negative mean velocities, sinking into the CBL instead of rising
up. This counterintuitive behaviour represents the entrainment of the free atmosphere into
the CBL, and it is consistent with a similar observation in figure 2, which shows the
buoyancy conditioned on the vertical velocity.

Figure 6(b) shows the balance of the different terms on the right-hand side of (3.13). The
individual terms are not shown since the term proportional to θ̂ and the one proportional
to benc/b∗ are an order of magnitude smaller than Re−1∗ Pr−1 〈∇̂2b̂ | θ̂; ẑ〉. For the viscous
term of the vertical velocity in (3.5), we have seen that it has an overall damping effect
towards Ŵ ≈ 〈Ûz〉 ≈ 0 (see figure 2). Contrary to that, the diffusive term for the buoyancy
in (3.13) is not necessarily damping. For example, close to the surface, for ẑ = 0.05 and 0.2
in figure 6, this term is positive and has a maximum in its amplitude at θ̂ ≈ 〈b̂〉. This means
that at these heights, neutrally buoyant fluid parcels are being heated up. This is as a result
of the heating imposed at the surface by the buoyancy flux B0. This observation is similar
to previous observations in RBC (see figure 4(b) in Lülff et al. 2011). For regions close to
the bottom boundary, the diffusion terms for RBC and CBL behave similarly for positive
values of buoyancy. For negative values near the surface, however, we observe differences
between RBC and the CBL: the diffusion term for the RBC cell is always positive and
with amplitudes comparable to those of the positive values of buoyancy, whereas that for
the CBL has close to zero values for ẑ = 0.05 and even negative small amplitudes when
the height increases. These differences are due to the upper region of the system. The
RBC cell exhibits the effects of the cooling of the upper plate, whereas the CBL shows the
effects of the entrainment of buoyant air from the free atmosphere.

3.2.2. Method of characteristics
As occurred with the vertical velocity component, the evolution equation for the PDF
of buoyancy, (3.13), is a first-order PDE that can be analysed using the method of
characteristics to help us to understand the average behaviour of fluid parcels in the
buoyancy space. For the case of buoyancy, the phase space is given by (θ̂ , ẑ), and the
characteristic trajectories are( ˙̂

θ
˙̂z

)
=
⎛
⎝Re−1∗ Pr−1 〈∇̂2b̂ | θ̂; ẑ〉 + 1

6t̂
θ̂ − 1

2t̂

benc

b∗
〈Ûz | θ̂; ẑ〉

⎞
⎠ . (3.14)

Once more, the dot notation refers to a derivative with respect to a parameter s. The
buoyancy PDF along a characteristic parametrised by s starting from θ̂ (s0) and ẑ(s0)
evolves according to

f (θ̂(s); ẑ(s), s) = f (θ̂ (s0); ẑ(s0), s0)

× exp

[
−
∫ s

s0

ds′
(

∂

∂ ẑ
〈Ûz | θ̂; ẑ〉 + ∂

∂θ̂
Re−1∗ Pr−1 〈∇̂2b̂ | θ̂; ẑ〉 + 1

6t̂

)
(θ̂(s′);ẑ(s′),s′)

]
.

(3.15)

Figure 7(a) shows the characteristic curves, i.e. the streamlines of the vector field given
by the right-hand side of (3.14) for a CBL with Re0 = 42 and Fr0 = 20.

For heights in the mixed layer, between the bottom boundary and the entrainment
zone, the characteristic curves indicate a circular motion. This means that on average,
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Figure 7. (a) Characteristics defined by the vector field in (3.14) for a CBL with Re0 = 42 and Fr0 = 20. The
vertical profile in blue is the mean value of the standardised buoyancy. (b) Buoyancy PDFs as functions of
θ̂ − 〈b̂〉. The different colours represent the different altitudes indicated with the horizontal coloured lines in
(a). At height ẑ = 1.05zenc, the PDFs for Fr0 = 10 and 0 are also shown.

a conditional particle with a buoyancy larger than the mean will rise while gradually
losing buoyancy. When it reaches the entrainment zone, it loses buoyancy while staying
near the entrainment zone, then sinks to the bottom once its buoyancy is smaller than the
mean. As can be seen from the slopes of the characteristic curves, the buoyancy changes
only little while the conditional particle sinks to the bottom. As shown in figure 7(b),
the PDFs change only little within the well-mixed layer, as expected from the non-
dimensionalisation with the mixed-layer scaling, while the PDFs vary more strongly closer
to the bottom wall, where surface scaling applies instead of mixed-layer scaling.

