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Abstract
In the early 1980s, the Sagan-Tipler debate raged regarding the interpretation of the Fermi paradox but no clear
winner emerged. Sagan favoured the existence of ETI on the basis of the Copernican principle and Tipler favoured
the non-existence of ETI on the basis of the Occam’s razor principle. Tipler’s stance was an expansion of the simi-
lar but earlier Hart declaration. However, crucial to the Tipler argument was the role played by self-replicating
interstellar robot probes. Any technologically capable species will develop self-replication technology as the
most economical means of exploring space and the Galaxy as a whole with minimal investment. There is no evi-
dence of such probes in our solar system including the asteroid belt, ergo, ETI do not exist. This is a powerful and
cogent argument. Counter-arguments have been weak including Sagan’s sociological explanations. We present a
Copernican argument that ETI do not exist – humans are developing self-replication technology today. We are
developing the ability to 3D print entire robotic machines from extraterrestrial resources including electric motors
and electronics as part of a general in-situ resource utilization (ISRU) capability. We have 3D-printed electric
motors which can be potentially leveraged from extraterrestrial material that should be available in every star sys-
tem. From a similar range of materials, we have identified a means to 3D print neural network circuitry. From our
industrial ecology, self-replicating machines and indeed universal constructors are feasible. We describe in some
detail how a self-replicating interstellar spacecraft may be constricted from asteroidal resources. We describe
technological signatures of the processing of asteroidal material (which is expected to be common to most star
systems), and the excess production of certain types of clay and other detritus materials. Self-replication technol-
ogy is under development and imminent – if humans are pursuing self-replication technology, then by the
Copernican principle, so would any technologically savvy species elsewhere. There is no evidence that they have.
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Introduction

The Copernican principle posits that there is nothing special about us in the Universe, ergo, ETI must
exist. The Copernican anthropic principle for predicting the future (Gott, 1993) may be cast into
Bayesian form (Griffiths and Tenenbaum, 2000). The time at which an observer detects a phenomenon
(such as the detection of extraterrestrial intelligence) is random. The time elapsed since the start of a
random phenomenon tpast (development of technological intelligence, say 10 000 years) is related to the
total duration of the phenomenon ttotal (lifetime of technological intelligence) through the r ratio: 0 < r =
(tpast/ttotal) < 1. Randomness proposes that r < 0.5 with the probability that the future is longer than the
past, p(tpast<tfuture) = 0.5. For 95% confidence, 0.05<r < 0.95 and tfuture = ttotal − tpast, then (1/39)tpast <
tfuture < 39tpast. Given the randomness of events, the prior is given by p(ttotal)∝ (1/ttotal) and the likeli-
hood is given by p(tpast|ttotal) = (1/ttotal). The probability of observing n exemplars of ETI detections is
given by (1/ttotal)

n. The posterior time is thus given by: t = tpast + (tpast/n). Hence, we should observe
ETI contact imminently as the number of ETI grows as n→∞. This assumption motivates SETI.
Current SETI methods are based on searching the sky for extraterrestrial radio signals. Despite 60
years of searching for such signals including in the ‘waterhole’ bounded by the H-line at 1420MHz
and the OH line at 1670MHz, no reliable ETI signals have been detected (though I would contend
that this is not the most efficacious mode of search). Using Bayesian analysis, the current non-detection
of radio signals means that there can be no more than ∼100 undiscovered Earth-crossing Arecibo-
power radio signals originating within 1000 light years with a 90% probability (Grimaldi and
Marcy, 2018). Ruling out such radio signals entirely requires non-detection in an all-sky survey out
to 40 light years. Although fast (millisecond) powerful radio bursts (primarily from FRB121102, a
dwarf galaxy 3 × 109 ly from Earth) may be microwave sources used for propelling extraterrestrial
spacecraft, they are more plausibly postulated to be the result of magnetars that also produce
gamma ray bursts and X-ray flares due to the release of enormous amounts of magnetic energy
(Chatterjee, 2021). The magnetar hypothesis for radio bursts is disputed with recycled pulsars offering
an alternative candidate source (Ravi, 2022). The recent advent of the Square Kilometre Array (SKA),
optical SETI at the Lick and Keck observatories, and Breakthrough Listen offer enhanced search
options but the prospects for successful detection of extraterrestrial radio signals are diminishing
over time. A recent (2019) candidate Breakthrough Listen detection from Proxima Centauri by the
Parkes radio telescope in Australia was declared a terrestrial false alarm generated by electronics
(Witze, 2021). Furthermore, if ETI are adopting spread spectrum methods for targeted communication,
their signals are broadened across high bandwidth and exhibit high noise-like properties giving them
reliable interstellar transmission with security (Messerschmitt, 2012). This will make them impossible
to detect unless the pseudorandom code is deliberately easily cracked, e.g. digits of π, e, etc.

Active SETI proposes transmitting messages to prospective ETI into deep space from Earth. The
four potential ‘dangers’ of this strategy are weak arguments (Musso, 2012): (i) the cultural shock of
the discovery of ETI is unlikely to occur except in those with delicate religious sensibilities; (ii) any
malicious viral signal cannot infect terrestrial systems without detailed knowledge of the target’s design
(such as stuxnet); (iii) alien technological superiority potentially imposes competitive exclusion which
requires direct physical interaction, e.g. extinction of Neanderthals on exposure to invading
Cro-Magnons; (iv) alien invasion is no more likely to result from active SETI than from our radio leak-
age into the local interstellar environment. Furthermore, despite the (low) security risk, the probability
of success is extremely low ∼10−12 (Ashworth, 2016).

Search for Technosignatures

Interstellar archaeology involves the search for technological signatures at astronomical scales
(Carrigan, 2012) such as Dyson spheres and other evidence of stellar and galactic engineering. We
are in urgent need to transition towards a Kardashev type I civilization (exploiting 2 × 1016 W of
solar energy intercepted by the Earth). If we develop solar power satellites as a source of clean energy
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(Glaser, 1992), our current needs of ∼1013 W require a geostationary ring ∼1 km in width (Ellery,
2016b). The waste heat generated will radiate to deep space at thermal infrared wavelengths.
Although planetary rings will be difficult to detect, as our energy needs grow, so will the width of
the solar power satellite ring potentially enveloping the planet – the infrared signature could become
increasingly detectable. The O’Neill colony may constitute a transitioning step from a Kardashev
type I to type II civilization as industry migrates away from the Earth’s biosphere (O’Neill, 1974).
The O’Neill colony comprises a pair of coupled cylinders 6.4 km diameter by 26 km length with con-
trollable day/night cycles using mirrors, implementing artificial gravity through two-minute period
rotation and fashioned with internal environments including agriculture, housing for 200 000 people,
savannah, lakes, etc. Multiple such colonies could form a ring at 1 AU around the Sun. The Dyson
shell may be regarded as an evolution of this for a Kardashev type II civilization collecting and trap-
ping its solar energy and re-radiating waste heat at thermal infrared wavelengths centred near 10 μm
(Dyson, 1960) (though no evidence of Dyson spheres has been gleaned from infrared satellite
searches). By harvesting the energy of a star, this would constitute a Kardashev type II civilization
(exploiting solar energy of 4 × 1026 W). Other forms of stellar engineering might be observable
such as increasing stellar longevity – blue stragglers are natural rather than artificial phenomena result-
ing from increased mixing due to stellar collisions in globular clusters thereby extending their main
sequence lifetimes. An alternative to extending main sequence lifetime is to bleed mass from the star
by projecting a collimated electromagnetic laser/maser beam into it (star lifting), e.g. one candidate is
the F3 pre-subgiant star KIC8462852 due to its anomalous light curve (Matloff, 2017). This is speculative
at this stage. Other signs such as ETI indulging in asteroid mining in its stellar system would not be readily
detectable from Earth via the properties or characteristics of circumstellar dusty discs (Forgan and Elvis,
2011). For large-scale galactic engineering, there is no evidence of significant clusters of Dyson spheres.

Rather than SETI searches which rely on an array of assumptions, searching for interstellar
(Bracewell) probes is an alternative approach (Bracewell, 1960). The transmission of information
across interstellar distances may be conveyed through energy (electromagnetic radiation) or matter
(interstellar probes) but only the latter offers military security to the sending civilization (Freitas,
1980a). Colonization dynamics may be modelled as a percolation problem in which colonizing (driven
by non-sustainability limits) civilizations will form clusters linked into fractal structures through sur-
rounding non-colonizing (imposed by sociological constraints) civilization regions (Landis, 1998).
The interstellar bandwidth theory suggests that there is a limit to physical migration between star sys-
tems (Wiley, 2011). Such models do not apply to self-replicating probes since they exhibit exploration
rather than colonization rationales and strategies which is guaranteed to fill the Galaxy exhaustively and
so are better modelled as exhaustive approaches (Jones, 1978). The average age of stars in the Galactic
habitable zone is 1.8 Gy older than our Sun (Lineweaver et al., 2004). This suggests a stark motive for
exploration – necessity due to the evolution of the home star to late main-sequence phases. It takes only
one such intelligent species to embark on a programme of interstellar exploration. It has been suggested
that an interstellar network of communication nodes set up by interstellar robotic probes does not suffer
most of the ad hoc assumptions and limitations of targeted radio searches by ETI (Gertz, 2021). An effect-
ive medium to implement such a strategy would be self-replicating probes. Self-replicating probes are
superior to long-lived single-shot (Bracewell) probes for any enduring interstellar exploration programme
(Valdes and Freitas, 1980). Self-replicating probes are the minimum cost approach to the exponential
exploration of our Galaxy and beyond.

