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Abstract

Mixture of experts is a prediction aggregation method in machine

learning that aggregates the predictions of specialized experts. This

method often outperforms Bayesian methods despite the Bayesian

having stronger inductive guarantees. We argue that this is due to

the greater functional capacity of mixture of experts. We prove that

in a limiting case of mixture of experts will have greater capacity

than equivalent Bayesian methods, which we vouchsafe through ex-

periments on non-limiting cases. Finally, we conclude that mixture

of experts is a type of abductive reasoning in the Peircean sense of

hypothesis construction.
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1 Introduction

Machine learning has developed many powerful techniques for solving pre-

diction problems over the past few decades. Among those are prediction ag-

gregation methods that seek to combine multiple machine learning models to

make better predictions than can be achieved by individual predictors. This

has strong theoretical foundations from the theory of meta-induction (Cesa-

Bianchi & Lugosi, 2006; Schurz, 2019) as well as empirical support for the var-

ious methods (Dietterich, 2000; Masoudnia & Ebrahimpour, 2014; Rokach,

2010). Two important strategies for prediction aggregation are Bayesian
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Model Averages (BMA) and Mixtures of Experts (MOE). The former is a

Bayesian method to make predictions by averaging predictions across a pos-

terior of possible models learned from the data; the latter involves learning

specialized machine learning models called experts and then making pre-

dictions based on which experts would make the best prediction based on

observed features. BMA has been a widely preferred strategy because of

strong theoretical guarantees about its inductive superiority. But surpris-

ingly, MOE often performs better in practice, which has led to its adoption

as a crucial element in many cutting-edge machine learning models like large

language models. We aim to address this startling fact in this paper.

We argue that MOEs outperform BMAs because MOEs create more ex-

pressive hypotheses or models than BMAs. It can be shown that in at least

one exact sense of capacity, a MOE can have greater capacity than a BMA

composed of similar models to that MOE. We then validate this theoreti-

cal result with experiments that show as the capacity required to predict a

dataset grows, MOEs maintain good performance while BMAs fall off based

on the capacity of their members. Both of these results suggest the superi-

ority of MOEs over BMAs, despite the latter’s inductive guarantees, stems

from the restriction of BMAs to a poorer hypothesis class than MOEs.

The philosophical upshot of this finding is that MOEs can be thought of

as doing abduction, in the Peircean sense of hypothesis construction, along

with induction. In comparison, BMAs and other similar schemes are funda-

mentally inductive alone. We argue that MOEs demonstrate a divide-and-
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conquer strategy for hypothesis formation, similar to a suggestion given by

Peirce. This means that MOE addresses a problem that Bayesian methods

fail to address, which is where the hypothesis space comes from.

Importantly, this should be of interest to philosophers for two reasons.

First, it provides a novel formal model for doing abduction in the Peircean

sense. Second, it ties abduction to the rich mathematical framework of sta-

tistical learning theory, which could enable further formal theories to be

produced.

Here is how our argument proceeds. First, we discuss MOEs as applied

to supervised learning, i.e. learning from labeled data. Second, we review

BMAs, reasons for their optimality, and empirical evidence pushing against

that optimality. We discuss possible explanations for this difference but find

them to be wanting. Third, we propose another explanation centered on the

capacity of MOEs compared to BMAs. We show that with capacity made

exact, we can prove that the capacity of MOEs will exceed the capacity of

BMAs. Fourth, we build on this theoretical result by demonstrating experi-

ments that show MOE performance maintains itself on datasets that require

a certain amount of capacity to learn well while BMAs drop off. Fifth, we

discuss the philosophical implications of this explanation, by highlighting

that MOEs are essentially a form of abduction in the sense of hypothesis

construction.
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2 Mixtures of Experts

In supervised learning, the goal of the machine learning algorithm is to pre-

dict some target y from some vector of features x (variables the model ob-

serves), and this goal is realized by training the model on some dataset of

n target and feature pairs D = {(x(i), y(i))}i=1,...,n, where X and Y are the

training features and targets respectively. A model can be thought of as

learning a probability function f(y|x, θ) where θ are the model parameters,

from which predictions can be sampled or deterministically picked as the

target with the highest probability, i.e. the prediction ŷ = argmax
y

f(y|x, θ).

Training is accomplished by minimizing some loss or cost function L(θ),

which measures the dis-utility of a prediction error, through a training al-

gorithm to find the best set of model parameters θ for making predictions.

Models are then evaluated by how well they do on some hold-out test data

set T = {(x(i), y(i))}i=1,...,m not seen during training. The best models have

the lowest loss on this test set.

For example, suppose the problem is to predict blood pressure from body

mass index (BMI). We treat our target y as the continuous random variable

blood pressure and our feature vector x = [1, x1]
⊺ as the continuous random

variable BMI, x1 and identity feature, 1. A linear regression is then a nor-

mally distributed probability function flr(y|x, θ) with known variance σ2 and

parameter vector θ = [θ0, θ1]
⊺, where θ1 is the slope and θ0 is the intercept,

that characterize the mean of our distribution:
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flr(y|x, θ) = N (x⊺θ, σ2) (1)

where x⊺ is the transpose of our feature vector. Assuming statistical inde-

pendence of our model parameters, we then fit our model by maximizing

the likelihood θ̂ = argmax
θ

flr(Y|X , θ), which corresponds to minimizing the

negative log-likelihood loss function LNLL:

LNLL(θ) = −
n∑

i=1

log flr(y
(i)|x(i), θ) (2)

Due to our model being normally distributed and ignoring constants that

do not depend on θ, the negative log-likelihood equates to minimizing the

squared error:

LNLL(θ) =
1

2σ2

n∑
i=1

(y(i) − x(i)⊺θ)2 (3)

We could then train our linear regression on the dataset D via gradient

descent—an iterative optimization algorithm—to find the parameters that

minimize this loss function. To evaluate how well our regression does, we

evaluate its negative log-likelihood on a hold-out set of blood pressure and

BMI pairs not seen during training. This is done because we want our model

to inductively generalize from its training; we don’t want the model to have

merely memorized the blood pressure and BMI pairs found in training. The

best model is one that successfully minimizes the training loss while having

the lowest test set loss.
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Aggregating predictions from many machine learning models is a com-

mon technique for improving predictive performance in supervised learning.

There are two primary families of aggregation: ensemble methods and MOE

methods.