In the entrainment zone, a secondary circulation motion can be seen, which can be
interpreted as the average entrainment of conditional particles from upper atmospheric
layers. Buoyant conditional particles from the free atmosphere are entrained and rapidly
lose buoyancy towards the buoyancy values that are observed in the mixed layer. The
corresponding PDFs also vary appreciably within this range of heights.

All cases of Fr0 that we analysed present the same behaviour. The difference between
the Froude number cases occurs in the entrainment zone, where for the cases Fr0 = 10
and Fr0 = 0, the PDF starts to evolve into a bimodal one; see figure 7.

3.2.3. Moments of the PDF
An insight into the spatial structure of convection can be obtained by analysing the vertical
structure of the moments of the PDF. Figure 8 shows the vertical profiles of the second
moment, the skewness and the kurtosis of f (θ̂; ẑ) for different CBL conditions, as well as
the mean profile for reference.

The standard deviation is shown to be independent of the atmospheric conditions within
the range considered in this study. Furthermore, an equation for the second moment can
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Figure 8. (a) Mean, (b) standard deviation (compare to figure 5 of Schmidt & Schumann 1989), (c) skewness
(compare to figure 8 of Mellado et al. 2017), and(d) kurtosis. The different colours correspond to the different
atmospheric conditions. The horizontal grey line indicates the depth of the mixed layer, zenc.

be obtained from (3.13):

〈b̂′b̂′〉
3t̂

= ∂

∂ ẑ
〈û′

z b̂′b̂′〉 − 2 Re−1∗ Pr−1 〈b̂′ ∇̂2b̂〉. (3.16)

This equation might seem to contradict our assumption of ∂〈b̂′b̂′〉/∂ t̂ ≈ 0. Nonetheless, in
the well-mixed layer, the region characterised by the convective scales, the term 〈b̂′b̂′〉/3t̂
is negligible, and the dominant balance in the equation occurs between the turbulent
transport term and the dissipation term on the right-hand side. In the entrainment zone
and near-surface region, the term 〈b̂′b̂′〉/3t̂ is not negligible; nonetheless, these regions
are characterised by different scalings, as discussed e.g. by Haghshenas & Mellado (2019)
and Fodor et al. (2022) in the first case, and by Fodor (2020) in the second case. Therefore,
although the term 〈b̂′b̂′〉/3t̂ shows the effects of the time evolution of the convective scales,
it does not contradict our stationarity assumption in the mixed layer.

Contrary to the standard deviation, skewness and kurtosis do vary depending on the
atmospheric conditions. Shear-free CBLs have a larger value of skewness and kurtosis
than sheared CBLs everywhere in the CBL except in the entrainment zone, the region
between ẑ = 1.0 and ẑ = 1.25. There, skewness and kurtosis increase for the cases where
shear is present. This indicates the different roles of wind shear in the mixed layer and in
the entrainment zone. In the mixed layer, the mean wind shear increases mixing, which
reduces the skewness. In the entrainment zone, wind shear increases the entrainment of
buoyant parcels from the free atmosphere, with properties that are very different from the
mixed-layer properties, and this leads to greater values of positive outliers.

Regarding the sensitivity of the profiles to the different values of the Reynolds number,
it is already relatively small for the Reynolds numbers that we start to reach in numerical
simulations, in particular in the mixed layer, as shown in figure 8. There, although an effect
of the Reynolds number is observed, this effect is smaller than the effect of changing the
Froude number. Low-Reynolds-number effects appear stronger in the entrainment zone,
relative to the effect of changing Fr0, consistent with previous analysis (Mellado et al.
2017).
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Figure 9. Area fractions of the updrafts from the marginal PDF of (a) vertical velocity, and (b) the buoyant
regions from the marginal PDF of buoyancy of the different CBLs that we analyse. The schematics on the top
illustrate the definition of the different area fractions, red colour highlighting the area fraction plotted below.
They show the sample space of the joint PDF of vertical velocity and buoyancy, (Ŵ , θ̂ ) at any particular height,
and the coloured regions correspond to the different limits of the integrals in (3.17) and (3.18).

