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Abstract

For any irreducible quadratic polynomial f(x) in Z[x], we obtain the estimate
log l.c.m.(f(1), . . . , f(n)) = n log n+Bn+ o(n), where B is a constant depending on f .

1. Introduction

The problem of estimating the least common multiple of the first n positive integers was first
investigated by Chebyshev [Che52] when he introduced the function Ψ(n) =

∑
pm6n log p=

log l.c.m.(1, . . . , n) in his study of the distribution of prime numbers. The prime number
theorem asserts that Ψ(n)∼ n, so the asymptotic estimate log l.c.m.(1, . . . , n)∼ n is equivalent
to the prime number theorem. The analogous asymptotic estimate for any linear polynomial
f(x) = ax+ b is also known [Bat02] and it is a consequence of the prime number theorem for
arithmetic progressions:

log l.c.m.(f(1), . . . , f(n))∼ n q

φ(q)

∑
16k6q
(k,q)=1

1
k
, (1)

where q = a/(a, b).

We address here the problem of estimating log l.c.m.(f(1), . . . , f(n)) when f is an irreducible
quadratic polynomial in Z[x]. When f is a reducible quadratic polynomial, the asymptotic
estimate is similar to that we obtain for linear polynomials. This case is studied in § 4 with
considerably less effort than the irreducible case. We state our main theorem.

Theorem 1. For any irreducible quadratic polynomial f(x) = ax2 + bx+ c in Z[x], we have

log l.c.m.(f(1), . . . , f(n)) = n log n+Bn+ o(n),

where B =Bf is defined by the formula

Bf = γ − 1− 2 log 2−
∑
p

(d/p) log p
p− 1

+
1

φ(q)

∑
16r6q
(r,q)=1

log
(

1 +
r

q

)

+ log a+
∑
p|2aD

log p
(

1 + (d/p)
p− 1

−
∑
k>1

s(f, pk)
pk

)
. (2)
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In this formula γ is the Euler constant, D = b2 − 4ac= dl2, where d is a fundamental
discriminant, (d/p) is the Kronecker symbol, q = a/(a, b) and s(f, pk) is the number of solutions
of f(x)≡ 0 (mod pk) which can be easily calculated using Lemma 2.

For the simplest case, f(x) = x2 + 1, the constant Bf in Theorem 1 can be written as

Bf = γ − 1− log 2
2
−
∑
p6=2

(−1/p) log p
p− 1

, (3)

where (−1/p) is the Kronecker symbol (or Legendre symbol, since p is odd) defined by
(−1/p) = (−1)(p−1)/2 when p is odd.

In § 3, we give an alternative expression for the constant Bf which is more convenient for
numerical computations. As an example, we will see that the constant Bf in (3) can be written as

Bf = γ − 1− log 2
2

+
∞∑
k=1

ζ ′(2k)
ζ(2k)

+
∞∑
k=0

L′(2k, χ−4)
L(2k, χ−4)

−
∞∑
k=1

log 2
22k − 1

=−0.066 275 634 213 060 706 383 563 177 025 . . . .

It would be interesting to extend our estimates to irreducible polynomials of higher degree, but
we have found a serious obstruction in our argument. Some heuristic arguments and computations
allow us to conjecture that the asymptotic estimate

log l.c.m.(f(1), . . . , f(n))∼ (deg(f)− 1)n log n (4)

holds for any irreducible polynomial f in Z[x] of degree deg(f) > 3. In § 2.4, we explain the
obstruction to prove this conjecture. There we also prove that

log l.c.m.(f(1), . . . , f(n))∼ n log n (5)

holds for any irreducible quadratic polynomial f(x). Although this estimate is weaker than
Theorem 1, the proof is easier.

To obtain the linear term in Theorem 1, we need a more involved argument. An important
ingredient in this part of the proof is a deep result about the distribution of the solutions of the
quadratic congruences f(x)≡ 0 (mod p) when p runs over all the primes. It was proved by Duke
et al. [DFI95] (for D < 0) and by Toth [Tot00] (for D > 0). Actually we need a more general
statement of this result, due to Toth.

Theorem 2 [Tot00]. For any irreducible quadratic polynomial f in Z[x], the sequence

{ν/p, 0 6 ν < p6 x, p ∈ S, f(ν)≡ 0 (mod p)}

is well distributed in [0, 1) as x tends to infinity for any arithmetic progression S containing
infinitely many primes p for which the congruence f(x)≡ 0 (mod p) has solutions.

2. Proof of Theorem 1

2.1 Preliminaries

For f(x) = ax2 + bx+ c, we define D = b2 − 4ac and

Ln(f) = l.c.m.(f(1), . . . , f(n)).
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The least common multiple of a quadratic sequence

Since Ln(f) = Ln(−f), we can assume that a > 0. Also, we can assume that b and c are non-
negative integers. If this is not the case, we consider a polynomial fk(x) = f(k + x) for a k
such that fk(x) has non-negative coefficients. Then we observe that log Ln(f) = log Ln(fk) +
Ok(log n) and that this error term is negligible for the statement of Theorem 1.

We define the numbers βp(n) by the formula

Ln(f) =
∏
p

pβp(n), (6)

where the product runs over all the primes p. The primes involved in this product are those for
which the congruence f(x)≡ 0 (mod p) has some solution. Except for some special primes (those
such that p|2aD), the congruence f(x)≡ 0 (mod p) has zero or two solutions. We will discus this
in detail in Lemma 2.