In ensemble methods, we train individual models independently across the

set of all training features X and then use some aggregation scheme across

all models to produce a prediction. Examples of aggregation schemes include

averaging and voting. In the averaging case, the prediction of an ensemble

machine learning model g(x) is an average of n models with probabilities

f(y|x, θi) parameterized by θi and weighted by weights wi for i = 1, . . . , n:

g(x) =
n∑

i=1

wif(y|x, θi) (4)

The core intuition behind ensemble techniques is that they leverage the wis-

dom of the crowds: instead of relying upon one highly specialized model for

prediction, many models are consulted and then factored into the prediction.

Betting markets in sports gambling can be thought of as an ensemble tech-

nique leveraging human gamblers as individual predictors, where the going

price in the market corresponds to an average of all wagers. Examples of en-

semble techniques include bagging, where the random predictors are trained

and weighted on random subsets of data, and boosting, a technique where

weak predictors are combined into stronger predictors by iteratively training

predictors on their peers’ errors.
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With a MOE (Jacobs, Jordan, Nowlan, & Hinton, 1991; Jordan & Jacobs,

1994; Masoudnia & Ebrahimpour, 2014; Yuksel, Wilson, & Gader, 2012),

models called experts specialize on elements of a partition of the feature set

X , and predictions on a new sample from the mixture consist of routing the

sample to the relevant experts based on where in that partition the sample

falls. In the most general case where we route the sample to all experts, we

employ weights for the experts that are a function of the sample features

x. The MOE model h(x;n) with n experts then is a sum over experts with

probability functions fi(y|x, θi) parameterized by θi and a gating function

Gi : X → [0, 1] for i = 1, . . . , n:

h(x;n) =
n∑

i=1

Gi(x)fi(y|x, θi) (5)

The gating functions Gi(x)—a rule for assigning weights to the experts—

are typically probabilities, such as the softmax (a function for converting

numbers to probabilities) over a linear model. We say that experts are ho-

mogenous when expert probability functions fi have the same form but are

characterized by different parameters θi and inhomogeneous otherwise. For

example, a MOE with only linear regressions as experts has homogenous ex-

perts. Importantly, the gating function sometimes considers more than one

expert in making a prediction—it sometimes assigns positive probability to

multiple experts for a given sample. In those cases, the gating function is

said to “softly partition” the feature set between experts, which means that
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it uses an expert’s predictions for more than one partition cell. The limiting

case where only one expert is selected from a group of experts—where only

one expert ei receives Gi(x) = 1 and all the rest zero—makes this partition

hard: each expert specializes on one and only one cell of a partition over

X . We will call this the top-expert MOE. In that case, h(x;n) is simply a

piecewise function that applies the experts ei(x)
1 on x depending on what

member of the partition Zi ∈ {Z1, . . . , Zn} of X that x happens to belong

in:

h(x;n) =



e1(x) x ∈ Z1

e2(x) x ∈ Z2

...
...

en(x) x ∈ Zn

(6)

Here expert e1 only provides advice on cell Z1, e2 on cell Z2, and so on. The

intuition behind MOE is familiar to consumers of medicine; when presented

with symptoms, we will often go to the doctor we think is best specialized in

diagnosing and treating illnesses that typically present those symptoms. If

we happen to choose only one doctor for clinical advice, we employ the top-

expert MOE, and if the doctors are all broadly similar in how they approach

problems—say by receiving standard medical training instead of alternative

medicine—then they are homogenous.2

1Experts are functions mapping features x to targets: ei(x) = ŷ.
2This analogy fails for MOE training: expert selection and expert training occur jointly.
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MOEs and ensembles, while both aggregation techniques, have important

differences. Those differences consist of 1) how they are trained and 2) how

they aggregate predictions.

In the training regime, ensembles train their models separately and inde-

pendently from their aggregation scheme. For example in bagging (Breiman,

1996), models are trained separately on random subsets of data drawn fromD

and only combined at inference time with their aggregation scheme. Boosting

(Freund & Schapire, 1996; Schapire, 1990) modifies this regime by training

models sequentially on the whole data but weighting data samples by the

errors of the previous model in the sequence to gradually scale up better

predictors. In contrast, the experts and the gating function are all trained

simultaneously in MOE; the gating function learns the relevant soft partition

while the experts specialize in their particular region of data. This is done

with either gradient descent or the expectation maximization algorithm. Un-

like ensembles, this means the aggregation scheme is not done separately in

inference but is crucial to the training process because of the tight connection

between the gating function and the experts.

It is important to emphasize that the aggregation schemes between ensem-

bles and MOEs differ in the relevance of the sample features for aggregating

predictions. The critical difference lies in how we aggregate: in the ensemble

method shown in equation 4, the weights wi are scalars and therefore are

constant for all inputs, while in the MOE given in equation 5, the weights

are determined by a gating function Gi(x), which explicitly makes the con-
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tribution of each expert conditional on the input sample’s features x.3 So

aggregation proceeds very differently between ensembles and MOEs.

An extremely influential ensemble scheme is BMA, where all possible

predictors of a certain class are considered by requiring the weights wi to be

probabilities that reflect the posterior distribution of the model parameters

given the data observed. This ensemble method has important theoretical

guarantees, and we turn to discussing it now.

3 Bayesian Optimality

BMA receives its name from the application of Bayes rule to statistical and

machine learning model prediction. Recall that Bayes rule states that if

θ1, θ2, . . . is a partition of model parameters, then the conditional probability

of an element of that partition θi given some observed data D is the ratio of

the likelihood times the prior probability and the marginal probability of the

data:4

p(θi|D) =
p(D|θi)p(θi)

p(D)
=

p(D|θi)p(θi)
∞∑
j=1

p(D|θj)p(θj)
(7)

This is called the posterior probability, and it is applied in the posterior

predictive distribution p(y|x,D), which is used to make a probabilistic pre-

3MOE resembles Schurz (2019)’s conditionalized meta-induction (section 8.2), which
has optimality conditions.

4For uncountable parameter partitions: p(y|x,D) =
∫
p(y|x, θ)p(θ|D)dθ.

11

https://doi.org/10.1017/psa.2025.10159 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2025.10159


diction. The key idea is that predicting some target y from features x and

some previously observed data can be had by applying the law of total prob-

ability with respect to the model partition θ1, θ2, . . . and weighting the model

likelihoods by the posterior of the model given the data:

p(y|x,D) =
∞∑
i=1

p(y|x, θi)p(θi|D) (8)

In essence, this states that if we average over all possible models by how

likely those models are correct given the data we have observed, then we can

compute a posterior of the target given the observed data.5 This has several

desirable properties.