3.3. Area fractions
A comprehensive analysis of how vertical velocity is distributed between vertical drafts
in CBLs to correctly represent vertical transport, and its link to different atmospheric
processes and models, remains a challenge (Suselj et al. 2019; Fitch 2019; Witte et al.
2022). As a contribution to this line of research, we also investigated turbulent vertical
velocity and buoyancy fields in a CBL focusing on the updrafts and downdrafts, and
buoyant and non-buoyant contributions of convective structures. To do so, we analyse
area fractions of the different contributions to the marginal PDFs of vertical velocity and
buoyancy.

The area fraction of the buoyant contribution to the joint PDF of vertical velocity and
buoyancy is defined as (see figure 9)

A+
θ̂
(ẑ, t̂) =

∫ ∞

−∞
dŴ

∫ ∞

〈b̂〉
dθ̂ f (Ŵ , θ̂; ẑ, t̂). (3.17)

By the law of total probability, the area fraction of the non-buoyant contribution is
A−

θ̂
(ẑ, t̂) = 1 − A+

θ̂
(ẑ, t̂). On the other hand, the area fraction of the updraft contribution

to the PDF is

A+
Ŵ

(ẑ, t̂) =
∫ ∞

−∞
dθ̂

∫ ∞

0
dŴ f (Ŵ , θ̂; ẑ, t̂). (3.18)

For this definition we consider that 〈Ûz〉 ≈ 0, thus the limit of the integral over the velocity
space. Analogously, A−

Ŵ
(ẑ, t̂) = 1 − A+

Ŵ
(ẑ, t̂).
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From this approach, we observe that the boundary layer contains non-buoyant parcels
of fluid with positive vertical velocities rising into the CBL, and vice versa. Otherwise,
if all buoyant parcels of fluid had positive vertical velocities, and all non-buoyant parcels
of fluid had negative vertical velocities, then A+

Ŵ
(ẑ, t̂) and A+

θ̂
(ẑ, t̂), shown on figure 9,

would have similar profiles.
The area fraction A+

Ŵ
(ẑ, t̂) is linked to the skewness of the PDF of vertical velocity, and

consequently, the turbulent vertical structure of CBLs. As mentioned above, in boundary
layers driven by buoyancy, strong updrafts that occupy small horizontal areas are between
downdrafts with smaller velocities occupying larger horizontal areas, and updrafts become
narrower with height. The bottom plot in figure 9(a) is in agreement with such a statement
when considering the area below the entrainment zone. Nonetheless, in the entrainment
zone and above, updrafts become wider before losing area once more as they penetrate
into the free atmosphere, which is stably stratified. Regarding the buoyancy, the bottom
plot in figure 9(b) gives some insight into the effects of shear in the entrainment zone.
For shear-free cases, positively buoyant regions penetrate less into the free atmosphere but
rapidly occupy a larger area than in sheared cases. The reason is that wind shear increases
mixing locally in the entrainment zone, increasing the entrainment-zone thickness and
reducing the horizontal extension of buoyant regions. Above the entrainment zone,
turbulence decays and buoyancy fluctuations are caused by the gravity waves in the
stably stratified free atmosphere (Carruthers & Hunt 1986), the regions of positive and
negative buoyancy occupying half of the total area, and both quantities A+

Ŵ
and A+

θ̂
being

approximately 0.5.
Beyond studying area fractions, we also investigate their flux A±

Ŵ
〈Ûz〉±. We relate

this flux of area fraction to the concept of mass flux between updrafts and downdrafts.
Historically, the mass flux concept in CBLs originated from the cloud modelling
community in the late 1960s and early 1970s. Later, attempts to model turbulent transport
in dry CBLs used, as here, a decomposition in updrafts and downdrafts, particularly in
two-stream models (Chatfield & Brost 1987; Siebesma et al. 2007; Gentine et al. 2013;
Suselj et al. 2019; Witte et al. 2022). These models parametrise vertical turbulent transfer
in CBLs by assuming horizontal homogeneity, and consider all CBL air to belong to either
an upward-moving stream or a downward-moving one.