We denote by Pf the set of non-special primes for which the congruence f(x)≡ 0 (mod p)
has exactly two solutions. More concretely,

Pf = {p : p - 2aD, (D/p) = 1},

where (D/p) is the Kronecker symbol. This symbol is just the Legendre symbol when p is an
odd prime.

The quadratic reciprocity law shows that the set Pf is the set of the primes lying in exactly
ϕ(4D)/2 of the ϕ(4D) arithmetic progressions modulo 4D, coprime with 4D. As a consequence
of the prime number theorem for arithmetic progressions, we have

#{p6 x : p ∈ Pf} ∼
x

2 log x

or, equivalently, ∑
06ν<p6x

f(ν)≡0 (mod p)

1∼ x

log x
.

Let C = 2a+ b. We classify the primes involved in (6) into:

– special primes: those such that p|2aD;

– p ∈ Pf :


small primes: p < n2/3,

medium primes: n2/3 6 p < Cn :

{
bad primes: p2|f(i) for some i6 n,

good primes: p2 - f(i) for any i6 n,

large primes: Cn6 p6 f(n).

We will use different strategies to deal with each class.

2.2 Large primes

We consider Pn(f) and the numbers αp(n) defined by

Pn(f) =
n∏
i=1

f(i) =
∏
p

pαp(n). (7)

The next lemma allow us to analyze the large primes involved in (6).

Lemma 1. If p> 2an+ b, then αp(n) = βp(n).
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Proof. If βp(n) = 0, then αp(n) = 0. If αp(n)> βp(n) > 1, then there exist i < j 6 n such
that p|f(i) and p|f(j). It implies that p|f(j)− f(i) = (j − i)(a(j + i) + b). Thus, p|(j − i) or
p|a(j + i) + b, which is not possible because p> 2an+ b. 2

Since C = 2a+ b, we can write

log Ln(f) = log Pn(f) +
∑
p<Cn

(βp(n)− αp(n)) log p. (8)

Indeed, we can take C to be any constant greater than 2a+ b. As we will see, the final estimate
of log Ln(f) will not depend on C.

The estimate of log Pn(f) is easy:

log Pn(f) = log
n∏
k=1

f(k) = log
n∏
k=1

ak2

(
1 +

b

ka
+

c

k2a

)

= n log a+ log(n!)2 +
n∑
k=1

log
(

1 +
b

ka
+

c

k2a

)
= 2n log n+ n(log a− 2) +O(log n) (9)

and we obtain

log Ln(f) = 2n log n+ n(log a− 2) +
∑
p<Cn

(βp(n)− αp(n)) log p+O(log n). (10)

2.3 The number of solutions of f(x) ≡ 0 (mod pk) and the special primes
The number of solutions of the congruence f(x)≡ 0 (mod pk) will play an important role in the
proof of Theorem 1. We write s(f, pk) to denote this quantity.

The lemma below summarizes all the cases for s(f, pk). We observe that, except for a finite
number of primes, those dividing 2aD, we have that s(f ; pk) = 2 or 0 depending on (D/p) = 1
or −1.

Lemma 2. Let f(x) = ax2 + bx+ c be an irreducible polynomial and D = b2 − 4ac.

(i) If p - 2a, D = plDp and (Dp, p) = 1, then

s(f, pk) =


pbk/2c, k 6 l,

0, k > l, l odd or (Dp/p) =−1,
2pl/2, k > l, l even (Dp/p) = 1.

(ii) If p|a, p 6= 2, then s(f, pk) =

{
0, if p|b,
1, if p - b.

(iii) If b is odd, then, for all k > 2, s(f, 2k) = s(f, 2) =


1, if a is even,

0, if a is odd and c is odd,

2, if a is odd and c is even.

(iv) If b is even and a is even, then s(f, 2k) = 0 for any k > 1.

(v) If b is even and a is odd, let D = 4lD′, D′ 6≡ 0 (mod 4).

(a) If k 6 2l − 1, s(f ; 2k) = 2bk/2c.
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(b) If k = 2l, s(f ; 2k) =

{
2l, D′ ≡ 1 (mod 4),
0, D′ 6≡ 1 (mod 4).

(c) If k > 2l + 1, s(f ; 2k) =

{
2l+1, D′ ≡ 1 (mod 8),
0, D′ 6≡ 1 (mod 8).

Proof. The proof is a consequence of elementary manipulations and Hensel’s lemma. When the
modulo is an odd prime p and p - a, the congruence ax2 + bx+ c≡ 0 (mod p) is equivalent to
the congruence y2 ≡D (mod p). Hensel’s lemma (see for example [HW08, Theorem 123]) provides
a method to obtain all the solutions of the congruence y2 ≡D (mod pk+1) from the solutions
of y2 ≡D (mod pk). In this way, we obtain all the distinct cases contained in part (i) of the
lemma. Part (ii) is trivial and parts (iii)–(v) correspond to the case p= 2, which can be analyzed
easily. 2

Corollary 1. If p - 2aD, then s(f, pk) = 1 + (D/p).

Proof. In this case, l = 0 and Dp =D in Lemma 2. Thus, s(f, pk) = 0 = 1 + (D/p) if (D/p) =−1
and s(f, pk) = 2 = 1 + (D/p) if (D/p) = 1. 2

Lemma 3. For any irreducible quadratic polynomial f and for αp(n) defined as in (7) we have

αp(n) = n
∑
k>1

s(f, pk)
pk

+O

(
log n
log p

)
, (11)

where s(f ; pk) denotes the number of solutions of f(x)≡ 0 (mod pk), 0 6 x < pk.