The only candidate artificial extraterrestrial visitor we have had in the Solar System was
‘Oumuamua’ in 2019. ‘Oumuamua’ was an extrasolar asteroid that travelled at 27 km s−1 indicating
a hyperbolic escape trajectory. It was estimated from a light curve variation of 10:1 to be a triaxally
tumbling 400 m × 40 m cigar-shaped object with a high albedo >20% and period of <8 h (Glester,
2019). In a hyperbolic orbit with an ellipticity of 1.2, it passed within 25Mkm of Earth having origi-
nated from near Vega in the Lyra constellation 25 light years away before slowly accelerating out of the
solar system to the constellation of Pegasus. The acceleration may be due to outgassing through solar
heating but no evidence of gas or dust was observed. The postulation that ‘Oumuamua comprises solid
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hydrogen or nitrogen is unlikely as such comets have never been observed otherwise. A flat solar sail
with tip-vanes for manoeuvrability has been proposed as consistent with the observations. A variation on
this theme is solar thermal propulsion which offers higher efficiency by using thermal energy to heat and
accelerate hydrogen propellant (Sheerin and Loebb, 2021). An interceptor could potentially be launched
using a Jupiter gravitational assist to intercept ‘Oumuamua’s trajectory (Lunan and Coppinger, 2021). On
average, two stars pass within 1 light year of our Sun every 500,000 years rising to 200 within 10 light
years. If a fraction f of N stars launched a lurker probe over the last 2.5 billion years, N/f∼500,000 probes
should have encountered near-Earth space (Benford, 2021). The most accepted theory is that ‘Oumuamua
is an interstellar asteroid resembling an organic-rich comet or a D-type asteroid (Meech et al., 2017).
Interstellar spacecraft themselves might be detected from Earth by their high-speed signatures such
as γ-ray or X-ray emissions (Zubrin, 1995) and extreme Doppler-shifted reflected light from solar
sails (Garcia-Escartin and Chamorro-Posada, 2013). Self-replicating probes may be microscale in size
∼0.1 μm, replicating in HII regions but may be detectable with a characteristically exponentially increasing
luminosity in the infrared spectrum (Osmanov, 2020). There is no evidence of such.

There are several candidate locations for extraterrestrial artefacts (lurking spacecraft, artificial civil
engineering structures, underground repositories, etc) as evidence of extraterrestrial exploration using
interstellar probes (Freitas, 1983a, 1983b): (i) Earth as a tectonically active body does not offer a geo-
logically stable location for artifacts – even evidence of a full industrial civilization and its climatic
effects deep into Earth’s geological history (Silurian hypothesis) would have similar multivariate geo-
logical signatures to mass extinction events (Schmidt and Frank, 2017) rendering them difficult to
detect; (ii) the Moon (or moons) acts as a stabilizing influence on the primary body and has been tec-
tonically inactive for 2 billion years though its surface undergoes impact gardening over 106 y – the
Moon appears to act as a collector of artefacts (Arkhipov, 1995, 1998); (iii) main asteroid belt or
Near-Earth asteroids (but the latter have short residence times ∼108 y) for infrared emissions due to
mining activity during self-maintenance and self-repair (Oort cloud and Kuiper belt objects are too
far from the sun to exploit it as an abundant energy source though the latter have been proposed as
targets (Matloff and Martin, 2005)) – there are around 10 000 C-type asteroid candidates that would
require a resolution of 10 cm/pixel to detect human-scale artifacts (Kecskes, 2013); (iv) stable
Lagrangian L4 and L5 points around bodies of interest such as Sun-Earth and Earth-Moon – halo orbits
around the Earth-Moon L4 and L5 points have been searched optically to 14th magnitude without suc-
cess (Freitas and Valdes, 1980b); (v) the focus of the Sun’s gravitational lens outward from 550 AU
(Maccone, 2008); (vi) emissions from a decelerating extraterrestrial spacecraft (even if of diminutive
size ∼1–10 m or employing camouflage or stealth technology (Haqq-Misra and Kopparapu, 2012)
approaching the solar system off-the-ecliptic to minimize particle flux impingement, e.g. gamma
rays from antimatter drives; (vii) debris from astronomical-scale mining may be detectable as thermal
signatures of dust in debris discs around evolved stars but would be indistinguishable from natural pro-
cesses (Forgan and Elvis, 2011); (viii) radio or laser communication transmissions from extraterrestrial
civilizations (currently, the main strategy of SETI programmes). There is no evidence of such.

However, the solar system has not been systematically mapped with high resolution sufficiently to
exclude undetected probes (Freitas, 1983a, 1983b). We propose that searching the asteroids for signs of
past mining activities would be a reasonable strategy to search for signs of earlier visitations of self-
replicating probes. There are no signs of dormant Bracewell probes in the asteroid belt
(Papagiannis, 1978) nor at the Sun-Earth or Earth-Moon Lagrangian points from optical searches
(Freitas and Valdes, 1980b). There are no large interstellar spacecraft, be they gossamer or worldship,
in evidence in the Solar System. Although this doesn’t exclude diminutive spacecraft (Haqq-Misra and
Kopparapu, 2012), the self-replicating machine requires a degree of stature that is not readily con-
cealed, particularly if adopting laser-propelled lightsails or variants thereof. Other possibilities include
indirect evidence of prior visitation. As our own asteroid belt represents a source of material resources,
the residue of resource extraction might be detectable. This represents a more subtle trace of extrater-
restrial visitation. The Moon has been mapped to a resolution of 0.5 m by the Lunar Reconnaissance
Orbiter but no extraterrestrial artefacts either intentional (such as a buried beacon akin to radio beacons
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implied by SETI) or unintentional (such as from mining/construction activities or nuclear waste) have
been found (though lava tubes represent an unexplored possibility) (Davies and Wagner, 2013).

Self-replicating probes in SETI

One of the first major comprehensive studies on self-replicating machines – the NASA/ASEE 1980
summer study on advanced automation for space missions (Freitas and Gilbreath, 1980a; Freitas
et al., 1982) – outlined a concept for a self-replicating lunar factory to robotically industrialize the
Moon using local lunar resources. A modest but more recent experimental setup demonstrated self-
assembly aspects of a self-replicating lunar rover (Chirikjian, 2002). The Moon of course offers a
potentially valuable location for both self-replication and/or nanotechnology experimentation without
danger to Earth. The first self-replicating probe concept was proposed as the payload for a suitably
scaled Daedalus starship design with a 0th stage to permit deceleration at the target star system rather
than a flyby (Freitas, 1980a, 1980b). Its dominant mass is nuclear fusion propellant D/3He mined from
Jupiter’s atmosphere. The payload comprised a 450-tonne robotic factory that grows itself to full cap-
acity on landing. It comprised: (i) power systems, (ii) computer controllers, (iii) aerostats, (iv) tankers,
(v) mining excavators, (vi) haulers, (vii) chemical processors, (viii) material processors, (ix) fabrication
laboratory, (x) assembly robots, (xi) warehousing, (xii) maintenance and repair wardens and (xiii) veri-
fication testers. Some of these tasks can be merged using modern technology such as solid-state elec-
trochemical processing (merging aspects of chemical and material processing), 3D printing (merging
aspects of fabrication and assembly), reconfigurable manipulators (merging aspects of assembly and
maintenance/repair), just-in-time manufacturing (eliminating warehousing), etc. Aerostats and tankers
can be eliminated if adopting propellantless propulsion.

Searching for self-replicating probes might be a more rational strategy than searching for electro-
magnetic signals. One medium of investigation and communication with extraterrestrial intelligence
is locally through the internet which requires interstellar probes – this is the rationale behind the
‘Invitation to ETI’ (http://ac.ieti.org/) (Tough, 1998). The idea of the self-replicating probe (we shall
avoid the term ‘von Neumann probe’ due to its propensity for confusion with the more well-established
term ‘von Neumann architecture’ and the generalized and more nebulous term ‘von Neumann machine’
used to refer to both despite being entirely different concepts) to explore the Galaxy was invoked by
Frank Tipler as an argument against the existence of ETI (Tipler, 1980). Tipler was enunciating an earl-
ier argument by Michael Hart (Hart, 1975). Hart began with his Fact A that ETI do not exist on Earth
now. There are only four explanations for this: (i) interstellar travel is impossible – this is dispensed
with later; (ii) ETI choose not to explore but sociological explanations cannot apply to all civilizations
at all times, e.g. zoo hypothesis (Ball, 1973); (iii) ETI haven’t arrived but this postulates that the
Universe is in special state transition between stable states; (iv) ETI have visited in the past (von
Daniken hypothesis) for which there is no evidence. Despite the power of the Hart-Tipler arguments
scientifically, their personal viewpoints were considered controversial – in the case of Tipler, it is
his Christian Teilhard de Jardin-type theology that rankles; in the case of Hart, it is his unsavoury
white supremacist leanings. This has (wrongly) tainted their scientific arguments. In particular, the
opposing argument espoused by the admirable Carl Sagan, illuminatus extraordinaire, has held
sway primarily because of his benign influence over several generations of scientists (including myself)
who will brook no ill towards him. A review of the Tipler-Sagan debate is given in (Ellery et al., 2003).

The essence of the Hart-Tipler argument is that a self-replicating spacecraft would be sent to any
neighbouring star system and use the raw materials available therein to manufacture copies of itself
to be sent thenceforth to other star systems ad infinitum. Local stellar density of stars is ∼0.004 ly−3

but only ∼20% of planets are expected to reside in the habitable zone of stars. This reduces stellar dens-
ity to ∼0.0008 ly−3 for astrobiological targets but self-replicating probes may be employed in an
exhaustive search to all stars for resources regardless of scientific or philosophical interest – it is access
to physical resources within minimum transit that is the driver of a self-replicating system. The self-
replicating spacecraft would arrive at its destination star system and exploit raw materials from asteroids
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and moons to construct copies of itself. Around 60% of Sun-like stars exhibit evidence of terrestrial-
type planets. We expect the asteroids and moons of other star systems to have similar constitutions to
those of our own solar system given the ubiquity of the laws of chemistry ceteris paribus. Planets are
formed through the accretion of a disc of gas and dust forming a well-defined condensation sequence
though subsequent planetary migrations may distort this sequence. Most common rock-forming miner-
als are silicates formed from magma which cools – different minerals concentrate and crystallize at dif-
ferent temperatures, e.g. feldspar is an early precipitating mineral. As each mineral crystallizes, the
magma composition changes. Bowen’s reaction series predicts that certain minerals form in association
with each other while other minerals are never associated with each other. This is because of the con-
ditions in the cooling magma. Similarly, the Goldich dissolution series predicts the rate of weathering
based on the stability of minerals on Earth. Minerals that form at higher temperature/pressure are less
stable on the surface than those formed at lower temperature/pressure. Both series predict that mafic
silicates weather more than quartz.

We expect asteroid belts to be a common feature of stellar systems as indicated by thermal emissions
from dusty discs around 10–30% of main-sequence stars. Asteroid belts in the form of accretion discs
occur around 18% of stars aged 3–30My old dropping to 12% at age 30–300My and 2% at 0.3–3 Gy
old but significant asteroid remnants are expected to remain. There may be variations to this around
Population I stars which are metal-deficient but there also exist star systems with super-Earths with
masses up to 10 ME indicating enhanced metallicity. Asteroid belts are expected to form at the
snow line at 170 K of a stellar system due to the formation of giant planets just outside the snow
line (Martin and Livio, 2013). The asteroid belt location is weakly dependent on stellar mass as
Rsnow≈ 2.7(Mstar/MSun)

1/3 AU. Planetary migrations can deplete the asteroid belt – our asteroid belt ori-
ginally contained an Earth mass of asteroids that was subsequently disrupted to 0.1% of its original
mass by Jupiter’s 0.2–0.3 AU migrations even though they occurred twice as far as the snow line.
Our own asteroid belt would be undetectable indicating that these measured thermal emissions are
from stellar systems in which the giant planets formed far from the snowline near the end of the pro-
toplanetary disc lifetime preventing planetary migration and so asteroidal dispersion. Because stars and
their rocky planets accrete from the same nebula, their respective compositions as measured by their
Fe/(Mg + Si) mass fractions is correlated (Adibekyan et al., 2021) so rocky asteroidal material compos-
ition may be inferred remotely.