First, it allows us to form predictions with a natural regularizer. Regu-

larization is a technique common in machine learning to combat overfitting.

Overfitting is where a machine learning algorithm essentially does well on

training data while failing to predict hold-out test data; the model “mem-

orizes” the training data instead of truly learning the relevant “inductive

patterns in the data”. An explanation for this behavior comes from the Prob-

ably, Approximately Correct (PAC) learning framework (Kearns & Vazirani,

1994): models that overfit are too “complex” for the data.6 Consequently,

model complexity is penalized by an additional term in the loss function

during training. This is called regularization, and the additional term in the

5The posterior predictive distribution assumes conditional independence: x ⊥ D|θ and
θ ⊥ x|D.

6Complexity is irrelevant to PAC-learning guarantees (Herrmann, 2020). See Sterken-
burg (2023) for further discussion.
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loss function that penalizes complexity is called a regularizer. In the case of

BMA, the posterior p(θ|D) builds in a natural regularizer with the prior p(θ);

if the model is a linear or polynomial regression and the prior is the standard

normal, then the zero-centered prior assigns a lower probability to models

with large parameter values, effectively penalizing model complexity similar

to the complexity penalties in the Akaike and Bayesian information crite-

ria. So BMA naturally provides better generalization and leads to “simpler”

models over other aggregation techniques.

Second, BMA produces models that have good decision-theoretic prop-

erties. We consider our loss function as capturing the relative dis-utility of

making decisions, and a machine learning model as providing a decision rule

(here we treat predictions as a type of action). Then if we suppose there is

a “true” parameter θ for generating the data D, then we say the frequentist

risk of a model is the likelihood of the data given the true parameter weighted

expected value of that model’s loss. For example, when predicting the out-

come of a sequence of coin tosses, the frequentist risk would be how well our

model does on some loss for those tosses weighted by how likely each toss is

given the bias of the coin. So supposing us to be realists about chances, the

frequentist risk captures how well a machine learning model makes decisions

relative to the true chances. This notion of risk has a tight connection to

BMA. A BMA model is a Bayesian estimator in the sense that it minimizes

the Bayes risk with respect to the posterior p(θ|D): the Bayes risk of a model

with prior ρ(θ) is simply the ρ(θ) weighted expected value of the frequentist
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risk. Instead of assuming a “true” parameter, we propose a prior proba-

bility distribution for the parameter and average out that prior across the

frequentist risk. Suppose we are unsure what the true bias of a coin is when

observing a sequence of coin tosses. Then we can consider the Bayes risk as

putting a prior distribution over the bias and weighting the frequentist risk

by that prior. If our model of the coin toss minimizes that risk, then we

say it is a Bayesian estimator for the aforementioned prior. Consequently,

it should be clear that a BMA model is a Bayes estimator concerning the

posterior p(θ|D) because of how it is defined.

The so-called complete class theorems are an important property con-

necting the frequentist risk and the Bayes risk. These theorems state that

Bayesian estimators form a complete class in the sense that any machine

learning model that does better on the frequentist risk than any other model

is a Bayesian estimator (Murphy, 2022; Robert, 2007; Wald, 1947).7 Crit-

ically, however, these optimality guarantees hold only within a fixed class

of models. For example, a BMA composed of linear regression models can

find the optimal linear predictor within the convex hull of the considered

models, but it cannot generate a different type of model such as a quadratic

predictor. Fixing the class appropriate class of models, the complete class

theorems mean that there will be some Bayesian prior we can average over

to equal the “correct” model of the data that does best on the loss; the hope

7A model dominates another if its frequentist risk is lower for all θ. Admissible models
aren’t strictly dominated. The complete class theorem: admissible models are Bayesian
estimators for some prior (Wald, 1947).
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is that we can then find that prior through our posterior by conditioning on

the data. So, ideally, a BMA with enough data and non-perverse prior will

be the Bayesian estimator that does as well as one can do on the frequentist

risk. This should show up in terms of minimizing the loss on the hold-out

test set.

With both of these desirable properties, it is then surprising that BMA

is often outperformed by a MOE.

In figure 1, we show experiments involving a type of BMA and similar

MOEs. The former is a Bayesian linear regression, which averages across a

posterior N (θ|µ,Σ) all linear regressions given in equation 1, and the latter

is a MOE involving two or more linear regressions as found in equation 1

(details can be found in the supplementary, appendix two). Both models

were trained on identical training data and evaluated on the same hold-

out test data. The data consists of polynomials with some added normally

distributed noise. Figure 1a shows the performance of these models on the

mean squared error on hold-out test data, where lower is better; all mixture

models match or exceed the performance of the Bayesian linear regression—

with the greatest gap between the larger number of experts on higher degree

polynomials. Furthermore, since we control the data generation, we can

directly calculate the frequentist risk. Again, the MOEs perform best here

as seen in figure 1b, with the results closely tracking the mean squared error

where lower is better. This collides with the expected hope that we should

find the BMA model to do better here.
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(a) Mean Squared Error (b) Frequentist Risk

Figure 1: Plots of the mean squared error and frequentist risk for Bayesian
Linear Regressions and MOE with [2, 3, 4] expert linear regressions on poly-
nomial datasets of degrees [1, 2, 3, 4, 5]. Lower mean squared error and fre-
quentist risk is better.

One might think that these results are due to the MOEs employing more

sophisticated experts, such as polynomial regressions, or a non-probabilistic

aggregation scheme but that is not the case. Both the Bayesian linear regres-

sion and the MOEs average over linear regressions, i.e. the MOEs are ho-

mogenous: each expert is accounted for in the Bayesian linear regression, and

those experts receive some weighted probability according to the posterior.

If anything, the MOEs employ fewer experts since a BMA averages across all

possible expert configurations while the most we consider in our experiments

are four experts. Furthermore, the averaging scheme employed here is not

all that different; both the Bayesian linear regression and the MOEs weigh

their subcomponent models by probabilities. In fact, the Bayesian linear re-

gression does things the right way by weighting the models by a data-driven

posterior. So the difference between the two cannot be due to better experts
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or a non-probabilistic approach to aggregation.

The ability of MOE to outperform ensembles like BMA has led them to

be an important component of contemporary machine learning techniques.