Proof. We observe that the maximum exponent αp,i such that pαp,i |f(i) can be written as
αp,i =

∑
k>1,pk|f(i) 1. Thus,

αp(n) =
∑
i6n

αp,i =
∑
i6n

∑
k>1
pk|f(i)

1 =
∑
k>1

∑
i6n

pk|f(i)

1. (12)

The trivial estimate

s(f ; pk)
[
n

pk

]
6

∑
i6n,pk|f(i)

1 6 s(f ; pk)
([

n

pk

]
+ 1
)

gives ∑
i6n

pk|f(i)

1 = n
s(f ; pk)
pk

+O(s(f ; pk)). (13)

Putting (13) in (12) and observing that k 6 log f(n)/log p and that s(f, pk)� 1, we get

αp(n) = n
∑
k>1

s(f, pk)
pk

+O

(
log n
log p

)
. 2

Since pβp(n) 6 f(n), we have always the trivial estimate

βp(n) 6 log f(n)/log p� log n/log p. (14)
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When we substitute (14) and (11) in (10), for the special primes we obtain

log Ln(f) = 2n log n+ n

(
log a− 2−

∑
p|2aD

∑
k>1

s(f, pk) log p
pk

)
+

∑
p<Cn,p -2aD

(βp(n)− αp(n)) log p+O(log n). (15)

Lemma 3 has an easier formulation for non-special primes.

Lemma 4. For any p - 2aD, we have

αp(n) = n
1 + (D/p)
p− 1

+O

(
log n
log p

)
. (16)

Proof. It is a consequence of Lemma 3 and Corollary 1. 2

2.4 The asymptotic estimate

This subsection is a break in the proof of Theorem 1 to prove, in an easy way, that the weaker
estimate

log l.c.m.(f(1), . . . , f(n))∼ n log n (17)

holds for any irreducible quadratic polynomial f .
We substitute (14) and (16) in (15) to obtain

log Ln(f) = 2n log n+
∑

p<Cn,p -2aD

(βp(n)− αp(n)) log p+O(n)

= 2n log n− n
∑

p<Cn,p -2aD

log p
p− 1

− n
∑

p<Cn,p -2aD

(D/p) log p
p− 1

+O

(∑
p<Cn

log n
)

+O(n). (18)

Now we get (17) using that
∑

p6x log p/(p− 1)∼ log x and that the sum
∑

p(D/p) log p/(p− 1)
is a convergent sum.

This is the moment to explain the main obstruction to obtain the analogous estimate for
polynomials of degree deg(f) > 3. For example, we consider the polynomial f(x) = x3 + 2. Using
the same approach used in the quadratic case, we get

log Ln(f) = 3n log n+
∑
p<3n2

(βp(n)− αp(n)) log p+O(n). (19)

We observe that the primes involved in the sum have the quadratic bound 3n2 instead of the
linear bound we have in the case of quadratic polynomials. The reason is that if p|k3 + 2 and
p|j3 + 2 with j < k 6 n, we only can say that p6 3n2.

It is easy to check that βp(n)� log n/log p and αp(n) = nsp/(p− 1) +O(log n/log p), where
sp is the number of solutions of x3 + 2≡ 0 (mod p). Then we obtain

log Ln(f) = 3n log n− n
∑
p<n

sp log p
p− 1

+O(n) +
∑

n<p<3n2

(βp(n)− αp(n)) log p. (20)
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The Frobenius density theorem [LS96] implies that sp = 1 on average, so
∑

p6x sp log p/(p− 1)∼
log x. Then, in the case f(x) = x3 + 2, we have

log Ln(f) = 2n log n(1 + o(1)) +
∑

n<p<3n2

(βp(n)− αp(n)) log p. (21)

We observe that βp(n) = αp(n) unless there exist j < k 6 n such that p|k3 + 2, p|j3 + 2.
In that case, we have the trivial bound |βp(n)− αp(n)| � 1. Thus, to obtain the asymptotic
log Ln(f)∼ 2n log n for f(x) = x3 + 2, we should prove that

|{p : n6 p6 3n2, p|k3 + 2, p|j3 + 2 for some 1 6 j < k 6 n}|= o(n).

In general, when f(x) is an irreducible polynomial, the asymptotic estimate
log l.c.m.(f(1), . . . , f(n))∼ (deg(f)− 1)n log n would follow from the estimate

|{p : n6 p� ndeg(f)−1, p|f(k), p|f(j) for some 1 6 j < k 6 n}|= o(n). (22)

This is obviously true when deg(f) = 2, but we do not know how to prove it when deg(f) > 3.
We come back to the proof of Theorem 1.

2.5 Medium primes

These primes can also be classified into bad and good primes. Bad primes are those p such that
p2|f(i) for some i6 n. Good primes are those are not bad primes.

As we have seen in the previous section, for any prime p ∈ Pf , the congruence f(x)≡
0 (mod p) has exactly two solutions, say 0 6 νp,1, νp,2 < p.

If p is a good prime, we have that αp(n) is just the number of integers i6 n such that p|f(i).
All these integers have the following form:

νp,1 + kp, 0 6 k 6

[
n− νp,1

p

]
, (23)

νp,2 + kp, 0 6 k 6

[
n− νp,2

p

]
. (24)

Also, it is clear that if p is a good prime, then βp(n) 6 1. These observations motivate the
following definition.