Asteroids offer the gamut of raw materials for feeding the self-replicating machine – metals, ceram-
ics, volatiles (presumed to be similar in nature as lunar volatiles), reagents and feedstock for plastics.
We can assume, with minor variations, solar abundances may be typical of population II stars in general
(Table 1) (Ringwood, 1966).

We select A-type asteroids as representative of both M-type and S-type in that they comprise a
median species with 50% olivine Mg2SiO4 and pyroxene (dominantly enstatite MgSiO3 which is
also representative of E-type asteroids) silicate grains embedded in a 50% matrix of Fe-Ni-Co metal
alloy with some FeS inclusions. Carbonaceous material from C-type asteroids would offer a critical
source of salts, carbon and a hydrogen source from water for any number of applications. One of
the chief challenges in asteroid mining will be in conducting mining and processing operations
under the microgravity environment imposed by asteroids. One possibility that has yet to be fully
explored is the biomimetic drill concept based on the wood-wasp (Sirex noctilia) ovipositor mechanism
(Vincent and King, 1996; Gao et al., 2007). It employs two longitudinal sections that penetrate through
a dual-reciprocating mechanism – the two segments of the drill stem alternate between anchorage and
penetration, the anchored segment providing traction for the percussive digging segment. The anchor-
ing mechanism potentially eliminates the weight-on-bit force required for drilling but there is a require-
ment for initial anchorage that remains – impact penetration by harpoon is one possibility.

Self-replicating probes are an example of TRIZ (Teorija Reshenija Izobretatel’skih Zadach), a theory
of inventive problem solving that matches biomimetic solutions to technological problems (Vincent
et al., 2006). The self-replicating machine may be deemed an inevitable result of industrial production:
the Griliches production function defines productive output Y given productive inputs X of capital and
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labour and scientific knowledge K of process/product innovations by: logY = βlogX + γlogK. In a
robotic self-replicating machine, labour is eliminated through autonomous capability and capital invest-
ment in the machines of production equates to (low-cost) raw material only (X≈ 0) as machines of pro-
duction (capital) now constitute the productive output Y, i.e. logY≈ γlogK. The production function
becomes dependent only on scientific knowledge. The technological problem is to economically
explore our interstellar neighbourhood with minimum capital investment – the biomimetic solution
is to exploit the exponential growth in productive capacity rendered by self-replicating systems. As self-
replicating machines permeates the Galaxy, the population of self-replicating machines grows thus:

N =
∑m
i=1

(1+ r)i (1)

where r = number of offspring per generation, m = number of generations. The entire Galaxy could be
colonized within 24 generations (yielding a population of 424 billion) assuming two offspring per gen-
eration, i.e. the maximum number of offspring is constructed by the first generation of probes at 48. If
the number of offspring per generation is increased to three, this reduces Galactic colonization time to
20 generations with a maximum of 80 offspring for the first generation, i.e. beyond two offspring per
probe, there is little generational performance gain with more offspring per generation. We suggest that
replication time is short – a span over only a few years at most so colonization time is dominated by the
transit time between stars which we take to be 100 years at 0.1 c initially but slowing as the population
occupies local space. Time will then be determined by the transit time across the 100 000 light year
diameter Galaxy, i.e. ∼1 million years. Given this short timespan compared with the age of the
Galaxy, our Galaxy should be swarming with self-replicating probes yet there is no evidence of
them in our solar system. Indeed, it only requires a civilization to exist long enough to send out
such probes as they would thenceforth continue to propagate through the Galaxy even if the sending
civilization were no more. And of course, it requires only one ETI to do this. Thus, the Fermi paradox
or Great Silence (Brin 1983) emerges: if extraterrestrials exist, where are they? There exist a host of ad

Table 1. Solar system elemental abundances

Element Log abundance

H 12.00
He 11.15
C 8.72
N 7.98
O 8.96
Na 6.30
Mg 7.40
Al 6.20
Si 7.50
P 5.34
S 7.30
Cl 6.30
K 4.70
Ca 6.15
Sc 2.82
Ti 4.68
Fe 7.87
Co 4.64
Ni 5.91
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hoc explanations (Webb, 2002), some bordering on solipsism such as the virtual planetarium (Baxter,
2001) but all sociological arguments are flawed because they must apply universally (Hart, 1975). The
simplest hypothesis to draw from this (lack of) evidence is that ETI do not exist – a direct application of
the Occam’s razor principle. See Ellery (2003) for a justification of Occam’s razor principle from a
computational complexity theory perspective. Although primarily applied to our own Galaxy, the
Fermi paradox may be extended to 2.5 million galaxies assuming intergalactic transits at 0.5 c by a
relativistic rocket over the last 2 billion years (median age of terrestrial planets) (Armstrong and
Sandberg, 2013). The Great Filter notion postulates that there is a bottleneck in the Drake equation
(N = RfsfpneflfiftL where R = rate of star formation in the Galaxy, fs = fraction of stars with habitable
zones, fp = fraction of stars with planets, ne = Earth-like fraction of planets, fl = fraction planets that
give rise to life, fi = fraction of species that spawn intelligence, ft = fraction of intelligence that
spawn technological civilization, L = lifetime of technological civilization) (Hanson, 1998) such as
the lifetime L of an extant civilization being short.

All existential risks are Great Filters that threaten wholesale human (or other intelligent species) sur-
vival and have no precedent in human history because they result primarily from technological
advances (Bostrom, 2002): (a) sudden disasters by (i) runaway global greenhouse warming, (ii) all-out
nuclear holocaust, (iii) global extinction by asteroid or comet impact, (iv) pandemic by natural or gen-
etically engineered doomsday virus, (v) deliberate or accidental misuse of molecular nanotechnology
(grey goo scenario), (vi) inadvertent destruction by high energy physics experiment, (vii) universe
simulation halted and (viii) extermination by malignant superintelligence; (b) prevention of progress
by (i) resource depletion or ecological destruction without replenishment, (ii) social stagnation prevent-
ing technological progress through oppression or genetic suppression and (iii) technological ceilings
imposed by physical limits; (c) narrow progress by (i) take-over by mind-uploaded elite, (ii) take-over
by flawed superintelligence and (iii) global regression to totalitarian elite; (d) progress in undesirable
directions by (i) evolutionary de-selection of human core values and (ii) extermination by extraterres-
trial encounter. In all cases, there are of course unforeseen factors. These filters cannot explain the lack
of self-replicating probes as they propagate independently of the survival time of the sending civiliza-
tion. The only explanation left consistent with the astrobiology paradigm that microbial life is a uni-
versal physicochemical process is that multicellular species (and so, technologically intelligent
species) rarely evolve from biological life (the rare Earth hypothesis) (Ward and Brownlee, 2003).
The rationale is based on several factors: (i) correct planetary mass in the habitable zone for plate tec-
tonics; (ii) Jupiter-sized gas giant in the outer solar system; (iii) large orbiting moon to stabilize home-
world axial tilt; (iv) habitable zone of a G2 star within the larger habitable zone of the Galaxy for
metallicity. For example, the Jovian system ensures that catastrophic impacts yielding major climatic
changes occur every ∼106 y to stimulate evolutionary novelty. Technological intelligence provides a
means to mitigate against such impacts (Ellery, 2020a) though long-period comets from the Oort
cloud present a greater challenge than asteroids as they are more difficult to detect prior to the formation
of a comet tail through volatile evaporation near Jupiter’s orbit.

We must now consider how we might implement a self-replicating interstellar probe. Full autonomy
is essential for interstellar flight and extrasolar planet investigation in the search for evidence of life and
intelligence (Ellery, 2010). A high degree of onboard intelligence is required to perform tasks from
sophisticated image processing, reasoning, planning and decision-making as well as more creative cog-
nition such as learning and hypothesis generation. There is no scientific or technological reason why
highly capable artificial intelligence cannot be created. Any interstellar probe, especially a self-
replicating one, requires a high degree of autonomy to adapt to different stellar system environments.
It requires scientific instruments to search for specific features which are limited by technological
sophistication. Any basic scientific suite must include telescopy in the X-ray-ultraviolet-visible-
infrared-radio spectrum for long-range reconnaissance. Scientific autonomy requires an autonomous
search for signatures and their interpretation – this is an under-developed field (Ellery, 2018b).
Adaptability to environmental exigencies implies learning and/or evolutionary capacity. One significant
problem with neural learning is that it learns polynomial-like input-output patterns from large datasets
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rather than underlying algorithmic principles. This may be exemplified by the transfer learning problem
of adapting robot manipulator control on Earth to the zero-gravity environment in space. The control
algorithms have the same form with minor parameter adjustments (Ellery, 2004) but neural learning of
the latter requires complete re-training from new input-output data sets (Ellery, 2020d). Even enhance-
ment of the backpropagation algorithm with Kalman filtering which enriches the learning process does
not address this problem. Yet explicit control algorithms offer insights into the underlying dynamics –
this suggests that fruitful research should be directed towards hybridizing symbolic with neural tech-
niques (Ellery, 2015). It is crucial that motor capabilities are mastered as the evolutionary history of
animal neural structures has been stimulated by advances in motor capability – central pattern genera-
tors for fish undulation evolved for limb stepping in land animals; central pattern generators for legged
locomotion evolved into decoupled controllers for arms and hands in primates. Autonomic computing
currently under development is the hardware equivalent characterized by the following properties
(Ganek and Corbi, 2003): (i) self-configuring, (ii) self-healing, (iii) self-optimizing, and (iv) self-
protecting, i.e. robust.