Following our PDF approach, one can also analyse the mentioned flux of area fraction
as a simple consequence of the fundamental theorem of calculus by integrating (3.5) from
zero to infinity in the velocity space:

∫ ∞

0
dŴ

(
Ŵ

∂

∂ ẑ
f (Ŵ ; ẑ)

)

= −
∫ ∞

0
dŴ

∂

∂Ŵ

[
f (Ŵ ; ẑ)

( 〈
b̂ − ∂

∂ ẑ
p̂ + Re−1∗ ∇̂2Ûz

∣∣∣∣ Ŵ ; ẑ

〉
− 1

6t̂
Ŵ

)]
, (3.19)

then

∂

∂ ẑ
A+

Ŵ
(ẑ) 〈Ûz(ẑ)〉+ = −

[
f (Ŵ ; ẑ)

( 〈
b̂ − ∂

∂ ẑ
p̂ + Re−1∗ ∇̂2Ûz

∣∣∣∣ Ŵ ; ẑ

〉
− 1

6t̂
Ŵ

)]Ŵ = ∞

Ŵ = 0

= f (Ŵ = 0; ẑ)

〈
b̂ − ∂

∂ ẑ
p̂ + Re−1∗ ∇̂2Ûz

∣∣∣∣ Ŵ = 0; ẑ

〉
. (3.20)
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ẑ ẑ

z = 0.34ˆ z = 0.38ˆ z = 0.41ˆ

Figure 10. (a) Right-hand side of (3.20) for different atmospheric conditions. (b) Deviations from the
hydrostatic balance. The shaded regions indicate the region of the CBL where 〈b̂ | Ŵ = 0〉 > 〈∂ p̂/∂ ẑ | Ŵ = 0〉.
All profiles represent CBLs with Re0 = 42.

Here, 〈Ûz(ẑ)〉± is the mean of the vertical velocity inside the updrafts (downdrafts):

〈Ûz(ẑ)〉+ =

∫ ∞

0
Ŵ f (Ŵ ; ẑ) dŴ∫ ∞

0
f (Ŵ ; ẑ) dŴ

. (3.21)

A similar equation for the downdrafts can be obtained by integrating (3.5) from minus
infinity to zero:

∂

∂ ẑ
A−

Ŵ
(ẑ) 〈Ûz(ẑ)〉− = − f (Ŵ = 0; ẑ)

〈
b̂ − ∂

∂ ẑ
p̂ + Re−1∗ ∇̂2Ûz

∣∣∣∣ Ŵ = 0; ẑ

〉
. (3.22)

Adding (3.20) and (3.22), the right-hand sides cancel each other, which is consistent with
our consideration of zero vertical mean.

Furthermore, any positive change (gain) in height for the flux of area fraction of updrafts
(A+

Ŵ
〈Ûz〉+) represents a negative change (loss) for the flux of area fraction of downdrafts,

and vice versa:
∂

∂ ẑ
A+

Ŵ
(ẑ) 〈Ûz(ẑ)〉+ = − ∂

∂ ẑ
A−

Ŵ
(ẑ) 〈Ûz(ẑ)〉−. (3.23)

The right-hand sides of (3.20) and (3.22) can be interpreted as the mixing term
studied by Schumann & Moeng (1991). In general, these equations describe the mass flux
between updrafts and downdrafts without attempting to parametrise it, but allowing us to
characterise its dynamical nature.

Equation (3.20) shows that the evolution of the area fraction with height is related to a
conditional average of the vertical acceleration of a fluid element times the PDF, i.e. the
probability flux at Ŵ = 0. Figure 10 shows this probability flux for various values of the
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Figure 11. Right-hand side of (3.20) plotted for different values of Ŵ . The colours of the plot are as in figure 10.

vertical velocity. Remarkably, the shape of the different contributions does not vary too
much with the condition, at least for the range Ŵ ∈ [−0.5, 1], as shown in figure 11.

The right-hand side of (3.20) is plotted in figure 10(a) for different atmospheric
conditions. We observe that the right-hand side of (3.20) has a similar profile for different
values of the condition Ŵ when the condition has amplitudes within the bulk of the
PDF – see figure 11 for the right-hand side plotted for such values of Ŵ . Furthermore, we
observe that the vertical profile of the right-hand side for the different conditions is similar
to the profile of the deviations from the hydrostatic balance, (〈b̂〉 − 〈∂ p̂/∂ ẑ〉), plotted in
figure 10(b). These profiles are in good approximation proportional to each other with
a constant of proportionality. When the condition is Ŵ = 0, as in (3.20), the constant
of proportionality is comparable to the value of A+

Ŵ
in the mixed layer for each CBL.