Definition 1. For any p ∈ Pf , we define

α∗p(n) =
[
n− νp,1

p

]
+
[
n− νp,2

p

]
+ 2, (25)

β∗p(n) =

{
1, if βp(n) > 1,
0, otherwise.

(26)

Lemma 5. For any p ∈ Pf , we have:

(i) αp(n)− α∗p(n) = 2n/p(p− 1) +O(log n/log p);

(ii) αp(n) = α∗p(n) and βp(n) = β∗p(n) if p2 - f(i) for any i6 n.

Proof. (i) Lemma 4 implies that αp(n) = 2n/(p− 1) +O(log n/log p) when p ∈ Pf . On the other
hand, we have that α∗p(n) = 2n/p+O(1). Thus, αp(n)− α∗p(n) = 2n/p(p− 1) +O(log n/log p).
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(ii) The first assertion has been explained at the beginning of the subsection. For the second,
if p - f(i) for any i6 n, then βp(n) = β∗p(n) = 0. And, if p|f(i) for some i6 n, we have that
β∗p(n) = βp(n) = 1, since p2 - f(i). 2

By substituting (16) and (14) in (15) for small primes, we obtain

log Ln(f) = 2n log n+ n

(
log a− 2−

∑
p|2aD

∑
k>1

s(f, pk) log p
pk

)

−
∑

p<n2/3

p -2aD

(1 + (D/p)) log p
p− 1

+
∑

n2/36p<Cn
p∈Pf

(βp(n)− αp(n)) log p+O(n2/3). (27)

Now we split the last sum in (27) into∑
n2/36p<Cn

p∈Pf

(βp(n)− αp(n)) log p =
∑

n2/36p<Cn
p∈Pf

(βp(n)− β∗p(n)− αp(n) + α∗p(n)) log p

+
∑
p<Cn
p∈Pf

β∗p(n) log p−
∑

n2/36p<Cn
p∈Pf

α∗p(n) log p+O(n2/3)

= S1(n) + S2(n)− S3(n) +O(n2/3). (28)

To estimate S1(n), we observe that Lemma 5(ii) implies that βp(n)− β∗p(n)− αp(n) + α∗p(n) = 0
for any good prime p. On the other hand, Lemma 5(i) and (14) imply that |βp(n)− β∗p(n)−
αp(n) + α∗p(n)| � log n/log p. Thus,

|S1(n)| � log n |{p : n2/3 < p < Cn, p bad}|. (29)

Lemma 6. The number of bad primes p -D, Q6 p < 2Q is � n2/Q2.

Proof. Let Pr be the set of all primes p such that f(i) = ai2 + bi+ c= rp2 for some i6 n.
For p ∈ Pr, we have (2ai+ b)2 − 4arp2 =D and, then, |(2ai+ b)/p− 2

√
ra| � 1/p2� 1/Q2. We

observe that all the fractions (2ai+ b)/p, 1 6 i6 n, Q6 p < 2Q are pairwise different. Otherwise,
(2ai+ b)p′ = (2ai′ + b)p and then p|2ai+ b. But it would imply that p|(2ai+ b)2 − 4arp2 =D,
which is not possible. On the other hand, |(2ai+ b)/p− (2ai′ + b)/p′|> 1/pp′� 1/Q2. Thus,
the number of primes p ∈ Pr lying in [Q, 2Q] is � 1. We finish the proof by observing that
r 6 f(n)/Q2� n2/Q2. 2

Now, if we split the interval [n2/3, Cn] into dyadic intervals and apply the lemma above to
each interval, we obtain |S1(n)| � n2/3 log n.

To estimate S3(n) =
∑

n2/3<p<Cn,p∈Pf
α∗p(n), we start by writing

α∗p(n) =
[
n− νp,1

p

]
+
[
n− νp,2

p

]
+ 2

=
2n
p

+
(

1
2
− νp,1

p

)
+
(

1
2
− νp,2

p

)
+

1
2
−
{
n− νp,1

p

}
+

1
2
−
{
n− νp,2

p

}
.
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Thus,

S3(n) = n
∑

n2/3<p<Cn

(1 + (D/p)) log p
p

(30)

+
∑

n2/3<p<Cn
06ν<p

f(ν)≡0 (mod p)

(
1
2
− ν

p

)
log p+

∑
n2/3<p<Cn

06ν<p
f(ν)≡0 (mod p)

(
1
2
−
{
n− ν
p

})
log p (31)

= n
∑

n2/3<p<Cn

(1 + (D/p)) log p
p− 1

+O(n2/3) (32)

+
∑

06ν<p<Cn
f(ν)≡0 (mod p)

(
1
2
− ν

p

)
log p+

∑
06ν<p<Cn

f(ν)≡0 (mod p)

(
1
2
−
{
n− ν
p

})
log p. (33)

Substituting this in (28) and then in (27), we obtain

log Ln(f) = 2n log n+ n

(
log a− 2−

∑
p|2aD

∑
k>1

s(f, pk) log p
pk

)

−
∑
p<Cn
p -2aD

(1 + (D/p)) log p
p− 1

+ S2(n)− T1(n)− T2(n) +O(n2/3 log n), (34)

where

S2(n) =
∑
p<Cn
p∈Pf

β∗p(n) log p (35)

T1(n) =
∑

06ν<p<Cn
f(ν)≡0 (mod p)

(
1
2
− ν

p

)
log p (36)

T2(n) =
∑

06ν<p<Cn
f(ν)≡0 (mod p)

(
1
2
−
{
n− ν
p

})
log p. (37)

The sums T1(n) and T2(n) will be o(n) as a consequence of Theorem 2. But this is not completely
obvious and we will provide a detailed proof in the next subsection.