To exceed its own programming and self-replicate uncontrollably, the self–replicator must be able to
inspect itself, re-design itself, and design its own programs. Both program and hardware design may be
implementable through genetic algorithms and self-inspection may be possible using extensive sensor
suites with hidden Markov models. However, it is relatively straightforward to restrict these capabil-
ities. Hybrid neural-symbolic systems offer a promising approach which may be implemented in
read-only format to prevent learning, and so, uncontrolled behaviour (Ellery, 2015, 2019a). Hence, the
self-replicating probe cannot deviate from its programmed instructions. Genetic invariance must also
be implemented. Mutation is most likely to yield abject failure due to brittleness rather than enhanced
performance. Furthermore, M-of-N redundancy through multiple program copies and error detection
and correction codes (EDAC) may be employed in a self-replicating machine to impose a Hayflick
limit on the number of replications permitted. Additionally, evolutionary change may be effectively
halted through the same approach of redundancy and EDAC (Ellery and Eiben, 2019a). Any kind of
channel code adds structured redundant bits to increase the fidelity of information transmission at the
cost of higher bandwidth requirements. The SNR can be related to bit error per noise Eb/N0 by:

Eb

N0
= S/N

R/B
(2)

where R = data rate, B = bandwidth. Above the theoretical Shannon coding limit, there is a code that can
communicate with zero error (Costello and Forney, 2007):

Eb

N0
.

2R/B − 1

R/B
= ln2 = −1.6 dB (3)

For example, the Golay code is a ‘perfect’ three-error block code that works only for (23,12) for
d = 7 and (24,12) for d = 8 – it is based on a remarkable number theoretic relation
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cients. It would be curious indeed if evolution had discovered the tri-error Golay code for the terrestrial
tri-base genetic code but it and its variants may be employed in self-replicating machines to prevent
evolutionary change over the 24 generations required. These codes may be interleaved and embedded
to an arbitrary degree (at the cost of memory storage). EDAC prevents grey-goo scenarios of runaway
replication (though this is usually attributed to nanotechnological assemblers rather than clanking repli-
cators) (Joy, 2000). Nanotechnology concepts of self-replicating machines were based on the
nano-assembler, a conceptual example of which is a 0.1 μm molecular manipulator of carbon
(nanotube-graphene-fullerene) in a Stewart platform configuration for precise positional control and
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tip chemistry for manipulating molecules similar to the ribosome (Merkle, 1994). The Smalley-Drexler
debate introduced the fat and sticky fingers problem to nanotechnology that molecular assemblers
cannot manipulate atoms because they are themselves constructed from multiple atoms and cannot
be positioned with arbitrary position and atoms stick together due to van der Waal forces (Tourney,
2018) – biology overcomes this through molecular recognition and enzymes in a solvent that facilitates
self-assembly. However, a molecular assembler has been demonstrated that reversibly rotary switches
between two activating sites of opposing chirality controlled by the addition or deletion of a
proton (Kassem et al., 2017; Kelly and Snapper, 2017). This suggests that nanotechnology-scale
self-replication is feasible but we do not consider it here.

An important facet is that self-maintenance and self-repair capability are implicit in self-replication
capability which itself affords robust exponential population growth. Failure modes such as transit,
foothold and production failures (Fow, 2021), are unlikely prevent the spread of self-replicating probes.
It has been suggested that self-replicating probes might mutate into a predator-prey ecology (Forgan,
2019). A reaction-diffusion version of the Lotka-Volterra model of such an ecology through the
Galactic Habitable Zone exhibited oscillatory populations followed by equilibrium with the spread
of high prey populations so the Fermi paradox remains. Nevertheless, the significant evolution of a
predator-prey ecology is unlikely given the small number of generations required to populate the
Galaxy. Due to finite genetic fidelity during self-replication, it has been asserted that such an evolution-
ary process will inevitably yield a runaway error catastrophe due to the accumulation of mutations such
that the probes cease to function (Kowald, 2015). However, evolution can be prevented by increasing
replication fidelity – such a strategy minimizes waste – to arbitrary degrees using EDAC (Ellery and
Eiben, 2019a). This will eliminate the prospect of speciation into predator-prey ecologies in which self-
replicating probes cannibalize other self-replicating probes or berserkers in which self-replicating
probes seek out and destroy intelligent species.

The sheer utility of self-replication technology marginalizes the notion of that ETI will not develop
this technology for fear of its potential dangers (Sagan and Newman, 1983). There are numerous rea-
sons to send out self-replicating probes – reconnaissance prior to interstellar migration, first-mover
advantage, insurance against planetary disaster, etc – but only one not to – indifference to information
growth (which must apply to all extant ETI without exception). Self-replicating probes require minimal
capital investment and represent the most economical means to explore space (Ellery, 2017), interstellar
space included. In a real sense, self-replicating machines cannot become obsolete – new design devel-
opments can be broadcast and uploaded to upgrade them when necessary. Once the self-replicating
probe is established in a star system, the probe may be exploited in various ways. The universal con-
struction capability ensures that the self-replicating probe can construct any other device. These include
monitoring devices to observe the evolution of intelligent species, direct communications with encoun-
tered intelligent civilizations to facilitate trade, directed panspermia seeding for planetary terraforming,
construction of O’Neill colonies independent of planetary habitats for future worldships of colonists,
etc. For example, panspermia offers the prospect of both seeding life and interstellar communication
(Crick and Orgel, 1973). Biological cells can survive high shock impacts (Burchell et al., 2014).
Indeed, the panspermia concept suggests the prospect of exploiting microorganism DNA as a self-
replicating message. This was explored in the bacteriophage фX174 that exploits Escherichia coli
as its host (Yokoo and Oshima, 1979). Overlapping genes were selected for analysis and but no sig-
nificant pattern was observed. Indeed, it is an open question whether self-replicating machines consti-
tute a form of life themselves (Ellery, 2018a). It is far more likely that self-replicating probes will be
used for colonization by robotically establishing infrastructure in preparation for subsequent worldships
(Bond and Martin, 1984). An intriguing prospect is that, given advances in 3D printing biological
organs (Ellery, 2021a), the self-replicating probes could 3D print entire humans at a destination without
the necessity for physical transport – the worldship concept may be rendered obsolete. Certainly,
planetary habitats (Ellery and Muscatello, 2020; Ellery, 2021b) and their life support systems
(Ellery, 2021c) may be manufactured through local resources and 3D printing technology. A human
comprises almost entirely of 11 elements: O-65%, C-18.5%, H-9.5%, N-3.2%, Ca-1.5%, P-1.0%,
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K-0.4%, S-0.3%, Na-0.2%, Cl-0.2%, Mg-0.2% plus traces of 14 other elements – B, Cr, Co, Cu, F, I,
Fe, Mn, Mo, Se, Si, Sn, V and Zn. Our industrial ecology already extracts all the major elements
(emboldened) except P and K which may be extracted from KREEP minerals (Ellery et al., 2018)
and several minor constituents (see Appendix Table A1). Although this in no way suggests that it
would be straightforward to print organic material from these constituents (it wouldn’t be), it does sug-
gest at least that the basic constituents of a human being might recovered in-situ fairly trivially. Their
organization, of course, is another matter entirely.

We further assume that appropriation of star system resources is ethical if resources are not being
used (if no ETI is extant), biologically barren (tectonically inactive) or are negotiated through trade
(if ETI is extant). The latter requires the ability to communicate through language. There are two the-
orems of interstellar trade that declare that interest must be computed relative to the trading planets
rather than the travellers and that such interest rates between the planets converge (Krugman, 2010).
Given that self-replicating probes trade locally with indigenous ETI, these factors are not relevant.
The self-replication technology, or parts thereof, represents the most valuable trading commodity.
Self-replicating probes provide the most economical means with which to colonize the entire
Galaxy – it requires investment only in the initial probes sent from our solar system (built using self-
replication technology developed on the Moon and elsewhere (Ellery, 2016a)). Self-replicating probes,
of course, provide the most economic means for a civilization to transition from a Kardashev type II
civilization into a Kardashev type III civilization (exploiting energy of the Galaxy ∼4 × 1037W)
(Kardashev, 1964) – this is the ultimate first-mover advantage. If we are an emerging KI civilization
imminently developing self-replication technology, this suggests that the KI phase is short, only a
few thousand years and the KII to KIII transition is longer at around a million years. We cannot com-
prehend the nature of a KIII civilization beyond that it should be detectable from megascale astroen-
gineering constructions – no such evidence has been forthcoming through searches. If we apply the
Copernican Principle (principle of mediocrity that we are typical in the Universe) which underlies
the ETI hypothesis, we must assume that self-replication technology will be developed by ETI because
this is exactly what we are doing.

Terran self-replicating probe payload

The self-replicating probe is based on the universal constructor, a machine that can construct any other
machine (including itself) given the appropriate instructions and resources – John von Neumann was
evidently strongly influenced by the ideas of Alan Turing (Burks and von Neumann, 1966). The uni-
versal constructor requires four major components: (a) an autonomous factory that acquires and pro-
cesses raw material into manufactured items that constitute the self-replicator (analogous to
ribosomes); (b) an instruction program copier (analogous to DNA/RNA polymerase); (c) a controller
that uses the instruction program for copying (uninterpreted) and for execution (interpreted) (analogous
to protein-mediated gene expression); (d) instruction program that fully specifies A + B + C (analogous
to DNA/RNA). von Neumann introduced his self-replicating machine model through cellular automata
(CA) with specialized organs – neural cells, muscle cells and transmission cells. A physical represen-
tation of such cellular computing might comprise large arrays of simple computing units implementing
CAs with simplicity, parallelism and local processing (Sipper, 1999). The self-replicating machine
comprises two major systems – an universal computing machine and an universal kinematic machine
within which the program copier may be subsumed into the kinematic machine and the program tape
may be subsumed into the computer. Herein lie the clues to the critical components required for a kine-
matic self-replicating machine: (a) universal constructor that processes material through physical actu-
ation on the environment; (b) universal computer that processes information through active physical
electronics. The most basic component of the former is the actuator and of the latter is the active amp-
lifier/switch. We are developing: (i) closed-loop extraterrestrial (lunar and asteroidal) resource-based
industrial ecosystems from which to construct any kinematic machine (defined as a kinematic config-
uration of electric motors); (ii) 3D printing as a universal construction mechanism including (a) 3D
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printing electric motors (and so, the principle of self-assembly) that can be kinematically configured
into suites of robotic machines; (b) 3D printing analogue neural network computers as a direct instan-
tiation of the universal Turing machine based on vacuum tube amplifiers/switches. We contend that this
tackles the key critical capabilities necessary to realize self-replicating machines subject to material,
energy and information closure constraints (Ellery, 2020b).

Inspired by the RepRap 3D printer which can replicate many of its own plastic parts (Jones et al.,
2011), we suggest that completion of the self-replication process into a self-replicating 3D printer requires
several lines of experimental development that we have been undertaking (it is not a necessary condition
that 3D printing constitute universal construction as it may be supplemented by other FabLab kinematic
machines (Tanaka, 2001; Lipson, 2005) but it is a sufficient condition if we can demonstrate it):

(i) Multimaterial 3D printing to incorporate plastics, metals and ceramics: we have demonstrated the
principle of using molten aluminium alloy with silicone plastics simultaneously (Fig. 1) which is a
major step towards 3D printing metal/plastic in integrated components – indeed, this is precisely
what is required in printing electronics and solar sails.