A theoretical explanation for this is still missing.
The shaded area of the plots in figure 10 indicates the fraction of the CBL where

buoyancy deviations dominate the vertical pressure gradient force. Once a certain height is
reached, the vertical pressure gradient force becomes strong enough to dominate buoyancy.
Our interpretation of this is that in the lower 30–40 % of the CBL, the heat flux at the
surface controls the behaviour of updrafts and downdrafts, and the mass flux between these
two, whereas the rest of the mixed layer is pressure dominated. Moreover, at 30–40 % of
zenc, the mass flux changes from growing with height to decreasing with height, which
implies that the mass flux is maximum at 30–40 % of zenc. Finally, a significant difference
in the behaviour of the mass flux between the different Froude numbers can only be
appreciated above zenc.

3.3.1. Area fractions and skewness
The asymmetry of area fractions of updrafts and downdrafts contributes to the
characteristic positive skewness on vertical velocity in CBLs. In this subsection, we study
such a link of area fractions to the skewness of the vertical velocity PDF. Moeng &
Rotunno (1990) derived an approximation for the skewness of the vertical velocity
PDF. They followed a similar decomposition into updrafts and downdrafts for a case of
bottom-only heating CBL with a solid wall at the top:

Sk(ẑ) = α0

(
A−

Ŵ
(ẑ)

/
A+

Ŵ
(ẑ)

)
− 1

(
A−

Ŵ
(ẑ)

/
A+

Ŵ
(ẑ)

) 1
2

. (3.24)
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Figure 12. Vertical profile of skewness for a shear-free boundary layer and a sheared boundary layer. Darker
lines represent data from DNS, whereas faded lines correspond to (3.24), the approximation by Moeng &
Rotunno (1990). The parameter α0 is fitted to minimise the mean squared error (MSE) only in the shaded
region of the plot.

Figure 12 shows the vertical profile of skewness for both DNS and the Moeng &
Rotunno (1990) approximation for two types of CBLs, one shear-free and one sheared. We
choose the parameter α0 for each type of CBL to minimise the mean squared error (MSE)
in the shaded area of the plot. The model captures the increase of the skewness with height
in the shear-free CBL, which is the condition considered by Moeng & Rotunno (1990), but
the model deviates more in the case of a sheared CBL. Close to the entrainment zone, their
approximation does not reproduce the skewness profile of the CBLs that we analyse. This
is due to the differences in the geometry of the systems, and to entrainment effects. The
CBLs that we analyse relax to a stably stratified free atmosphere, while the boundary layer
that they analyse has a solid wall on the top. Moeng & Rotunno (1990) also see differences
between their model and their large-eddy simulations data at the top of their boundary
layer, since they cannot reproduce the effects of entrainment. Another difference is that
in Moeng & Rotunno (1990), α0 = 2 for a case of bottom-only heating boundary layer
with a solid wall on the top, whereas here we obtain 50–100 % larger values for α0, with
α0 = 3.8 for a CBL with Fr0 = 20 and Re0 = 42, and α0 = 2.9 for a CBL with Fr0 = 0
and Re0 = 42.

4. Summary and conclusions
We carried out a comprehensive analysis of PDFs of vertical velocity and buoyancy in
convective boundary layers. Analysing DNS data in the framework of PDF equations, we
studied the height dependence of the single-point single-time PDFs of both quantities.
When normalised by convective scales, the temporal evolution of the CBL is scaled out,
such that the PDFs are quasi-steady. In terms of their height dependence, as expected, the
PDFs show the most significant variations in the surface layer as well as in the entrainment
zone. In the well-mixed region, the PDFs approximately collapse at different heights,
indicating statistical homogeneity.

The evolution of the PDFs with height can be analysed with the method of characteris-
tics. For the vertical velocity, we find that the statistical evolution following a conditional
particle is determined by a complex interplay of buoyancy, vertical pressure gradient force
and viscous diffusion that controls the velocity amplitude and thereby also the conditional
particle’s evolution in height. For moderate velocity amplitudes, this results in a periodic
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evolution in the phase space spanned by vertical velocity and height, whereas higher
velocity amplitudes also show a flux to and from the upper atmospheric layer (figure 3).
For the buoyancy, the major contribution in magnitude is due to thermal diffusion.