For example, Yuksel et al. (2012) cite a 2008 survey of then-important ma-

chine learning methods and argue that MOE outperforms all of them (Yuksel

et al., 2012, 1178). They in particular cite the advantages a MOE model has

over the popular ensemble method of boosting (Yuksel et al., 2012, 1187–88).

Furthermore, Masoudnia and Ebrahimpour (2014) argue that MOE consis-

tently outperforms popular ensemble techniques like bagging and boosting

(Masoudnia & Ebrahimpour, 2014, 286–287). This is despite the challenges

MOE faces in learning the right partition and gating function (see section 3.3

of Masoudnia and Ebrahimpour (2014) for a discussion circa 2014). Those

challenges have increasingly been overcome through sparsity, i.e. only se-

lecting the top-k experts when making predictions, and noisy gating, i.e.

injecting noise during the training process to force the gating function to use

all experts (Shazeer et al., 2017). This has led to MOEs being an increas-

ingly important component of large language models, like OpenAI’s GPT-4

(Betts, 2024) and Mistral’s Mixtral (A. Q. Jiang et al., 2024).

Two explanations have been given for the superiority of MOE over en-

semble methods like BMA. First, MOEs work well on data generated by

oxymoronic one-to-many functions, i.e. “functions” that can map a single

input to multiple outputs, whereas traditional models and ensembles cannot

learn this data (Murphy, 2022, 454). However, this explanation fails in the
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experiments described above: all of the datasets were generated by proper

functions that pass the vertical line test. Second, MOEs supposedly work

well due to experts learning data that is negatively correlated (Masoudnia &

Ebrahimpour, 2014, 287). While this is true for some data, it is not always

the case, as can be seen in the aforementioned experiments on degree three

polynomials where different elements of the data are either positively corre-

lated or not correlated at all. So both of these explanations seem unnecessary

for explaining why MOE does well.

Recapping, an important class of ensemble models are Bayesian ones.

These models have attractive theoretical features such as regularization and

accuracy considerations. But these models are often outperformed by MOEs

as demonstrated by some experiments. This has led to a general adoption of

MOEs in machine learning for hard problems over ensemble schemes, such

as in large language models. Two reasons for this superiority are that MOEs

can fit data generated by one-to-many “functions” and that MOEs train

their experts on negatively correlated data. But better performance can be

found on proper functions and the partition learned need not involve negative

correlations. So another explanation should be given, which we turn to now.

4 The Functional Capacity of Models

A plausible, intuitive hypothesis for why MOEs outperform ensemble tech-

niques like BMA is that MOEs have greater functional capacity than en-
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sembles. That is, MOEs characterize hypothesis classes that have a richer

set of labeling schemes than ensembles like BMA, and so the improved per-

formance relative to provably “better” methods like BMA is due to BMA

being restricted to a more impoverished model class. This shows up in the

experiments in section 3 where we see that the various MOEs continue to do

well on mean squared error loss as the degree of the polynomial data scales.

The Bayesian is in some sense limited by only considering linear regressions,

while the MOEs seem able to stitch together multiple functions—despite the

MOEs, like the BMA, only using linear regressions.

To make this hypothesis exact, we need to do two things: first, we need

to specify what is a good explication of functional capacity, and second, we

need to show how, in principle, at least some MOEs have a greater functional

capacity than a BMA.

The intuitive idea of the functional capacity of a model is supposed to

be something like the set of functions the model can learn. What counts

as a relevant function depends on the problem the machine learning model

solves. In supervised learning, those problems are sorted into the buckets

of regression and classification, which correspond to predicting continuous

targets or discrete targets respectively. With classification, the prediction

problem is one of separating data into sets identified with the target, and

the complexity of the problem is in some sense dependent on the data be-

ing used—predicting the label of a picture from raw pixels is harder than

predicting from a higher-level feature like the presence or absence of an an-
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imal. Measuring how well we can separate data is the core intuition behind

the Vapnik-Chervonenkis dimension (VC dimension). A more sophisticated

model with higher functional capacity will be one that can better sort more

complex data into classes; VC dimension gives us an exact measure of that

capacity in terms of the cardinality of the data. This makes it a good ex-

plication of functional capacity because it specifies the type of functions a

model can fit by one important sense of the complexity of the data in the

classification problem at hand.

To define VC dimension, we need to define what it means to separate

data, i.e. to shatter a dataset. Our context is binary classification, where

machine learning models are treated as functions that map between features

X and the binary labels {0, 1}. For example, we might be interested in

classifying whether a picture is of a cat or not. We then group our binary

classifiers into sets H and specify that H shatters some dataset X if for any

arbitrary labeling of X there is a classifier in H that correctly classifies that

labeling:

Definition 4.1. Let H be a set of binary classifiers h : X → {0, 1}. Given a

set of points X = {x(1), . . . , x(m)} where x(i) ∈ X , we say that H shatters X

if for any labels Y = {y(1), . . . , y(m)} where y(i) ∈ {1, 0}, there exists h ∈ H

such that h(x(i)) = y(i) for i = 1, . . . ,m.

Suppose our set of models are all linear classifiers, i.e. they classify by draw-

ing lines to separate data. Then as can be seen in figure 2, this class can

shatter a given set of three points in R2 seen in figure 2a, but there is no
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(0,0)

(1,1)

(2,0)

(a) Shattering 3 points

(0,0)

(1,1)(0,1)

(1,0)

(b) Not shattering 4 points

Figure 2: An example of shattering and failing to shatter. Figure 2a shows
a set of points that can be shattered by the set of linear classifiers because
any arbitrary labeling, i.e. which points are assigned blue or red, can be
correctly classified by at least some linear classifier, i.e. we can draw a line
separating the two labels without any mistakes. Figure 2b shows a set of
points that cannot be shattered by that set since no line can separate this
particular coloring without any errors.

set of four points that it can shatter as seen in figure 2b. It shatters the

former because regardless of how we label those three points, some line can

separate them, which implies there is some linear classifier that can make

a completely correct and error-free identification of the targets. It fails to

shatter the latter because those four points have a labeling that no line can

cleanly separate error-free.

The VC dimension of a class H is then the cardinal size of the largest set

of data, with respect to some space of possible data like R, that that class

can shatter:

Definition 4.2. The Vapnik-Chervonenkis dimension of a set of binary clas-

sifiers V CD(H) defined over instance space X is the cardinality of the largest

finite subset of X that H can shatter. If arbitrarily large subsets can be shat-

tered, then V CD(H) := ∞.
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For example, linear classifiers in the Cartesian plane can shatter any three

point labeling, but for any four points, there will be a labeling that cannot

be shattered. So the VC dimension of the set of linear classifiers concerning

R2 will be exactly three.