First we will obtain in the next lemma a simplified expression for (34).

Lemma 7. For any irreducible quadratic polynomial we have

log Ln(f) = n log n+ cn+ S2(n)− T1(n)− T2(n) +O(n2/3 log n), (38)

where

c= log a− log C − 2 + γ −
∑
p -2aD

(d/p) log p
p− 1

+
∑
p|2aD

log p
(

1
p− 1

−
∑
k>1

s(f, pk)
pk

)
and S2(n), T1(n) and T2(n) are as in (35)–(37).

Proof. Let D = l2d, where d is a fundamental discriminant. First we observe that (D/p) =
(l/p)2(d/p) and that if p -D, then (D/p) = (d/p). As a consequence of the prime number theorem
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on arithmetic progressions, we know that the sum
∑

p(d/p) log p/(p− 1) is convergent. On the
other hand, the well-known estimate

∑
p6x log p/(p− 1) = log x− γ + o(1), where γ is the Euler

constant, implies that∑
p<Cn
p -2aD

(1 + (D/p)) log p
p− 1

= log n+ log C − γ −
∑
p|2aD

log p
p− 1

+
∑
p -2aD

(d/p) log p
p− 1

+ o(1). (39)

Finally, we substitute (39) in (34). 2

2.6 Equidistribution of the roots (mod p) of a quadratic polynomial
Now we develop a method to prove that T1(n), T2(n) and other similar sums which will appear
in the estimate of S2(n) are all o(n). These sums are all of the form∑

06ν<p6x,p∈S
f(ν)≡0 (mod p)

a(ν, p, x) log p (40)

for some function a(ν, p, x)� 1. By partial summation, we also get easily that∑
06ν<p6x,p∈S
f(ν)≡0 (mod p)

a(ν, p, x) log p= log x
∑

06ν<p6x,p∈S
f(ν)≡0 (mod p)

a(ν, p, x)−
∫ x

1

1
t

∑
06ν<p6t,p∈S
f(ν)≡0 (mod p)

a(ν, p, x) (41)

= log x
∑

06ν<p6x,p∈S
f(ν)≡0 (mod p)

a(ν, p, x) + o(x/log x). (42)

Hence, to prove that the sums (40) are o(x), we must show that∑
06ν<p6x,p∈S
f(ν)≡0 (mod p)

a(ν, p, x) = o(x/log x).

Theorem 2 implies, in particular, that for any arithmetic progression S and for any piecewise-
continuous function g in [0, 1] such that

∫ 1
0 g = 0, we have that∑

06ν<p6x,p∈S
f(ν)≡0 (mod p)

g(ν/p) = o(x/log x). (43)

Lemma 8. Let f be an irreducible polynomial in Z[x]. We have that the sums T1(n) and T2(n)
defined in (36) and (37) are both o(n).

Proof. To prove that T1(n) = o(n), we apply (43) to the function g(x) = x− 1/2.
To prove that T2(n) = o(n), the strategy is splitting the range of the primes into small intervals

such that the n/p are almost constant in each interval. We take H a large, but fixed, number and
we divide the interval [1, Cn] into H intervals Lh = (((h− 1)/H)Cn, (h/H)Cn], h= 1, . . . , H.
Now we write ∑

06ν<p<n
f(ν)≡0 (mod p)

({
n− ν
p

}
− 1

2

)
= Σ31 + Σ32 + Σ33 +O(n/(H1/3 log n)), (44)
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where

Σ31 =
∑

H2/36h6H

∑
06ν<p∈Lh

f(ν)≡0 (mod p)

({
H

h
− ν

p

}
− 1

2

)
,

Σ32 =
∑

H2/36h6H

∑
06ν<p∈Lh

f(ν)≡0 (mod p)
ν/p6∈[H/h,H/(h−1)]

({
n

p
− ν

p

}
−
{
H

h
− ν

p

})
,

Σ33 =
∑

H2/36h6H

∑
06ν<p∈Lh

f(ν)≡0 (mod p)
ν/p∈[H/h,H/(h−1)]

({
n

p
− ν

p

}
−
{
H

h
− ν

p

})
.

To estimate Σ31, we apply (43) with the function {H/h− x} − 1/2 in each Lh and we obtain

Σ31 = o(Hn/log n) = o(n log n), (45)

since H is a constant.

To bound Σ32, we observe that if p ∈ Lh and ν/p 6∈ [H/h, H/(h− 1)], then

0 6

{
n

p
− ν

p

}
−
{
H

h
− ν

p

}
=
n

p
− H

h
6

H

h(h− 1)
.

Thus,

|Σ32| �
∑

H2/36h<H

∑
p∈Lh

H

h2
�

∑
H2/36h<H

∑
p∈Lh

1
H1/3

� π(n)
H1/3

� n

H1/3 log n
. (46)

To bound Σ33, first we observe that

Σ33 �
∑

H2/36h<H

∑
06ν<p∈Lh

f(ν)≡0 (mod p)
ν/p∈[H/h,H/(h−1)]

1

=
∑

H2/36h<H

∑
06ν<p∈Lh

f(ν)≡0 (mod p)

(
χ[H/h,H/(h−1)](ν/p)−

H

h(h− 1)

)

+
∑

H2/36h<H

∑
06ν<p∈Lh

f(ν)≡0 (mod p)

H

h(h− 1)
,

where, here and later, χ[a,b](x) denotes the characteristic function of the interval [a, b].