Regarding the statistical evolution of buoyancy fluctuations in height, as expected, the
vertical velocity conditioned on θ̂ close to the bottom is positive for positively buoyant
fluid elements, whereas it tends to be negative for negatively buoyant fluid elements. In the
entrainment layer, the conditional velocity can be negative even for positively buoyant fluid
elements, which indicates the entrainment of buoyant fluid from the free atmosphere into
the boundary layer. In the phase space spanned by buoyancy and height, the characteristics
reflect two patterns of circular motion for a conditional particle (figure 7). One pattern
is localised in the mixed layer where conditional particles with higher buoyancy rise
while losing buoyancy, before sinking once their buoyancy decreases enough. A secondary
pattern is localised in the entrainment zone and caused by the entrainment of buoyant
conditional particles from the upper layers into the CBL, resulting also in significant
variations in the PDF of buoyancy in this region. This secondary pattern is absent in the
mean evolution of the vertical velocity of fluid parcels, which tend to penetrate further into
the entrainment zone.

It is interesting to compare the buoyancy statistics in CBLs to the temperature statistics
in RBC, which has been investigated previously by Lülff et al. (2011, 2015). The CBL and
RBC cases share several similarities, including, for example, the faster upward movement
of buoyant (hot) fluid compared to non-buoyant (cold) fluid in the lower half of the
convection system, and the fact that the main heating/cooling movements are located near
the boundaries (bottom for CBL, and bottom and top for RBC). An important difference
between CBL and RBC is that CBLs lack the top–bottom symmetry present in RBC due to
the different roles of bottom boundary and the entrainment zone. As a result, the secondary
circulation pattern observed for the CBL buoyancy is absent in RBC.

Furthermore, we extended the analysis to the study of the area fractions of the different
updraft, downdraft, buoyant and non-buoyant contributions to the PDFs that we analysed,
and to the study of a set of equations for the mass flux. We observe that the mass flux
between updrafts and downdrafts has a profile similar to that of the deviations from the
hydrostatic balance, and that the mass flux is maximum at 30–40 % of zenc for sheared and
purely convective cases. Mass flux equations provide a quantitative understanding of the
vertical exchange of air mass in the CBL, therefore these results can help as reference to
assess mass flux parametrisations used in weather and climate models.
Acknowledgements. This work was supported by the Fraunhofer–Max Planck Cooperation Program
through the TWISTER project. V.C.M. gratefully acknowledges the support by a fellowship of the International
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Appendix A. Mixed-layer similarity and PDF rescaling
In this appendix, we verify the so-called mixed-layer similarity (Wyngaard 2010) with
the help of DNS data. Within the mixed layer, vertical velocity and buoyancy are
approximately self-similar in time, characterised by the convective scales defined in (2.7)
and (2.8). Following a proper scaling given by (3.4) and (3.12), the PDF for vertical
velocity and buoyancy can be collapsed as shown in figure 13. This asymptotic behaviour
occurs once a free-convection-like state emerges (Wyngaard 2010). It is within this state
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Figure 13. The PDFs of vertical velocity (blue) and buoyancy (red) at z/zenc = 0.5: (a,c) f (W ) and f (θ) for
different times; (b,d) f (Ŵ ) and f (θ̂) rescaled following (3.4) and (3.12), respectively.

that the CBL reaches the so-called mixed-layer similarity. Also within this state, and when
non-dimensionalised with the convective scales, vertical velocity and buoyancy become
functions of z/zenc only.

Appendix B. The PDF evolution equation
In this appendix, we derive the evolution equation for the PDF of f (W, θ; z, t). This
derivation is based on Pope (1981, 1985, 2000), and uses properties of the fine-grained
PDF.

The fine-grained PDF of vertical velocity and buoyancy is

f ′(W, θ; x, t) = δ (Uz(x, t) − W ) δ (b(x, t) − θ) (B1)

for a given realisation of the flow. At each point x and time t , f ′ is a two-dimensional delta
function in the vertical velocity and buoyancy space. The PDF is then defined as

f (W, θ; z, t) = 〈 f ′(W, θ; x, t)〉. (B2)

Due to homogeneity in horizontal directions, the PDF depends on (z, t) only. The
conditional average of some function φ can be introduced as

〈φ(x, t) f ′(W, θ; x, t)〉 = 〈φ(x, t) | W, θ; z, t〉 f (W, θ; z, t). (B3)

Furthermore, the temporal and spatial derivatives of f ′(W, θ; x, t) are

∂

∂t
f ′(W, θ; x, t) = − ∂

∂W
f ′(W, θ; x, t)

∂

∂t
Uz(x, t) − ∂

∂θ
f ′(W, θ; x, t)

∂

∂t
b(x, t)

(B4)
and

∂

∂z
f ′(W, θ; x, t) = − ∂

∂W
f ′(W, θ; x, t)

∂

∂z
Uz(x, t) − ∂

∂θ
f ′(W, θ; x, t)

∂

∂z
b(x, t).