It should be noted that VC dimension is not correlated with parameter

count: one can have a high VC dimension with a low parameter count. For

example, the set of models given by I(sinα · x), where I(x) is the indicator

function that assumes 1 if x > 0 and 0 otherwise, has only one parame-

ter α ∈ R but an infinite VC dimension (Hastie, Tibshirani, Friedman, &

Friedman, 2009, 237). This makes VC dimension a better characterization of

model functional capacity than raw parameter count since the above model

intuitively is more complex than a linear classifier—even though the linear

classifier has more parameters.

Importantly, ensembles have a maximum VC dimension given by the num-

ber of ensemble members and the base VC dimension of the class of members

used in the set of ensemble hypotheses. Let L(H, n) be the set of binary classi-

fiers that are linear combinations of hypotheses drawn from binary classifiers

H, i.e. L(H, n) = {x 7→ sgn(
∑n

i=1wifi(x)) : w ∈ Rn,∀i, fi ∈ H}, where sgn

is the signum function, which returns +1 for positive or zero inputs and −1

for negative inputs. By definition, every ensemble will be in this set. Then

it can be shown that if the V CD(H) = m is finite for some finite m > 3,

then V CD(L(H, n)) ≤
∼
O(mn), where

∼
O means we ignore any constants or
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logarithmic terms (Shalev-Shwartz & Ben-David, 2014, 109).8 This is effec-

tively to say that the VC dimension of ensembles with n members and whose

members have a VC dimension m is no bigger than nm. While these bounds

do not technically apply to BMAs, since BMAs consider infinitely many hy-

potheses, in practice, they do because almost all BMAs are approximated

through finite sampling schemes, i.e. Monte Carlo methods. Crucially, this

is an upper bound: it can be shown in many cases that the VC dimension

is significantly less—sometimes it is exactly the same VC dimension as the

base class H (see Shalev-Shwartz and Ben-David (2014, 113) exercise 10.4 for

examples). The upshot is that ensembles are bounded above by the number

of members and the capacity of those members to separate data.

MOE, however, can be shown to have a higher VC dimension than the

experts it employs. W. Jiang (2000) showed that for mixtures of n Bernoulli

binary classifiers on R, the VC dimension is exactly n, and for logistic re-

gressions or Bernoulli binary classifiers on the instance space of Rd, the VC

dimension can be bounded below by the number of experts n and from above

to the worst case O(n4d2) (W. Jiang, 2000, 7). These bounds can be tight-

ened on R. First, we say a set of functions F whose domain is the reals is

closed under translation just in case for any function f in that set and any

a ∈ R, the function fa(x+ a) is also in F . Examples of these sets will be the

8From Shalev-Shwartz and Ben-David (2014, 109), Lemma 10.3:

V CD(L(H, n)) ≤ n(V CD(H) + 1)(3 log n(V CD(H+ 1)) + 2)
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set of all linear binary classifiers, the set of all polynomial binary classifiers

of some positive degree d, and the set of all feedforward neural networks (a

prominent type of artificial neural network where information flows in only

one direction) whose domains are the reals.9 Second, suppose we restrict

ourselves to a limiting case involving top-expert MOEs with homogenous

experts drawn from a class closed under translation. In that case, we can

show that the VC dimension will have a lower bound that is a product of the

number of experts and those experts’ VC dimension10:

Proposition 4.3. Let H be a set of top-expert mixture of experts binary

classifiers of n homogenous binary classifier experts drawn from the set E

closed under translation with V CD(E) = m defined over instance space R.

Then V CD(H) ≥ nm for R.

What this means is that at least some MOEs have a higher VC dimension

than BMAs and so greater functional capacity. They can fit more complex

data and so involve fundamentally more complex hypotheses. The intuition

behind proposition 4.3 can be seen by observing that a top-expert MOE

with homogenous experts is a piecewise function that deploys each expert

on exactly one element of a partition of the feature space; such a piece-

wise function will be able to separate more complex data than any of its

components individually. Likewise, non-top-expert MOEs will form similar

9Linear and polynomial classifiers are closed under translation (modifying intercept or
constant term). For feedforward networks, input translation modifies the first layer’s bias:
h1(x+ a) = f(W1x+ b′

1) where b′
1 = W1a+ b1.

10Full proof in supplementary, appendix 1.
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piecewise functions, though of possibly less complexity depending on the soft

partition learned by the gating function. The upshot is that with functional

capacity understood as VC dimension, we can vouchsafe the earlier intuition

that MOEs have greater “capacity” and can learn more complex functions

than ensembles like BMA.

This means that comparing MOEs to BMAs is an apples-to-oranges com-

parison. If MOE and Bayesian models are restricted to sub-models with the

same complexity, then MOE will have an inherent advantage on more com-

plex datasets like those observed in section 3. Provide the Bayesian the right

type of models and that advantage will likely disappear.

In summary, we have argued that an intuitive explanation for the superi-

ority of MOE over ensembles like BMA—despite the theoretical reasons for

the Bayesian to be advantaged —is the greater functional capacity of MOEs.

We argued that VC dimension is a good explication of that capacity, and we

proved that the VC dimension of some MOEs will be greater than a BMA

over models with the same capacity as the MOE. However, theoretical con-

siderations can only cut so much ice. The question is whether MOEs, such

as those that are not top-experts, can do well on datasets that exactly track

greater VC dimensions. We turn to that now.
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5 Experiments

The discussion and results in section 4 provide a theoretical reason why

MOEs may have greater functional capacity than ensembles like BMAs, but

does this show up empirically? Two problems prevent an immediate accep-

tance of this fact: first, proposition 4.3 only applies to top-expert MOEs

but most MOEs in practice have multiple experts per partition, and second,

the proposition applies only if the top-expert MOE is learned when this of-

ten may prove difficult or impossible in practice.11 Consequently, we should

empirically validate our theoretical results. We address this worry here by

detailing experiments involving datasets that stand as a proxy for the VC

dimension of binary classifiers.

Our method for building datasets with a correlated VC dimension takes

advantage of the fact that polynomial binary classifiers of degree m over in-

stance space Rd have a VC dimension of
(
d+m
d

)
(Shalev-Shwartz & Ben-David,

2014, 57). We can then use those binary classifiers to generate datasets that

in fact will be classifiable by machine learning models with the appropriate

VC dimension. An example dataset can be seen in figure 3. We build a poly-

nomial binary classifier of degree m with coefficients [θm, . . . , θ0], and then

we generate points in R2 around that polynomial with a normal distribution.