Theorem 2 implies that∑
06ν<p∈Lh

f(ν)≡0 (mod p)

(
χ[H/h,H/(h−1)](ν/p)−

H

h(h− 1)

)
= o(n/log n).

1139

https://doi.org/10.1112/S0010437X10005191 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X10005191


J. Cilleruelo

Thus,

Σ33 �
∑

H2/36h<H

o

(
n

log n

)
+

∑
H2/36h<H

∑
06ν<p∈Lh

f(ν)≡0 (mod p)

1
H1/3

� o(n/log n) +
π(n)
H1/3

� o(n/log n) +O(n/(H1/3 log n)). (47)

Estimates (45), (46) and (47) imply that Σ3� o(n/log n) + n/(H1/3 log n). Since H can be
chosen arbitrarily large, we have that Σ3 = o(n/log n), which finishes the proof. 2

To present Lemma 10, we need some previous considerations.
For primes p ∈ Pf , the congruence f(x)≡ 0 (mod p) has exactly two solutions, say 0 6

νp,1, νp,2 < p.
In some parts of the proof of Theorem 1, we will need to estimate some quantities depending

on min(νp,1, νp,2). For this reason it is convenient to know how they are related.
If f(x) = ax2 + bx+ c and p ∈ Pf , then νp,1 + νp,2 ≡−b/a (mod p). The next lemma will give

more information when the prime p belongs to some particular arithmetic progression.

Lemma 9. Let q = a/(a, b), l = b/(a, b). For any r, (r, q) = 1 and for any prime p≡ lr−1 (mod q)
and p ∈ Pf , we have

νp,1
p

+
νp,2
p
≡ r

q
− l

pq
(mod 1). (48)

Proof. To avoid confusion, we denote by qp and pq the inverses of q (mod p) and p (mod q),
respectively. From the obvious congruence qqp + ppq ≡ 1 (mod pq), we deduce that qp/p+ pq/q −
1/pq ∈ Z. Since p≡ lrq (mod q), we obtain qp/p≡ 1/pq − rlq/q (mod 1). Thus,

νp,1
p

+
νp,2
p
≡
−lqp
p
≡−l

(
1
pq
− rlq

q

)
≡ r

q
− l

pq
(mod 1). 2

Since the two roots are symmetric with respect to r/2q − l/2pq, necessarily one of them lies
in [r/2q − l/2pq, 1/2 + r/2q − l/2pq) (mod 1) and the other in the complementary set.

Definition 2. For (r, q) = 1, 1 6 r 6 q, p≡ lr−1 (mod q) and p ∈ Pf , we define νp,1 to be the
root of f(x)≡ (mod p) such that

νp,1
p
∈ Trp =

[
r

2q
− l

2pq
,

1
2

+
r

2q
− l

2pq

)
(mod 1),

and we define νp,2 to be the root of f(x) ≡ 0 (mod p) such that νp,2/p ∈ [0, 1)\Trp.

Lemma 10. Assume the notation above. Let α1, α2, β1, β2, c1, c2 be constants and g1(x), g2(x)
two linear functions satisfying

Jn(p) =
[
g1

(
n

p

)
+
c1
p
, g2

(
n

p

)
+
c2
p

]
⊂ Trp

for any prime p ∈Kn = [α1n+ β1, α2n+ β2]. We have∑
p∈Kn∩Pf

p≡lr−1 (mod q)

(
χJn(p)

(
νp,1
p

)
− 2|Jn(p)|

)
log p= o(n), (49)

where χI is the characteristic function of the set I.
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Proof. Since Jn(p)⊂ Trp, then ν2/p 6∈ Jn(p) and we can write∑
p∈Kn∩Pf

p≡lr−1 (mod q)

χJn(p)

(
νp,1
p

)
log p=

∑
16ν6p∈Kn,

f(ν)≡0 (mod p)
p≡lr−1 (mod q)

χJn(p)

(
ν

p

)
log p

and ∑
p∈Kn∩Pf

p≡lr−1 (mod q)

2|Jn(p)| log p=
∑

16ν6p∈Kn,
f(ν)≡0 (mod p)
p≡lr−1 (mod q)

|Jn(p)| log p.

Thus, ∑
p∈Kn∩Pf

p≡lr−1(mod q)

(
χJn(p)

(
νp,1
p

)
− 2|Jn(p)|

)
log p=

∑
16ν6p∈Kn,

f(ν)≡0 (mod p)
p≡lr−1 (mod q)

(
χJn(p)

(
ν

p

)
− |Jn(p)|

)
log p.

The proof will be accomplished by showing that∑
16ν6p∈Kn,

f(ν)≡0 (mod p)
p≡lr−1 (mod q)

(
χJn(p)

(
ν

p

)
− |Jn(p)|

)
= o(n/log n). (50)

We split Kn into intervals Lh = (((h− 1)/H)n, (h/H)n] of length n/H and two extra intervals
I, F (the initial and the final intervals) of length 6n/H. Here h runs over a suitable set of
consecutive integers H of cardinality � (α2 − α1)H.