A custom 3D printer is under construction with three heads – a Fresnel lens-fibre optic bundle
assembly for melting metal, a silicone plastic extruder and a milling head for surface finishing. A fourth
three degree-of-freedom motorized ‘wrist’ head provides self-assembly capability.

(ii) 3D printing of electric motors: we have successfully demonstrated 3D printing of DC electric
motors using a suite of 3D printing techniques (Elaskri and Ellery, 2020) (Fig. 2).

The current 3D printed motor is a prototype to demonstrate the principle of 3D printing complex
mechanisms and subsequent versions will focus on printing coils and integrating the 3D printing pro-
cesses to minimize manual assembly.

(iii) 3D printing of active electronics: we propose the adoption of vacuum tubes for computational elec-
tronics because it requires only a handful of materials and reagents with modest processing conditions
(tungsten coated with quicklime/alumina cathode, high-temperature Kovar wiring, nickel control grid
and anode and fused silica glass/ceramic enclosure) unlike solid-state processing which require stringent
conditions (Ellery, 2022b). To obviate against the bulkiness of vacuum tubes, we have investigated the use
of analogue neural network circuits which are Turing complete (Siegelmann and Sontag, 1995) (Fig. 3).

Indeed, it has been argued that analogue neural network electronics may offer super-Turing capabil-
ities (Siegelmann, 1995). Neocortical neurons that exhibit the multistability of digital flipflop circuits
require the graded response of analogue circuits modulated by positive feedback gains in their recurrent

Fig. 1. (a) Fresnel lens melting of aluminium alloy; (b) molten aluminium directly on silicone plastic.
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Fig. 2. (a) 3D printed prototype DC electric motor with wound coils (left) and off-the-shelf commer-
cial DC electric motor (right); (b) exploded view of 3D printed DC motor with wound coils.

Fig. 3. Forward neural network and backpropagation physical analogue circuits.
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connections (Hahnloser et al., 2000) reinforcing the utility of analogue circuitry. Digital behaviour in
neural networks can be readily generated through McCulloch-Pitts neuron configurations. Optical
neural networks are another possibility that offer promise for higher density interconnections with
crossbar architectures, e.g. Hopfield net-type neural configurations (Hsu et al., 1990). Neural nets
can potentially be self-replicating – a self-replicating neural network version of a quine program has
been shown to replicate itself by learning to output its own weights (Chang and Lipson, 2018). A
quine is a program that prints itself – they comprise a program (phenotype) and data (genotype) in
which the program uses the data in two ways: (i) genotype is transcribed into a new copy of the genome
and (ii) genotype is translated into a phenotype (as established by von Neumann’s self-replicator
model). We have yet to 3D print vacuum tube components of our neural nets but they also provide
the basis for radiofrequency devices such as magnetrons, klystrons and wigglers.

(iv) Self-assembly: we have married an earlier 3D printed electric motor without permanent magnets
(except wire coils) with a 3D printed gearing system and two jointed panels to demonstrate simple self-
assembly of structural panels (Ellery and Elaskri, 2019b) (Fig. 4).

Next steps are to integrate the 3D printed motor and gearing into the hinge of the panels and then to
construct a 3D printed reconfigurable robotics module. By implementing 3D printed motors and elec-
tronics, this would address the manufacturing plausibility of reconfigurable self-assembling modular
robots such as those of Zykov et al. (2005).

(v) Preparation of 3D printer feedstock from raw materials: this is the realm of in-situ resource util-
ization (ISRU) of asteroid material. This is addressed below.

We need to source raw materials from extraterrestrial resources to 3D print our motors and electron-
ics (we take the view from arguments outlined above that from 3D printed motors and electronics,
omnia sequitur). Closure of energy, matter and information is a necessary condition for self-replication
(though not for universal construction in general). Unlike terrestrial markets where capital costs such as
mining, transport, processing, building, etc are spread amongst customers, all cost accounting in a self-
replicator are self-contained within the self-replication cycle. Energy closure is well understood as
EROI (energy return on investment) in that the energy cost cannot exceed the energy generated includ-
ing accounting for energy consumed in mining raw materials, transport, processing and construction of
the energy-generating machines (Hall et al., 2013). One crucial factor is in the efficiency of conversion
of environmental energy into electrical energy – for a self-replicating machine, high efficiency is neces-
sary to ensure energy closure. Similar constraints on energy closure are imposed through material clos-
ure – the materials, parts and assemblies inventory must be constrained, favouring restricted suites of
materials to minimize mining and chemical processing overheads, minimum machinery of production
and assembly requirements – single-acid leaching, solid-state electrochemical processing and additive
manufacturing with minimum waste are technologies that leverage material closure (Appendix).
Information closure must similarly be constrained and traded with the material/energy cost of the infor-
mation storage substrate. Indeed, our approach to power generation and storage through thermionic
conversion and flywheels respectively (Ellery, 2021e) exhibits information compression by re-using

Fig. 4. 3D printed self-assembling system.
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technologies for vacuum tube-based computation and motors for actuation respectively – perhaps bio-
logical exaptation is similarly driven by the necessity for information efficiency driven by closure.
These closure conditions are strict and unforgiving. For matter, energy and information closure, it is
essential for the self-replicator to be as simple as possible to minimize the complexity of construction
and maximize energy conversion efficiency. We must begin with an asteroidal materials inventory
matched to our material demands. Hence, our demandite constitutes a minimal set of materials required
to realize all the major functions required of a self-replicating machine (Table 2).

Table 2. Demandite materials list

Functionality ISRU-Derived material

Tensile structures Wrought iron
Aluminium

Compressive structures Cast iron
AluminiumRegolith/binder

Elastic structures Steel springs/flexures
Silicone elastomers

Hard structures Alumina
Thermal conductor straps Fernico (e.g. Kovar)

Nickel
Thermal insulation Glass (SiO2 fibre)

Ceramics such as SiO2

High thermal tolerance Tungsten
Alumina

Electrical conduction wire Fernico (e.g. Kovar)
Nickel
Aluminium

Electrical insulation Glass
Ceramics (SiO2, Al2O3 and TiO2)
Silicone plastics
Silicon steel for motors

Active electronics devices (vacuum tubes) Kovar
Nickel
Tungsten
Fused silica glass

Magnetic materials Cobalt-ferrite
Silicon steel
Permalloy

Sensory transducers Resistance wire
Quartz
Selenium

Optical structures Polished nickel
Fused silica glass

Lubricants Silicone oils
Water

Adhesives Silicone elastomer/gel/cement
Combustible fuels Oxygen

Hydrogen
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We require several robotic processing facilities implemented by kinematic machines (which are, by
definition, different kinematic configurations of electric motors): (i) mining robots for excavating rego-
lith and minerals, (ii) beneficiation robots to physically separate desired minerals from gangue, (iii)
electrochemistry robots to extract desired materials from minerals, (iv) fabricator robots to 3D print
components from feedstock, and (v) assembler robots to assemble components into systems. The adop-
tion of just-in-time protocols minimizes the requirement for warehousing while six sigma protocols
with process recycling impose high-quality control standards. We have been exploring the use of gen-
etic regulatory network approaches to controlling the industrial ecology (Ellery, 2021d). Onboard repair
(such as wardens on the Daedalus starship) requires 3D printing (and supporting FabLab) facilities as a
subset of self-replication – self-replication capability automatically incorporates self-repair implement-
ing high reliability for free. All processing functions require computer controllers, power supplies and
transport. Our industrial ecology minimizes waste in producing pure materials from minerals and gases
from asteroidal and moon-type resources (Ellery, 2020c) (Appendix Table A1).

The most obviously useful materials are the M-type metal alloys. The carbonyl process can convert
metal (Fe, Ni or Co) into its carbonyl form under different but modest conditions thereby separating
and purifying them, all involving a FeS catalyst:

Fe(CO)5 ↔ 5CO + Fe (175oC/100 bar)
Ni(CO)4 ↔ 4CO + Ni (55oC/1 bar)
Co2(CO)8 ↔ 8CO + 2Co (150oC/35 bar)

This process is unlikely to yield a readily interpreted technosignature. Aluminium extraction from
anorthite via silica and alumina is shown in the industrial ecology. We suggest that silicone plastics
might be favoured over hydrocarbon plastics for their high durability and radiation tolerance in flexible
electrical insulation and other applications. Silicone plastics are manufactured from syngas and silicon
feedstock using metal/mineral oxide catalysts and recycled HCl (Rochow process) without yielding any
waste products that are not recycled. It is well-known that olivine is unstable in the presence of water
but both end members yield useful materials especially Si and SiO2 ceramic:

3Fe2SiO4 + 2H2O → 2Fe3O4 + 3SiO2 + 2H2

Mg2SiO4 + 2CH4 → 2CO +H2 + 2MgO + Si

Ferrite, silica, magnesia and silicon have useful applications. None of them yield waste products or
specific signatures of such. Silicon/fused silica glass is useful in both forms and Mg metal may be
released electrolytically. Pyroxene (nominally assumed to be enstatite) may be rapidly artificially
weathered (natural weathering processes would be inconsistent with the incidence of olivine):

Mg2Si2O6 + HCl + H2O → Mg3Si4O10(OH)2 + H4SiO4 +MgCl2.nH2O

This yields silicic acid (from which silica is precipitated) and magnesium chloride as sources of sili-
con/fused silica glass and the clay talc which may be employed as a solid lubricant. The less common
augite may be treated through the same process:

Ca(Fe,Al)Si2O6 + HCl + H2O → Ca0.33(Al)2(Si4O10)(OH)2.nH2O + H4SiO4 + CaCl2 + Fe(OH)3

This yields no waste product since the clay montmorillonite has widespread utility as the major com-
ponent in bentonite drilling mud (but it would not be consumed so its existence would constitute evi-
dence of artificial origin if discovered as extensive deposits) and CaCl2 is a universal electrolyte in the
Metalysis FFC process. Enstatite can also be reduced by CH4 at 1600 °C to yield Si directly:

MgSiO3 + 2CH4 → Si +MgO + 2CO + 4H2

MgO can be reduced directly using the Metalysis FFC process. Our industrial ecology produces
pure materials including pure oxides – all pure metal oxides can be reduced to arbitrarily pure metal
through the Metalysis FFC process (Ellery et al., 2021). The Metalysis FFC process involves the
use of a sintered solid metal oxide powder (to be reduced to high purity metal while remaining in
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the solid state) cathode and a graphite anode at which oxygen is evolved (as carbon monoxide/dioxide).
The molten CaCl2 electrolyte is not consumed in the process which is conducted at 900–1000 °C. The
resulting high purity metal powder can be used as feedstock for metal additive manufacturing such as
selective laser sintering/melting or electron beam additive manufacturing (Calignano et al., 2017).
Electron beam processing constitutes another example of exaptation of thermionic devices. If the
eroded graphite anode of the Metalysis FFC process is recycled and reconstructed using the Sabatier
process followed by thermal cracking, the only byproduct of the Metalysis FFC process is oxygen
which may be used as a reagent and/or evaporated off. The Metalysis FFC process can potentially
be miniaturized – as a low-temperature process, aluminosilicate or fused silica glass microreactors
with microfluidic channels connecting mixing chambers for the flow of reagents, heat-exchangers
and dwell cavities offer high surface-to-volume ratios for efficient heat exchange (Dietrich et al.,
2005). Glass modules may be diffusion bonded under pressure at temperatures around the glass transition
temperatures. These microreactors could potentially be incorporated as part of a self-replicating machine
payload. The FFC process and 3D printing stage acts as the ‘knot’ of a bowtie processing architecture in
which a wide range of inputs are funnelled through a small number of processes and then diverge into a
wide range of output products – the bowtie architecture is characteristic of biological metabolism as a
means to control complexity (Csete and Doyle, 2004). The key to any technosignature resides in the dis-
carded waste products that are of little use and so remain unconsumed. The discovery of extensive waste
deposits that would be unexpected naturally would invite artificial explanation. What are these waste
materials? In this scheme, the industrial ecology recycles everything and the only extensive waste is
in clays, many of which have use only during manufacture. For example, clays have catalytic properties
but synthetic zeolites constructed from open-structured silica with Al3+ substitutions for Si4+ ions gener-
ating Bronsted acidity offer superior tailored catalysts. There is evidence of clays on asteroids (including
their detection by OSIRIS-REx on the C-type asteroid Bennu) but these can be attributed to natural pro-
cesses rather than technological ones. Although we have not considered all possible asteroid mineral
types, we have considered the major ones and find that it is unlikely that there will be obvious signatures
of artificial tampering with asteroidal material except through physical evidence of processing (which
may be modified and distorted by subsequent impact gardening) or large-scale deposits of clays.
Currently, there is no evidence of either that cannot be explained by natural processes. We tentatively
suggest that the absence of evidence is indeed evidence of the absence of prior ET visitations in our
solar system.

Self-replicating probe propulsion options

Our self-replication scheme was developed to support the construction of mechatronic systems and
general spacecraft functions. We must now determine whether it can accommodate the requirements
for the construction of interstellar propulsion systems as this is key to the feasibility of self-replicating
interstellar probes. We are already embarking on interstellar probe technologies beyond the conceptual
stage (McNutt et al., 2011). The first consideration is scale – interstellar propulsion systems have a
large scale. We assert that this presents a manageable issue if a modular approach is adopted.
Provided a single module can be constructed by a single self-replicating unit, exponential population
growth of the self-replicating system can rapidly accommodate any scale required. It remains only to
indicate that all modules can be manufactured by a universal constructor. Any relativistic interstellar
spacecraft requires high kinetic energy given by:

E = mc2
1��������

1− b2
√ − 1

( )
(4)

where β = (v/c). However, we assume non-relativistic speeds at 0.1 c which lie within near-term techno-
logical capabilities. Nevertheless, interstellar spacecraft are propelled at high speed through the inter-
stellar medium. A 5 μm-sized interstellar silicate grain with a rest mass of 10−12 kg travelling at 0.1 c
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has a kinetic energy of 450 J which will require erosive shielding to combat. There are several potential
interstellar propulsion techniques that dictate that interstellar travel at 0.1 c is feasible:

(i) Nuclear pulse rockets were adopted for the Orion spacecraft and the Daedalus starship concepts, the
former ejecting hydrogen bombs that detonated against a pusher plate and the latter being a detailed
design study for an interstellar starship fuelled from D/3He mined from gas giants (Bond et al.,
1978);

(ii) Bussard interstellar ramjet uses a large electromagnetic funnel to scoop up interstellar hydrogen at
1–2 atoms cm−3 ionized into a plasma for pp nuclear fusion catalysed by 12C (Bussard, 1960);

(iii) Ram-augmented interstellar rocket heats and accelerates collected hydrogen plasma using an elec-
tromagnetic field (Bond, 1974);

(iv) Antimatter rockets release all the energy in matter but antimatter is manufactured in only very small
quantities in particle physics laboratories (Forward, 1982);

(v) Beam-propelled sails represent the most feasible approach based on near-term technology and do
not require propellant (Forward, 1984).

The 54 000 tonne Daedalus starship adopted nuclear fusion-based laser-pulsed pellet propulsion to
reach 0.12 c for a flyby of Barnard’s star within 50 light years (Bond et al., 1978). The main compo-
nents of the Daedalus nuclear pulse propulsion engine include: (i) reaction chamber of
hafnium-tantalum-carbide (melting point of 4215 °C); (ii) excitation field coils of niobium-titanium;
(iii) coil supports of titanium; (iv) laser ignition assembly comprising lasing medium and optics; (v)
ignition charging circuits of copper; (vi) charging circuit supports of alumina; (vii) pellet injector
including capacitors, superconducting magnets and coils for motors; (viii) thermal shielding of inco-
nel/rhodium; (ix) cryogenic tankage of steel and its insulation. This approach requires a high fraction
of challenging-to-extract materials. The most significant technological challenge for Daedalus was
mining D/3He from Jupiter’s atmosphere. 3He and D may be fused together to yield 4He with the pro-
duction of large amounts of energy through nuclear fusion:

3He + D → 4He + H + 18.4 MeV

Although there is no damaging neutron production from this reaction, side DD reactions will occur
in the plasma and generate some neutron flux. The D/3He fusion also requires a much higher ignition
temperature than D/T fuel. D/T nuclear fusion is a future technology that is under development – it
requires a 6Li blanket encased in Be within which T is bred by neutron bombardment – Li may be
extracted from spodumene (LiAl(SiO3)2) minerals. For the D/3He reaction, the two components (espe-
cially 3He) may be mined from gas giants using aerostat balloons but this requires a complex set of
facilities and nuclear pulse propulsion engine components require rare materials such as hafnium.
Superconducting coils also require difficult-to-process materials – NbTi alloy is superconductive at
cryogenic temperatures but perovskite cuprates are high-temperature type II superconducting materials,
e,g. Ba-doped La2CuO4 (Fisk and Sarrao, 1997). Substitution of Ca and Sr doping also generates
superconductivity as does the replacement of La with Na, K or Rb. There are many variants on
these superconductors but they require complex chemical processing. Superconductors contain con-
ducting CuO2 layers where each layer is separated from other layers. The London two-fluid model
of total current through a superconductor is given by: J = (σn + σs)E where σn,s = normal/superconduct-
ing channel conductivities, J = current density, E = electric field strength. The normal channel acts as
resistance while the superconducting channel acts as an inductance. The requirement for these exotic
materials eliminates (i)–(iii) though iron (II) selenide (FeSe) is a possible iron-based superconductor at
48 K when under pressure and intercalation. We consider antimatter drives too speculative. This leaves
(v) as our choice of propulsion system. Beamed propulsion may also be applied to the ramjet (Matloff
and Mallove, 1988). Beam-powered sails were determined to be superior to nuclear fusion propulsion
because (Benford, 2017): (i) they can attain higher velocities; (ii) massive beamer propulsion is
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retained at the initial location rather than transported to the destination; (iii) laser physics is well-
understood but nuclear fusion requires complex technological development.

Beamed propulsion

An interstellar sail may be unfurled as close to the Sun as possible to yield 2000 y long interstellar
transits at cruise velocity vi/s = ��

h
√

vperi and this is determined by the temperature limit at perihelion
(Matloff, 2012). These long transit times favour power beaming. The beam of beamed interstellar pro-
pulsion may be laser or microwave. Beamed laser propulsion is based on the notion that photons exert
pressure. These lasers will be of considerable size – the laser array may reside in Earth orbit or more
likely sunward of the Sun-Earth L1 point balancing gravitation and solar pressure (similar to space-
based geoengineering proposals (Ellery, 2016c)). CO2 lasers at 10.6 μm have efficiencies up to 10%
while solar pumping of a Nd:Cr:YAG laser offers an efficiency of 35% (van den Donken, 2019). A
solar pumped laser using a Fresnel lens concentrating light onto a conical quartz rod to a grooved
Nd:YAG lasing rod has been demonstrated for free-space laser communications (Zhao et al., 2019).

Free electron lasers (FEL) have efficiencies of 20% that may be further elevated if combined with
solar pumping (Ellery, 2021e, 2022a) with the advantage that our self-replication scheme includes the
construction of thermionic vacuum tubes and motor-based magnetic components. The FEL is an elec-
tron beam-based laser that generates bremsstrahlung radiation emitted by relativistic electrons passing
through periodic magnetic fields (Madey, 2014). The relativistic electrons are accelerated through a
wiggler/undulator magnetic configuration, a periodic set of alternating magnetic poles transverse to
the longitudinal beam path, generating an oscillating transverse magnetic field (Fig. 5) (O’Shea and
Freund, 2001; Krishnagopal et al., 2004; Barletta et al., 2010).