Points that lie above the polynomial are assigned one label and those below

11Compare with universal approximation theorems (Hornik, Stinchcombe, & White,
1989): they bound network expressivity but don’t guarantee specific networks approximate
target functions.
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Figure 3: Example of a VC dimension Polynomial Dataset, degree 3. Red
indicates the polynomial binary classifier assigns label 0 and blue indicates
the classifier assigns label 1. The resulting correlated VC dimension is

(
5
2

)
=

10.

another label. We say this dataset has a correlated VC dimension of
(
2+m
2

)
since we can achieve near-perfect accuracy by fitting a logistic regression with

a design matrix that is a degree m polynomial.

Our chosen binary classifiers for the experiments are logistic regressions.

A logistic regression is a binary linear classifier with likelihood fσ(y|x, θ)

where θ = [θ0, . . . , θd]
⊺ and x = [1, x1, . . . , xd]

⊺ such that:

fσ(y|x, θ) = Ber(y|σ(x⊺θ)) (9)

Here Ber is the Bernoulli distribution and σ is the logistic sigmoid function

σ(x) = 1
1+exp (−x)

. Our MOEs consist of two to four experts that are logistic

regressions that employ a top-2 expert configuration, and we choose a BMA

that averages over logistic regressions. Unfortunately, there are no analyt-

ically computable posteriors p(θ|D) for logistic regressions, so we have to

approximate it for the BMA (see supplementary, appendix two for details).

27

https://doi.org/10.1017/psa.2025.10159 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2025.10159


(a) Accuracy (b) Loss

Figure 4: The hold-out test set accuracy and loss of SGHMC and VI logistic
regression (LR) BMAs and logistic regression MOEs. For accuracy in figure
4a, higher is better; for loss in figure 4b, lower is better. We see that as the
VC dimension increases, the accuracy and loss of the BMAs falls off, while
the accuracy of the MOEs stays relatively constant, with some degradation
in the two-expert model.

All models were trained to minimize the cross-entropy loss function (a

type of loss function for categorical targets) using stochastic gradient de-

scent (a variant of gradient descent that estimates the gradient via random

samples) on a training set, and we then evaluated them on a hold-out test

set. The results can be seen in figure 4.

The experiments show that at a correlated VC dimension of 3, the Bayesian

models perform roughly on par with the MOEs, but then there is considerable

separation as the VC dimension of the dataset climbs. Figure 4a shows that

BMAs consistently underperform on test-set accuracy, only doing modestly

better than chance; however, the MOEs perform well as the VC dimension

continues to climb, though the MOE with two experts shows degraded ac-

curacy relative to the other models. In figure 4b, we see the same trends
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on test-set accuracy reflected in the cross-entropy loss: the Bayesian models

approach the loss on hold-out test data as the MOEs, but then underper-

form as the VC dimension climbs. Again, the two-expert MOE model shows

degradation more so than the higher expert counts.

These results validate empirically the theoretical results from section 4.

Note that the bound proved in proposition 4.3 is a lower bound for top-

experts, so the VC dimension of the MOEs may be higher. The upshot

is that we have both theoretical and empirical reasons to suggest that our

explanation for the superiority MOEs over ensembles like BMA is correct:

MOEs can simply learn more expressive hypotheses than averaging schemes

like BMAs.

6 Mixtures of Experts as Abductive Model-

ing

The argument from the previous sections has been that MOEs outperform

averaging schemes like the Bayesian ones because they avail themselves of a

richer hypothesis space. What is very interesting about this is that they find

themselves in that bigger hypothesis space by way of simpler hypotheses;

the experts, as noted, have a lower functional capacity than the MOE as

a whole. Through the gating function, the feature space is soft-partitioned

into cells that expert models can then specialize on. Importantly, this allows

a virtuous learning process that enables experts to master relatively narrow

29

https://doi.org/10.1017/psa.2025.10159 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2025.10159


domains while ensuring that collectively the experts build a more sophis-

ticated, broader picture of the problem at hand. We argue in this section

that this process is a form of abduction in the Peircean sense of hypothesis

construction. This explains the fundamental difference between MOE and

BMA: the former combines abduction and induction while the latter only

uses induction.

A big assumption of the Bayesian approach to inductive reasoning is that

the hypothesis space must be given. We have an algebra (or sigma-algebra)

that captures in some sense all of the questions that we want to have an-

swered in our inquiry and evidence we could bear on those questions. Then

we proceed in our inquiry by considering some partition that is a subset

of that algebra that characterizes the relevant scientific hypotheses and ap-

plying Bayes rule on new evidence as it comes in to update ourselves on

our credences in the members of that partition. The assumption about the

hypothesis space shows up twice here: first, in the granted algebra that char-

acterizes inquiry, and second, in the selected hypothesis partition used when

applying Bayes rule. We see both assumptions play a crucial role in BMA.

The initial algebra is the possible model parameters and the range of values

the feature and target random variables may assume, and the hypothesis par-

tition is the range of possible model parameters assumed. With this fixed, no

further hypothesis or evidence may be admitted into the averaging scheme.

So BMA perfectly embodies the Bayesian approach—an approach that is

fundamentally an inductive one.
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By an inductive approach, we mean an ampliative inference from evidence

to hypotheses. For the Bayesian, this can be thought of as a type of diachronic

coherence between our current partial beliefs and our future partial beliefs;

we change our beliefs in such a way as to avoid sure losses when gambling

on those beliefs (Zabell, 2005, 132–133). In that sense, BMA is induction

par excellence—we aim to make predictions of new data based on what we

have observed from old data in a probabilistic manner that guarantees we

do as best we can by a loss function that captures the modeler’s subjective

utility function on the prediction problem. The main assumption we make

is that some class of models best parameterizes the predictive problem, and

so we learn about those models based on the data we have observed in a

diachronically coherent manner. Then when we make our predictions, we

factor what we have learned about those models into our predictions.