Let Ih denote the interval [g1(H/h) + c1H/(nh), g2(H/h) + c2H/(nh)].
We write ∑

16ν6p∈Kn,
f(ν)≡0 (mod p)
p≡lr−1 (mod q)

(
χJn(p)

(
ν

p

)
− |Jn(p)|

)
= Σ1 + Σ2 + Σ3 + Σ4, (51)

where

Σ1 =
∑
h∈H

∑
06ν<p∈Lh

f(ν)≡0 (mod p)
p≡lr−1 (mod q)

(
χIh

(
ν

p

)
− |Ih|

)
,

Σ2 =
∑
h∈H

∑
06ν<p∈Lh

f(ν)≡0 (mod p)
p≡lr−1 (mod q)

(|Ih| − |Jn(p)|),

Σ3 =
∑
h∈H

∑
06ν<p∈Lh

f(ν)≡0 (mod p)
p≡lr−1 (mod q)

(
χJn(p)

(
ν

p

)
− χIh

(
ν

p

))
,

Σ4 =
∑

06ν<p∈I∪F
f(ν)≡0 (mod p)
p≡lr−1 (mod q)

(
χIh

(
ν

p

)
− |Jn(p)|

)
.
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The inner sum in Σ1 can be estimated as we did in Lemma 8 (with the function g(x) =
χI(x)− |I| instead of g(x) = x− 1/2), and we get again that Σ1 = o(n/log n).

To estimate Σ2 and Σ3, we observe that if p ∈ Lh, then Jn(p) and Ih are almost equal.
Actually, comparing the end points of both intervals and because g is a linear function, we have
that χJn(p)(x) = χIh(x) except for an interval (or union of two intervals) Eh of measure

|Eh| �min(1, H/h2).

In particular, the estimate ||Jn(p)| − |Ih|| �min(1, H/h2) holds.
Thus, we have

Σ2 �
∑
h∈H

∑
p∈Ln

min(1, H/h2)�
∑

h6H2/3

∑
p∈Lh

1 +
∑

H2/3<h∈H

∑
p∈Lh

1
H1/3

� π(n/H1/3) +
1

H1/3
π(α1n+ α2)� n/(H1/3 log n).

To bound Σ3, first we observe that

Σ3�
∑
h∈H

∑
06ν<p∈Lh

f(ν)≡0 (mod p)
p≡lr−1 (mod q)

χEh
(ν/p)

=
∑
h∈H

∑
06ν<p∈Lh

f(ν)≡0 (mod p)
p≡lr−1 (mod q)

(χEh
(ν/p)− |Eh|) +

∑
h∈H

∑
06ν<p∈Lh

f(ν)≡0 (mod p)
p≡lr−1 (mod q)

|Eh|.

Theorem 2 implies that ∑
06ν<p∈Lh

f(ν)≡0 (mod p)
p≡lr−1 (mod q)

(χEh
(ν/p)− |Eh|) = o(n/log n).

On the other hand,∑
h∈H

∑
06ν<p∈Lh

f(ν)≡0 (mod p)
p≡lr−1 (mod q)

|Eh| �
∑

h6H2/3

∑
p∈Lh

1 +
∑

H2/3<h∈H

∑
p∈Lh

H

h2

� π(n/H1/3) +
1

H1/3
π(α1n+ α2)

� n

H1/3 log n
.

Thus, Σ3� o(n/log n) + n/(H1/3 log n).
Finally, we estimate Σ4. We observe that

|Σ4|6
∑
p∈I

1 +
∑
p∈F

1� n/(H log n)

as a consequence of the prime number theorem. Then

Σ1 + Σ2 + Σ3 + Σ4 =O(n/(H1/3 log n)) +O(n/(H log n)) + o(n/log n),

finishing the proof because we can take H arbitrarily large. 2
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2.7 Estimate of S2(n) and end of the proof
Lemma 11. For S2(n) defined in (35) we have the estimate

S2(n) = n

(
1 + log C − log 4 +

1
φ(q)

∑
(r,q)=1

log
(

1 +
r

q

))
+ o(n). (52)

Proof. Following the notation of Lemma 9, we split

S2(n) =
∑

(r,q)=1
16r6q

S2r(n) +
∑
p6l

β∗p(n) log p=
∑

(r,q)=1
16r6q

S2r(n) +O(1),

where

S2r(n) =
∑

l<p6Cn
p≡lr−1 (mod q)

β∗p(n) log p. (53)

Since p≡ lr−1 (mod q), Lemma 9 implies that νp,1/p+ νp,2/p≡ r/q − l/pq (mod 1). We also
observe that, since p > l, we have that 0< r/q − l/pq 6 1.

Now we will check that

β∗p(n) =



1, if
n

p
>

1
2

+
r

2q
− l

2pq
,

χ[r/2q−l/2pq,n/p](νp,1/p), if
r

q
− l

pq
<
n

p
<

1
2

+
r

2q
− l

2pq
,

χ[r/2q−l/2pq,r/q−l/pq](νp,1/p), if
r

2q
− l

2pq
6
n

p
6
r

q
− l

pq
,

χ[r/q−l/pq−n/p,r/q−l/pq](νp,1/p), if
n

p
<

r

2q
− l

2pq
.

We observe that β∗p(n) = 1 if and only if νp,1/p6 n/p or νp,2/p6 n/p. We recall that

r

2q
− l

2pq
6
νp,1
p

<
1
2

+
r

2q
− l

2pq
. (54)

Also, we observe that Lemma 9 implies that

νp,2
p

=


r

q
− l

pq
− νp,1

p
, if

νp,1
p

6
r

q
− l

pq
,

r

q
− l

pq
− νp,1

p
+ 1, if

νp,1
p

>
r

q
− l

pq
.

(55)

– Assume that n/p> 1/2 + r/2q − l/2pq. Then νp,1 < p(1/2 + r/2q − l/2pq)< n, so
β∗p(n) = 1.