(B5)
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The partial derivatives with respect to x and y are obtained analogously. Another important
result required in this derivation is

U(x, t)·∇ f ′(W, θ; x, t) = V ·∇ f ′(W, θ; x, t). (B6)

Here, V = (U, V, W ) is the sample-space vector corresponding to the velocity field
U = (Ux , Uy, Uz). For this, we used the incompressibility of the fluid, the sifting property
of the delta function, and the fact that V is an independent variable.

Hence the total derivative of f ′(W, θ; x, t) is

D
Dt

f ′(W, θ; x, t) = ∂

∂t
f ′(W, θ; x, t) + V ·∇ f ′(W, θ; x, t)

= − ∂

∂W

[
f ′(W, θ; x, t)

(
∂

∂t
U(x, t) + U(x, t)·∇U(x, t)

)]

− ∂

∂θ

[
f ′(W, θ; x, t)

(
∂

∂t
b(x, t) + U(x, t)·∇b(x, t)

)]
, (B7)

and the mean of this equation yields the PDF equation

∂

∂t
f (W, θ; z, t) + V ·∇ f (W, θ; z, t)

= − ∂

∂W

[
f (W, θ; z, t)

〈
D
Dt

U(x, t)

∣∣∣∣W, θ; z, t

〉]

− ∂

∂θ

[
f (W, θ; z, t)

〈
D
Dt

b(x, t)

∣∣∣∣W, θ; z, t

〉]
. (B8)

Finally, we substitute the equations of motion (2.1) into the previous equation such that,
after considering horizontal homogeneity, we obtain the evolution equation for the PDF of
vertical velocity and buoyancy:

∂

∂t
f (W, θ; z, t) + W

∂

∂z
f (W, θ; z, t)

= − ∂

∂W

[
f (W, θ; z, t)

〈
b − ∂

∂z
p + ν ∇2Uz

∣∣∣∣W, θ; z, t

〉]

− ∂

∂θ
[ f (W, θ; z, t) 〈κb ∇2b | W, θ; z, t〉]. (B9)

Appendix C. Normal Reynolds stress
The transport equations for the Reynolds stresses, especially in the normal direction,
are particularly interesting when studying CBLs. The flow in a CBL is statistically
homogeneous in the streamwise and spanwise directions. Hence, just as in a fully
developed channel flow (Mansour et al. 1988), the relevant non-zero components of the
Reynolds stresses are 〈u′2

z 〉 and 〈u′
zu′

x 〉. Let us focus on the former. After multiplying (3.5)
by the velocity fluctuations squared (Ŵ − 〈Ûz〉)2, and integrating over the velocity space,
we obtain the evolution equation for the normal Reynolds stress. If we further consider
that 〈Ûz〉 ≈ 0, then the equation simplifies to

∂

∂ ẑ
〈u′3

z 〉 = 2〈u′
z b̂′〉 − 2

〈
u′

z
∂

∂ ẑ
p̂′
〉
+ 2 Re−1∗ 〈u′

z ∇̂2u′
z〉 − 1

3t̂
〈u′2

z 〉. (C1)
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Figure 14. Terms in the budget of 〈u′2
z 〉. The different curves represent the different terms in (C1) for a CBL

with Re0 = 45 and Fr0 = 20.

The term on the left-hand side represents the turbulent transport. On the right, the first
term, which is directly linked to the buoyancy fluctuations, refers to the heat flux; then
follows a term representing the pressure redistribution, then the dissipation, and finally a
term containing 〈u′2

z 〉. Note that the coefficient for the latter term can also be expressed
as (t∗/w∗) ∂w2∗/∂t . This last term indicates the contribution of the convective scales and
their time dependence to the equation for the Reynolds stresses when considering the
standardised version of them. Furthermore, due to 〈Ûz〉 ≈ 0, the normal Reynolds stress
has no source term or mean flow advection term.