While MOE certainly does induction too, there is an additional element

not present in the Bayesian approach. MOE partitions the input feature

space and then through the gating function routes predictive samples to ex-

perts based on where they fall in that partition. This is termed a divide-and-

conquer strategy or conditional computation since the MOE learns how best

to divide a problem into sub-problems that can more easily be addressed by

expert models. In contrast, BMAs learn no such partition nor do they break

down the problem into more easily addressable sub-problems. This divide-

and-conquer approach is chiefly responsible for MOE’s expressive advantage

over ensemble methods.
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We argue that the MOE approach to the problem of prediction in machine

learning is exactly an approach germane to abductive inference or hypothesis

construction.

What we mean here by abductive inference or abduction is hypothesis

construction or generation. The problem of hypothesis construction was ar-

ticulated by C. S. Peirce as a form of conjecturing (Peirce, 1901). He thinks

that this is perhaps the most important element of scientific inquiry, and

he discusses several principles to be applied when conjecturing hypotheses.

Among those to consider is the economies of research—the resources spent

finding hypotheses and testing them—which are important because we should

expect our candidate hypotheses to break down and our time and resources

in inquiry limited. He proposes several qualities to guide hypothesis selec-

tion (Peirce, 1901, 109). One in the current context stands out. He calls this

“Caution” and what he means is adopting a strategy of hypothesis forma-

tion that breaks down the problem space into regions that allow for groups

of hypotheses to be quickly tested and discarded by their sub-components

to converge at the best candidate in the most expeditious manner, and he

proposes to illustrate the idea with a game. While there is some ambiguity

about what Peirce means here, one plausible interpretation is that hypoth-

esis construction should proceed with an eye toward the logical parts of the

hypothesis and how they can be structured in a way to facilitate a divide-and-

conquer search when testing the hypothesis. We select a hypothesis based

on how fruitfully its components divide up the testing space. That selection
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strategy functions as an integral component in abductive reasoning.

The same divide-and-conquer strategy goes on in MOE at the time of in-

ference where a complex sample is routed to a region where a smaller, simpler

component can be used to make a prediction. A MOE model as a hypothe-

sis breaks down the prediction problem into sub-problems with the learned

partition, and then it deploys the relevant experts to make its predictions.

Similarly, it also applies this divide-and-conquer strategy in reverse when

constructing the MOE model, since the structure of the model architecture

and training environment ensures that a MOE learns a good way to divide

up the input space to make it tractable for the simpler, expert predictors. In

both cases, a new hypothesis is constructed with an eye toward its simpler

logical components and the input space—much akin to the strategy Peirce

gave for picking cautionary, economical hypotheses.

How new hypotheses are constructed can be easily observed by the limit-

ing case of top-expert MOEs. There the new hypothesis given by the MOE

model is just a piecewise function of the expert models based on the parti-

tion the gating function learns. This is a more complex hypothesis, as we

argued in section 4, since it can fit more complex data than the individual

components. And crucially, it is not simply a weighted combination of the

expert models due to the gating function: models are only applied based on

the input and where that input falls in the partition learned by the gating

function. A piecewise function is typically not just a replication or Boolean

of its parts. So at least in the case of the top-expert MOE, something truly
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new is produced.

We can iterate the partitioning strategy to sequentially divide-and-conquer

the prediction problem—leading to even more expressive hypotheses. Hier-

archical Mixtures of Experts (Jordan & Jacobs, 1994) does exactly this by

applying gating functions sequentially to form a tree structure where the

experts act as leaves; each gate partitions the cell selected by the previous

gate eventually terminating in an application of the relevant experts. This

process is akin to asking questions that rule out more and more alternatives

until the best hypothesis is lighted upon.

The upshot is that MOE provides a formal model of abduction through

a notion of functional capacity given by the framework of statistical learning

theory. This is a novel formal model compared to existing models like Schurz

(2008) (see Niiniluoto (2018) for a thorough discussion of various models).

Its algorithm allows the sequential creation of “complex” hypotheses out

of “simpler” hypotheses. These hypotheses are fundamentally different and

new compared to their components as characterized by their relative VC

dimension; consequently, we can use statistical learning theory to capture

how other algorithms might provide substantially new hypotheses like how

our analysis here captures MOE’s ability to construct new hypotheses out of

old ones. So along with providing a formal model of abduction through its

divide-and-conquer strategy, MOE provides a test case for using additional

formal tools to capture what it means for hypotheses in a new algebra to be

fundamentally more expressive than those in an old algebra.
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One thing that should be noted is that the abductive process used in

MOEs has an element of induction. Namely, the gating function and experts

are learned simultaneously by how well the MOE as a whole predicts the

training data. This suggests that the process of hypothesis formation is inti-

mately tied to having a positive feedback loop with how well the hypothesis

can be used experimentally; forming hypotheses requires putting hypotheses

to the test and using the evidence from those tests to guide in further hy-

pothesis selection. This is a point that Peirce repeatedly hits upon, and we

see that this virtuous process plays out in the case of MOEs.

In short, MOEs embody a form of hypothesis construction. That hypoth-

esis construction can be seen in the limiting case where we have a top-expert

MOE with homogenous experts; we have a new hypothesis constructed as a

piecewise function of simpler hypotheses that has provably more functional

capacity than those original hypotheses. Importantly, the construction of

new hypotheses proceeds in combination with inductive reasoning where the

gating function and experts are learned at the same time by how well they

predict the training data. This enables beneficial learning due to how hy-

pothesis construction can be guided by inductive feedback on the training

data—leading to better hypotheses through the pressure of gradient descent

or another learning algorithm.
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7 Conclusion

In this paper, we considered the question of why MOE methods perform

better than ensemble methods such as BMA—even though BMA has certain

optimality guarantees. We argued that in a limiting case, MOE has a greater

functional capacity, in the precise sense of VC dimension, than ensembles like

BMAs. We then demonstrated with a series of experiments that this lim-

iting case seems to track the more usual cases machine learning researchers

encounter. The philosophical upshot is that MOEs seem to employ a type of

abductive reasoning in the Peircean sense of hypothesis construction; they

use a divide-and-conquer strategy to compose new, more complex hypothe-

ses out of simpler hypotheses in an economical manner. This explains the

discrepancy between Bayesian methods and MOEs because the former are

fundamentally just inductive methods while the latter can in some sense be

said to construct the hypothesis spaces that the former rely upon. It is also

notable because it gives philosophers a novel formal model of an abductive

reasoning process, drawn from statistical learning theory. The upshot is that

statistical learning theory too can provide tools for generating and evaluating

hypothesis creation algorithms.

We conclude by discussing two open questions: do these results imply that

MOEs are just better than BMAs and can the greater functional capacity of

MOEs pose inductive problems?