These free electrons in a vacuum are forced to wiggle side-to-side in a sinusoidal pattern, acting as
the lasing medium. This transverse acceleration of the electrons generates incoherent synchrotron radi-
ation. Electrons are accelerated to relativistic speeds by an accelerator powered by klystrons.
Partially-reflective mirrors at each end of the wiggler form a Fabry-Perot cavity to form standing elec-
tromagnetic waves. The transverse electric field component of synchrotron radiation interacts with the
transverse electric current to generate a beat wave in synchrony with the electrons (ponderomotive
gain). This causes longitudinal microbunching of electrons separated by one optical wavelength gen-
erating coherent radiation. Electron bunching with a bunching length much shorter than the radiation
wavelength is the key. The wavelength of radiation is resonant and tunable through the electron energy
or the undulating magnetic field:

lFEL = lm
2g2

1+ K2

2

( )
(5)

where λm = undulator wavelength, g = 1/
��������
1− b2

√( )
= relativistic Lorenz factor, β = (v/c), K = (γλm/

2πr) = (eBλm/2πmec) = wiggler strength parameter, r = magnetic bending radius, B = applied magnetic
field, me = electron mass. The Lorenz factor upshifts the frequency of radiation. Peak FEL power is

Fig. 5. Free electron laser principle [CC-BY-SA 3.0 Frank Horst: https://en.wikipedia.org/wiki/Free-
electron_laser#/media/File:FEL_principle.png].
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given by:

P = E

2g

I4p
IA

l2mK
2JJ 2

8p21b

( )1/3

(6)

where E = electron energy, Ip = peak current, IA = Alfven current, ε = electron emittance, β = betratron
function of the beam envelope, JJ = Bessel function coupling factor for the undulator. The FEL mech-
anism is based on three processes: (i) electrons oscillate within the undulator and emit spontaneous
radiation; (ii) radiation acts back on undulating electrons and bunches them; (iii) bunched electrons
emit coherent stimulated radiation and amplify the electromagnetic waves. FEL is tunable over a
wide frequency range from X-rays to microwaves offering GW peak powers by varying electron energy
and magnetic field. However, EUV/X-rays cannot use resonant cavities so they must use long undula-
tors (self-amplified spontaneous emission). High gain harmonic generation involves using a seed CO2

laser (photoinjector) in a short undulator comprising a modulation magnet followed by a higher har-
monic magnet to cause microbunching for X-ray generation. FEL may also be used for high-intensity
microwave generation (Orzechowski, 1990). There are several compact designs for terahertz
(300 GHz-3 THz) FEL. A 20 MW free-electron laser operating at ∼THz was driven by a THz laser
that excites electron emission from a photocathode through a single-pass undulator in a desktop pack-
age (Huang et al., 2008; Huang, 2010). The Smith-Percell FEL is also a benchtop device that adopts a
grating horn design (Bakhtyari and Brownell, 2003). A table-top FEL based on laser-accelerated elec-
tron bunches ∼GeV incorporated miniature short-period magnetic undulators and miniaturized short-
focal length focussing quadrupole magnets (Eichner et al., 2007). X-ray FEL can generate high-
intensity X-rays with extremely short femtosecond pulses with angstrom wavelengths using long linear
accelerators (Pellegrini, 2016; Seddon et al., 2017). A miniature X-ray tube of Kovar within which an
array of carbon nanofibres on a nickel-plated tungsten wire constituting a high-energy electron field
emission source indicates the viability of desktop X-ray devices (Haga et al., 2004). Indeed, the inter-
action of relativistic electron beams with electromagnetic waves can generate microwave, millimetre,
infrared, ultraviolet and X-ray radiation (Granatstein et al., 1999).

Microwave-propelled sails offer several advantages over light-propelled sails (Landis, 1999a): (i)
microwaves can be generated with much higher efficiency than laser beams; (ii) microwave phased
arrays are established technologies on spacecraft; (iii) large microwave apertures are easier to construct
than large laser apertures; (iv) microwave sails can be constructed from lightweight aluminium mesh
because the perforations must be smaller than the wavelength of radiation. Perforated aluminium
solar sails reduce the sail mass considerably (Matloff, 2003). Acceleration imparted to a microwave
sail is given by:

a = (2h+ a− t) Pmc = (2h+ a− t) P
rAc (7)

where η = film reflectivity = 0.89, τ = film transmittivity≈0, α = film absorptivity = 0.1, ρ = areal mass
density = 7 g m−2 for carbon fibre, A = sail area, c = light speed. The absorbed fraction must be radiated
away from both sides of the sail:

aP = 2A1sT 4 (8)

where ε = sail emissivity = 0.6, σ = Stefan-Boltzmann constant. Hence,

a = 2s
c

( )
1 2h+a

a

( )
T4

r (9)

For 9.8 m s−2 acceleration, T = 2000 K which requires a more temperature-tolerant sail material than
aluminium such as tungsten (which is part of our self-replication scheme but is far rarer as a resource
than aluminium) or ceramic. The Starwisp is a 1 km diameter sail comprised of thin wire mesh driven
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by microwave beam of 10 GW (Landis, 1999a). The wire mesh can provide the synapses of neural net-
work circuits, the nodes acting as neurons – this is a crossbar configuration. Given that volume is not a
constraint for laser propulsion, we suggest a conventional FEL design. The basic components of FEL
are: (i) accelerator that accelerates electrons relativistically; (ii) periodic magnetic undulator that forces
electrons into a sinusoidal path; (iii) optical resonator that generates electron microbunching through
resonant electron-radiation interaction.

The Forward lightsail concept adopts a 1000 km diameter Fresnel zone lens at 15 AU to focus
65 GW laser light to interstellar distances onto a 3.8 km diameter lightsail accelerated to 0.11 c for
a flyby (Forward, 1984). Deceleration however requires a 26 TW laser to intercept a 100 km diameter
annulus sail. The Fresnel zone plate is a diffraction lens comprising a set of concentric rings of plastic
(refractive index of 1.5) that alternate opaque and transparent zones. They are spaced so that diffracted
light can constructively interfere at the required focus by adding a half-wavelength to the path difference
between zones. We propose fused silica glass rather than plastic as this adds inertia to the Fresnel lens,
requires only abundant silicate mineral resources and is compatible with our self-replication scheme.
The radius of the nth zone is given by r2n ≈ nf l separated by spacing given by sn = rn− rn−1 where
n = order and f = focal length. This effectively ensures that the spot size at α-Centauri is 100 km in diam-
eter. Modular parabolic shells of carbon-fibre reinforced flexible silicone of ∼10–20m diameter have
been proposed for large-aperture astronomical reflectors (Baier et al., 2013). Another option for a
∼10–20m diameter Fresnel module is the planar photon sieve comprising a flat membrane filled with
∼107 concentrically distributed ∼μ-sized holes similar to a Fresnel zone plate in which the holes diffract
light rather than grooves refracting light (Anderson, 2005). Hence, modules of a larger Fresnel lens could
conceivably be constructed and assembled. Direct (optical) bonding is based on high van der Waal forces
of adhesion F over a common surface area which requires extreme surface cleanliness and extremely low
roughness <2 nm (Fischer et al., 2015): F = (H/6πd3) where H =Hamaker constant∼10−20, d = 2 × asper-
ity height. It is particularly suited to glass so this bonding might be exploited by a large Fresnel lens if
contacting surfaces are extremely flat and smooth. During its construction, the Fresnel lens may also be
employed as a Fresnel imager formed by an array of Fresnel diffraction lenses – a 30m Fresnel lens could
image Earth-sized planets within 30 light years to search for its next target. The closest analogue to the
Fresnel zone lens is the solar shield concept for maintaining a 1000 km Fresnel lens sunward of the
Sun-Earth L1 point to reduce solar flux to Earth by 2% to counteract global warming (Ellery, 2016c).
Hence, the technology imposed by immediate geoengineering needs may facilitate interstellar travel.

Sailcraft is the envisaged mode for the $70M Breakthrough Starshot project devised by Yuri Milner. A
100GW phased array of lasers would be constructed in space or at high altitude to rapidly accelerate at 10
000 g a swarm of 1m diameter ∼1 g ultrathin light sail spacecraft with nano-electronic chip avionics to
Alpha Centauri 4.3 light years away at 0.2 c. The key to this is to array modest lasers into a master oscillator
power amplifier configuration. The DE-STAR (directed energy solar targeting of asteroids and exploration)
system developed for asteroid deflection by laser ablation may be employed to accelerate wafer-like sailcraft
to relativistic speeds (Lubin et al., 2015). A 10 km square phased array of modular lasers at 1.06 μm out-
putting 35GW generates a 30m diameter spot at a range of 1AU. A photovoltaic array of similar size as
the laser array provides power to the laser array. Laser diffraction is defined by the Rayleigh criterion:

2.44l

dt
= dsail

R
(10)

where dt = transmitter diameter, dsail = sail diameter, R = spacecraft interstellar distance. Laser beaming can
accelerate a 100 kg spacecraft with a 900m diameter sail out to 30 AU up to 0.2 c – keeping the beam on
the reflector after the beam area exceeds the reflector, the spacecraft velocity can be increased by

��
2

√
towards 0.3 c. Radiation pressure force is given by:

dp

dt
= F = P1

gc
(11)
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where p = γm0v = spacecraft momentum, g = 1/
��������
1− b2

√( )
, P = laser power, ε = 1 + r = emissivity for

opaque sail, r = reflection coefficient, γ = relativistic factor. From this, time for laser beaming may be derived
(Lubin et al., 2015):

t = m0c2

2P1

b

1− b2 + tanh−1b

( )
(12)

where β = (v/c). At non-relativistic speeds, t = ( p/F). A laser sail with a diameter of around 1m may be
accelerated to 0.25 c within a few minutes by a 100GW laser array (Lubin and Hettel, 2020). Directed
lasers may also be used for Earth defence against asteroids through thermal ablation at 3000K to deflect
them (Lubin et al., 2016). However, a more responsive approach to asteroid mitigation has been proposed
that exploits self-replication technology (Ellery, 2020a).