Using data from our DNS, we analysed and plotted each term of (C1); see figure 14.
The heat flux is the dominant source term in most of the CBL until its zero crossing
when z = zenc. The pressure transport is the dominant sink term except close to the wall,
where dissipation dominates. This previous statement is true for all the CBLs analysed
here, except for the shear-free case, in which the pressure term dominates as loss term
even close to the wall. The quasi-steady term that comes from the standardisation of the
equation with the convective scales is negligible everywhere. The heat flux combined with
the pressure transport, the dissipation term and the quasi-steady term coming from the
scaling add up to account for the turbulent advection on the left-hand side of the equation.

If we consider the budget of a fully developed channel flow, where streamwise and
spanwise directions are also homogeneous, we can directly compare the relevant non-zero
stresses 〈u′2

z 〉 of both cases, channel flow and CBL, term by term against each other; see
e.g. figure 2 of Mansour et al. (1988). Just as in the CBL case, the budget does not have an
explicit forcing term as source term; nonetheless, contrary to a CBL where the heat flux is
the dominant source term, for a channel flow the pressure transport is the dominant source
term. For a channel flow, the dissipation rate is the dominant sink term; for a CBL, while
dissipation is still consuming, it is not dominant. For both cases, the turbulent advection
(left-hand side of the budget equation) is of the same order of the rest of the terms on the
right-hand side.

To understand the main difference between these two budgets – the role of the
pressure transport term– we must refer to an essential difference between these two
physical systems: their influx of momentum. While the channel flow receives its intake
of momentum in the streamwise direction, the CBL does so in the vertical direction at
its lower boundary by means of the surface buoyancy flux B0. Hence the budget for 〈u′2

z 〉
in the channel flow does not have a source term per se, but the vertical velocity pressure
gradient term is the dominant source (redistribution) term that brings momentum from
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the spanwise direction to the vertical direction. Compared to that, the budget for the CBL
does not have a source term either, and its dominant source term is the heat flux, while this
time, the velocity pressure gradient term redistributes energy from the vertical direction to
the streamwise direction.

C.1. Evolution equation
One of the advantages of working with PDF methods is that equations for the evolution of
the moment of the PDF can be derived straightforwardly. In particular, the second moment
of f (W ) represents the normal Reynolds stress. To obtain the evolution equation for the
normal Reynolds stress, we multiply (3.3) by W 2 (which approximately equals the squared
fluctuations since 〈Uz〉 ≈ 0) and integrate over the velocity space.

Starting from the left-hand side, term by term this results in∫
dW W 2 ∂

∂t
f (W ; z, t) = ∂

∂t
〈u′2

z 〉. (C2)

The advective term yields∫
dW W 2 ∂

∂z
W f (W ; z, t)

= ∂

∂z

∫
dW W 3 f (W ; z, t) = ∂

∂z
〈u′3

z 〉. (C3)

For the right-hand side, the first term results in∫
dW W 2 ∂

∂W
〈b | W 〉 f (W ; z, t)

= −
∫

dW

(
∂

∂W
W 2

)
〈b | W 〉 f (W ; z, t)

= −
∫

dW 2W 〈b | W 〉 f (W ; z, t) = −2〈u′
zb′〉. (C4)

The rest of the terms on the right-hand side are derived in a similar way. Hence the full
equation takes the form

∂

∂t
〈u′2

z 〉 + ∂

∂z
〈u′3

z 〉 = 2〈u′
zb′〉 − 2

〈
u′

z
∂

∂z
p′
〉
+ 2ν 〈u′

z ∇2u′
z〉. (C5)

Naturally, it is also possible to obtain such an equation from the PDF for normalised
variables, (3.5), and thus recover (C1) directly. In particular. the quasi-steady term is∫

dW W 2 ∂

∂W

W

6t
f (W ; z, t) = − 1

3t
〈u′2

z 〉. (C6)

It is also possible to recover (C1) from (C5) by normalising the former with the
convective scales. For example:

∂

∂t
〈u′2

z 〉 = ∂

∂t
w2∗〈û′2

z 〉 = w2∗
∂

∂t
〈û′2

z 〉 + 〈û′2
z 〉 ∂

∂t
w2∗ = w2∗

∂

∂t
〈û′2

z 〉 + 〈û′2
z 〉
(

w2∗
3t

)
. (C7)

After removing dimensions and considering the quasi-stationary state, one recovers the
last term in (C1).
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