Returning to the question about the superiority of MOE over BMA, one
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might conclude from this discussion that MOE is the superior algorithm in

machine learning over BMA. We think this is premature. We have argued

that the superiority of MOE over BMA is due to the former applying a

form of abductive reasoning in combination with inductive reasoning while

BMA is inductive only. However, the inductive methods in BMA are at least

as good as the inductive methods used in MOE—if not better; this means

that MOE could likely be improved by incorporating BMA into the training

process through which gates and experts are learned. Instead of using a single

or a finite subset of experts who specialize in soft partitions of the feature

space, there could be a benefit of employing BMAs here. Furthermore, a

BMA gating function might also improve the learning process. The upshot

is that the abductive process captured in MOEs could be further improved

by incorporating a superior inductive process in MOE model formation.

Lastly, we have argued that the superior performance of MOE over BMAs

is fundamentally due to BMAs underfitting the data. The greater VC dimen-

sion of MOEs allows them to separate more complex data sets, which can

be seen in our experiments involving binary classifications generated by arbi-

trary polynomials. But this greater expressiveness comes at a cost: it means

that MOEs might be more prone to overfitting the training data, i.e. “mem-

orizing” the data. This poses an inductive problem that we have not solved

here. Namely, the greater functional capacity of MOEs should be more prone

to overfitting. Whether they do or not depends on the data they are trained

on, and the problem before them. It is an open question, which we leave
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to future research, whether this is less of an issue because most real-world

problems require the kind of higher functional capacity found in MOEs than

in ensembles. Maybe the world is just really complex—rendering the worry

about overfitting an unfulfilled hypothetical. On that issue, we remain silent

here.

References

Betts, S. (2024). Peering inside gpt-4: Understanding its mixture of experts

(moe) architecture. (https://medium.com/@seanbetts/peering-

inside-gpt-4-understanding-its-mixture-of-experts-moe-architecture-

2a42eb8bdcb3 [accessed 7 May 2024])

Breiman, L. (1996). Bagging predictors. Machine learning , 24 , 123–140.

doi: 10.1007/BF00058655

Cesa-Bianchi, N., & Lugosi, G. (2006). Prediction, learning, and games.

Cambridge university press.

Dietterich, T. G. (2000). Ensemble methods in machine learning. In In-

ternational workshop on multiple classifier systems (pp. 1–15). doi:

10.1007/3-540-45014-9 1

Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting

algorithm. In icml (Vol. 96, pp. 148–156).

Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). The

elements of statistical learning: data mining, inference, and prediction

38

https://doi.org/10.1017/psa.2025.10159 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2025.10159


(Vol. 2). Springer. doi: 10.1007/978-0-387-84858-7

Herrmann, D. A. (2020). Pac learning and occam’s razor: Probably ap-

proximately incorrect. Philosophy of Science, 87 (4), 685–703. doi:

10.1086/709786

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward

networks are universal approximators. Neural networks , 2 (5), 359–366.

doi: 10.1016/0893-6080(89)90020-8

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., & Hinton, G. E. (1991). Adaptive

mixtures of local experts. Neural computation, 3 (1), 79–87. doi: 10

.1162/neco.1991.3.1.79

Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A., Savary, B., Bamford,

C., . . . Sayed, W. E. (2024). Mixtral of experts.

Jiang, W. (2000). The vc dimension for mixtures of binary classifiers. Neural

computation, 12 (6), 1293–1301. doi: 10.1162/089976600300015367

Jordan, M. I., & Jacobs, R. A. (1994). Hierarchical mixtures of experts and

the em algorithm. Neural computation, 6 (2), 181–214. doi: 10.1162/

neco.1994.6.2.181

Kearns, M. J., & Vazirani, U. (1994). An introduction to computational

learning theory. MIT press.

Masoudnia, S., & Ebrahimpour, R. (2014). Mixture of experts: a literature

survey. Artificial Intelligence Review , 42 , 275–293. doi: 10.1007/s10462

-012-9338-y

Murphy, K. P. (2022). Probabilistic machine learning: an introduction. MIT

39

https://doi.org/10.1017/psa.2025.10159 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2025.10159


press.

Niiniluoto, I. (2018). Truth-seeking by abduction (Vol. 400). Springer. doi:

10.1007/978-3-319-99157-3

Peirce, C. S. (1901). On the logic of drawing history from ancient documents,

especially from testimonies. The Essential Peirce, 1893-1913 , 2 , 75–

114.

Robert, C. P. (2007). The bayesian choice: from decision-theoretic founda-

tions to computational implementation (Vol. 2). Springer.

Rokach, L. (2010). Ensemble-based classifiers. Artificial intelligence review ,

33 , 1–39. doi: 10.1007/s10462-009-9124-7

Schapire, R. E. (1990). The strength of weak learnability. Machine learning ,

5 , 197–227. doi: 10.1007/BF00116037

Schurz, G. (2008). Patterns of abduction. Synthese, 164 (2), 201–234. doi:

10.1007/s11229-007-9223-4

Schurz, G. (2019). Hume’s problem solved: The optimality of meta-induction.

Mit Press. doi: 10.7551/mitpress/11964.001.0001

Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding machine learn-

ing: From theory to algorithms. Cambridge university press.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hinton, G., &

Dean, J. (2017). Outrageously large neural networks: The sparsely-

gated mixture-of-experts layer. arXiv preprint arXiv:1701.06538 .

Sterkenburg, T. F. (2023). Statistical learning theory and occam’s ra-

zor: The argument from empirical risk minimization. arXiv preprint

40

https://doi.org/10.1017/psa.2025.10159 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2025.10159


arXiv:2312.13842 .

Wald, A. (1947). An essentially complete class of admissible decision

functions. The Annals of Mathematical Statistics , 549–555. doi:

10.1214/aoms/1177730345

Yuksel, S. E., Wilson, J. N., & Gader, P. D. (2012). Twenty years of mixture

of experts. IEEE transactions on neural networks and learning systems ,

23 (8), 1177–1193. doi: 10.1109/TNNLS.2012.2200299

Zabell, S. L. (2005). Symmetry and its discontents: essays on the history

of inductive probability. Cambridge University Press. doi: 10.1017/

CBO9780511614293

41

https://doi.org/10.1017/psa.2025.10159 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2025.10159

	Introduction
	Mixtures of Experts
	Bayesian Optimality
	The Functional Capacity of Models
	Experiments
	Mixtures of Experts as Abductive Modeling
	Conclusion