Lightsail

The light sail is a thin gossamer structure of wide cross section to capture laser light. Light sails are
typically constructed from 2 μm thick Mylar/Kapton onto which a thin <0.1 μm reflective covering
of aluminium is bonded. The minimum thickness for a sail for maximum absorption and reflection
is dependent on the sail dielectric permittivity and electrical conductivity which varies with tempera-
ture and the frequency of incident electromagnetic waves – this equates to an aluminium thickness of
<0.1 μm for light at 0.6 μm (Kezerashvili, 2009). Typical dielectric permittivity values for aluminium
on plastic are ε(1− η)≈ 4 and Tmax = 400 °C for Kapton. Aluminium density is 2.7 g cm−3 and alumin-
ium is extracted from anorthite within our industrial ecology. Mylar/Kapton could be replaced with sili-
cone elastomer which is our assumption here to minimize the materials inventory for self-replication to
ensure closure. The use of high heat-tolerant silicone plastic can raise the maximum tolerable tempera-
ture to Tmax = 500–600 °C limited only by the melting point of aluminium at 660 °C. Dielectric thin-
films such as alumina ∼20–100 nm offer the higher temperature-tolerance but they have poorer reflect-
ivity than metals (Landis, 1999b). A thin protective layer of alumina can be applied by exposure of
the aluminium sheet to oxygen and then polished to enhance its reflectivity. Higher temperatures
still can be tolerated by tungsten film with its melting point of 3422 °C. Carbon fibre meshes are
extremely fragile so are not considered suitable. Graphene offers hyper-thin, high-strength sail material
which when combined with molybdenite to enhance its absorptivity gives 50% superior performance
to a beryllium sail (Matloff, 2013). Graphene is a 2D sheet of sp2-hybridized carbon that be configured
into 3D graphite, 1D nanotubes or 0D fullerenes. They are primarily manufactured through the
Manchester mechanical exfoliation technique using cellophane tape applied to graphite (Allen et al.,
2010). Solar sails are augmented by deployable booms which extend to unfurl the sail and provide
rigidity. The sail typically requires a central hub from which four structural booms are deployed to sup-
port the sail. Structural rigging – nominally diagonal deployable carbon fibre-reinforced plastic booms
add around 15% to the sail mass. The booms are typically comprised of two laminated polymer sheets
bonded at the edges to form a tube. Wires of NiTi shape memory alloys are plausible for tensioning
sails and indeed modulating this tension (Lynch et al., 2016). Performance of the solar sail is deter-
mined by sail loading defined as the ratio of mass to area, σ(g/m2) = (ms/As) = (ρAt/A) = ρt and lightness
number defined as the ratio of solar pressure to gravitation β = (σc/σ) where σc = critical sail loading =
1.53 g m−2 when solar pressure exceeds solar gravitation. Large sails can be assembled from smaller
sail modules for ease of manufacture and handling – it is unclear if 3D printing can be implemented
with extremely thin layers but we have demonstrated the viability of the deposition of aluminium onto
silicone plastic (Fig. 1(b)). Thin <1000 μm PDMS (polydimethylsiloxane) membranes ∼1 m in size
have been 3D printed with features sizes ∼0.1 μm using direct laser printing (Low et al., 2017).
This has the potential for coating of in-situ produced aluminium solar sails rather than Mylar.
Large-scale high precision 3D printing will require sophisticated high precision self-localization and
mapping (SLAM) capabilities which could be achieved through orbiting interferometric laser-based
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GPS-type constellations if assembly is performed at Lagrangian points. 3D structures may be imple-
mented in the payload as flat-pack components that unfold. Self-folding machines such as mobile
robots may be configured initially as flat sheets with embedded circuits that activate elastic flexures
of shape memory material around thinned hinges into unfolded 3D structures (Felton et al., 2014).

The rigidity of the sail can be ensured through various means (Cassenti et al., 1996)– the heliogyro
comprises long tapes spinning like helicopter blades; canopy sails are analogous to parachutes and
require them to be convex in the direction of the laser for stability; hollow body solar sails are pressur-
ized cylinders – these all require sufficient stiffness to tolerate instabilities. It has been demonstrated
that PDMS membranes can be treated to increase their stiffness through selective polymeric
photo-cross-linking (Femmer et al., 2014). There have been several successful solar sail demonstra-
tions, e.g. IKAROS (2010), NanoSail-D2 (2011), LightSail-1 (2015) and LightSail-2 (2019). The
NanoSail-D was a 20 m × 20 m square solar sail test system stowed in a cubesat that successfully
flew and deployed in 2010 (Johnson et al., 2011). Lightsail-2 was a 32 m × 32 sail that demonstrated
controlled sailing with orbital manoeuvres. The momentum and kinetic energy imparted to the sail at
relativistic speeds assuming perfect reflectivity is given by:

p = d

dt

mcb��������
1− b2

√
( )

Dt (13)

E = d

dt

mc2��������
1− b2

√
( )

Dt (14)

Beamed laser propulsion is limited by diffraction-based divergence given by:

u ≈ 1.22
l

d

( )
(15)

where λ = laser wavelength, d = optics diameter. The laser spot diameter d increases with range until it fills
the sail diameter ds at range Rc beyond which the intercepted laser power drops as 1/R2 (Moeckel, 1972):

Rc ≈ ds
2u

( )
= dsd

2.44l
(16)

Photon pressure on the sail is given by:

p = 2Pr

c
(17)

where Pr = received beam power density, Pr = (4Pt/pd2s ) for R < Rc and Pr = (Pr/(R/Rc)
2) for R > Rc.

Acceleration of the sail imparted by photon momentum is given by:

R̈ = prA

m
= 2rPr

mc
(18)

where A = sail area, r = reflectivity. If we assume that the mass of the sail dominates the total mass:

R̈ = 2rPr

mc
= 2rPr

cArt
(19)
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The Δv imparted is given by:

Dv =
��
2

√
����������

dsd

1.22l

( )√ ��������
2Pr

mc

( )√
(20)

Optimal sail thickness is 20–50 nm. For a radiation-cooled sail, the maximum received power dens-
ity is determined by the material temperature (in this case, aluminium/silicone plastic):

Pr = 2s1AT4
max

1− r
(21)

Hence,

r̈ = 4s

c

1rT 4
max

art
(22)

where ε = emissivity
The interstellar sail is a structure of magnitude but there is no physical reason why it cannot be con-

structed by leveraging the production capacity of self-replicating machines which can exponentially
achieve scale from a population of modules.

Electric and magnetic sails

Deceleration of the sail can be achieved by detaching an inner segment of the sail that reflects the laser
beam from the outer ring to the inner section to decelerate it (Forward, 1984). In Forward’s original
conception, an inner 30 km diameter disc sail is surrounded by a 100 km diameter ring sail launched
by a 7.2 TW laser to impart an acceleration of 0.05 ms−2 to a cruise velocity of 0.2 c. For deceleration,
the original laser is upgraded to a 26 TW laser beam. The inner section detaches, reverses its reflective
direction (so it reduces the effect of direct laser flux) and positions itself to the focus of the ring sail.
The ring sail is accelerated at 0.2 m/s2 past the destination while reflecting impinging laser light onto
the inner section, decelerating it at 2.0 m s−2 for one year. The mission duration to α-Centauri is 41
years. Alternatively, magnetic and/or electric sails may be employed to decelerate the sail (Perakis
et al., 2016). The electric sail comprises extended charged conducting tethers which are spun up
around its axis of symmetry. A thermionic electron gun is employed along the spin axis to generate
an electric field which interacts with interstellar ions with a Coulomb drag force given by (Perakis
and Hein, 2016):

Felec = (NL)3.09mpnionv22lD����������������������������������
exp((mpv2/eVs)ln(rw/2lD))− 1

√ (23)

where N = number of tethers, L = tether length, Vs = sail voltage, e = electronic charge, rw = wire radius,
lD =

�����������������
(10kBTe/nione2)

√
, ε0 = electrical permittivity of free space, kb = Boltzmann’s constant, Te = elec-

tron temperature = 8000 K. The power requirement is given by:

P = IVs = 2VsNLrwnione

������
2 eVs

me

√
(24)

The magnetic sail comprises a superconducting coil through which a current generates a magnetic
field moving at velocity through ions of the interstellar plasma which are deflected (Andrews and
Zubrin, 1990). The superconducting loop may be deployed from a drum out to ∼102 km and hoop
stresses force a circular shape. The magsail generates high deceleration force on the magnetic sail
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acting as magnetic drag (Perakis and Hein, 2016):

Fmag = 0.345p(mpnionm
1/2
0 Ir2s v

2)3/2 (25)
where mp = proton mass, nion = number density of ions = 0.03 cm−3, μ0 = permeability of free space, I =
coil current, rs = sail radius, v = sail speed. The mass of ablative shielding is required due to collision
with ions:

mshield =
∫t
0

dmshield

dt
dt (26)

where (dmshield/dt) = (Acoilmpnion/DH)(bc3/
��������
1− b2

√
) (1/

��������
1− b2

√
)− 1

( )
, t = deceleration time, Acoil

= coil cross section, ΔH = enthalpy of vaporization of ablative material (e.g. graphite). Smaller magsails
are feasible using mini-magnetospheric magsails in which particle beams (propellant) are reflected by a
magnetic field (Landis, 2001). A particle beam may be generated by an accelerator (Andrews, 2003).
For example, the betatron is a compact cyclic particle accelerator based on a transformer and a torus-
configured vacuum tube acting as the secondary coil. AC is applied to the primary coils which through
Faraday magnetic induction H = (1/2)(ϕ/πr2) accelerates electrons around the torus with orbital radius r
enclosing a magnetic flux w. The betatron can generate high-energy electron beams up to 300MeV
which on striking a metal plate can generate X-rays. Nanophotonic acceleration of charged particles
with efficient transfer of momentum energy from laser to particles may also be achieved using nano-
photonic dielectric structures comprised of rows of 3 μm high pillars with separations of 225 nm
(Shiloh et al., 2021). A phase focussing method involves minimal particle loss allowing reduction
of the size of particle accelerators by orders of magnitude. The combination of deploying a magnetic
sail at high velocities and an electric sail at lower velocities yields more rapid deceleration from 0.05 c
to interplanetary velocities (29 years) than either alone (40 years for magnetic braking only and 35
years for electric braking only) (Perakis and Hein, 2016). In both cases of electric and magnetic
sails, the required electromagnetic devices are incorporated into our self-replication scheme.

Conclusions

We are currently developing self-replicating machines – although there remain challenges associated
with the large scale associated with interstellar travel, our current self-replication scheme ensures
that the fundamental technologies can be developed in short order. This suggests that if we apply
the Copernican principle, ETI, if they exist, should have developed self-replicating probes. There is
no observational evidence of large structures in our solar system, nor signs of large-scale mining
and processing, nor signs of residue of such processes. Our current terrestrial self-replication scheme
with its industrial ecology is imposed by the requirements for closure of the self-replication loop that (i)
minimizes waste (sustainability) to minimize energy consumption; (ii) minimizes materials and com-
ponents manufacture to minimize mining; (iii) minimizes manufacturing and assembly processes to
minimize machinery. Nevertheless, we would expect extensive clay residues. We conclude therefore
that the most tenable hypothesis is that ETI do not exist. However, this does not invalid SETI searches
of any kind – indeed, it requires them in a Popperian sense to attempt to disprove the hypothesis
(Ellery, 2003). The self-replicating machine concept has profound implications: (i) for the long-term
growth of humanity as a cosmological phenomenon (Barrow and Tipler, 1998) in transitioning from
a Kardashev type 1 civilization (that consumes energy on a planetary scale) to a type 3 civilization
(that consumes energy on a galactic scale) (Kardashev, 1997)), (ii) for our relationship with artificial
intelligence required for a self-replicating machine (Bostrom, 2014), (iii) for the implications of self-
replication technology for the non-existence of extraterrestrial intelligence and in providing humanity
with first mover advantages in interstellar exploration (Ellery, 2019b). These aspects are more specu-
lative but nevertheless suggest that the self-replicating machine is the ultimate machine affording
unchallenged cosmological power to the human species over the longest term.
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Appendix

Table A1. Industrial ecology that supports self-replication process (emboldened oxides are
feedstock for the Metalysis FFC process)
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