– Assume that r/q − l/pq < n/p < 1/2 + r/2q − l/2pq.
∗ If χ[r/2q−l/2pq,n/p](νp,1/p) = 1, then νp,1 6 n, so β∗p(n) = 1.
∗ If χ[r/2q−l/2pq,n/p](νp,1/p) = 0, then νp,1/p > n/p > r/q − l/pq. Relations (54) and (55)

imply that νp,2/p= 1 + r/q − l/pq − νp,1/p > 1/2 + r/2q − l/2pq > n/p. Since νp,1 > n
and νp,2 > n, we get β∗p(n) = 0.

– Assume that r/2q − l/2pq 6 n/p6 r/q − l/pq.
∗ If χ[r/2q−l/2pq,r/q−l/pq](νp,1/p) = 1, then (55) imply that 0< νp,2/p6 r/2q − l/2pq, which

implies that νp,2 6 n, so β∗p(n) = 1.
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∗ If χ[r/2q−l/2pq,r/q−l/pq](νp,1/p) = 0, then νp,1/p > r/q − l/pq > n/p and (55) imply that
νp,2/p= r/q − l/pq − νp,1/p+ 1> r/q − l/pq > n/p. Since νp,1 > n and νp,2 > n, we get
β∗p(n) = 0.

– Assume that n/p < r/2q − l/2pq.
∗ If χ[r/q−l/pq−n/p,r/q−l/pq](νp,1/p) = 1, then νp,1/p6 r/q − l/pq and (55) imply that
νp,2/p= r/q − l/pq − νp,1/p6 r/q − l/pq − (r/q − l/pq − n/p) = n/p, so β∗p(n) = 1.

∗ If χ[r/q−l/pq−n/p,r/q−l/pq](νp,1/p) = 0, we distinguish two cases:
· if r/2q − l/2q 6 νp,1/p < r/q − l/pq − n/p, then ν1, p/p> r/2q − l/2q > n/p, and

also we have that νp,2/p= r/q − l/pq − νp,1/p > r/q − l/pq − (r/q − l/pq − n/p) =
n/p. Thus, β∗p(n) = 0;
· if r/q − l/pq < νp,1/p < 1/2 + r/2q − l/2pq, then νp,1/p > (1/2)(r/q − l/pq)> n/p.

On the other hand, νp,2/p= r/q − l/pq − νp,1/p+ 1> r/q − l/pq − (1/2 + r/2q −
l/2pq) + 1 = 1/2 + r/2q − l/2pq > n/p. Thus, again we have that β∗p(n) = 0.

Now we split S2r(n) =
∑4

i=1 S2ri(n) according to the ranges of the primes involved in the lemma
above.

S2r1(n) =
∑

l<p6(n+l/(2q))/(1/2+r/(2q))
p≡lr−1 (mod q)

p∈Pf

log p,

S2r2(n) =
∑

(n+l/(2q))/(1/2+r/(2q))<p<(n+l/q)/(r/q)
p≡lr−1 (mod q)

p∈Pf

χ[r/2q−l/2pq,n/p](νp,1/p) log p,

S2r3(n) =
∑

(q/r)(n+l/q)6p6(2q/r)(n+l/q)
p≡lr−1 (mod q)

p∈Pf

χ[r/2q−l/2pq,r/q−l/pq](νp,1/p) log p,

S2r4(n) =
∑

(2q/r)(n+l/2q)<p<Cn
p≡lr−1 (mod q)

p∈Pf

χ[r/q−l/pq−n/p,r/q−l/pq](νp,1/p) log p.

Since (q, D) = 1 and the primes are odd numbers, the primes p≡ lr−1 (mod q), p ∈ Pf lie in
a set of φ(4qD)/(2φ(q)) arithmetic progressions modulo 4qD. The prime number theorem for
arithmetic progressions implies that ∑

p6x
p≡lr−1 (mod q),p∈Pf

log p∼ x

2φ(q)
(56)

and ∑
ax<p6bx

p≡lr−1 (mod q),p∈Pf

log p
p

=
log(b/a)

2φ(q)
+ o(1). (57)

We will use these estimates and Lemma 10 to estimate S2ri(n), i= 1, 2, 3, 4.
By (56), we have

S2r1(n) =
n

φ(q)
q

q + r
+ o(n). (58)
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To estimate S2r2, we write

S2r2(n) =
∑

((n+l)/(2q))/(1/2+r/(2q))<p<((n+l)/q)/(r/q)
p≡lr−1 (mod q)

χ[r/2q−l/2pq,n/p](νp,1/p) log p

=
∑

((n+l)/(2q))/(1/2+r/(2q))<p<((n+l)/q)/(r/q)
p≡lr−1 (mod q)

(
2n
p
− r

q
+

l

pq

)
log p

+
∑

((n+l)/(2q))/(1/2+r/(2q))<p<((n+l)/q)/(r/q)
p≡lr−1 (mod q)

(
χ[r/2q−l/2pq,n/p](νp,1/p)

− 2
(
n

p
− r

2q
+

l

2pq

))
log p.

Lemma 10 implies that the last sum is o(n). Thus,

S2r2 =
∑

((n+l)/(2q))/(1/2+r/(2q))<p<((n+l)/q)/(r/q)
p≡lr−1 (mod q)

p∈Pf

(
2n
p
− r

q

)
log p+ o(n)

= 2n
∑

((n+l)/(2q))/(1/2+r/(2q))<p<((n+l)/q)/(r/q)
p≡lr−1 (mod q)

p∈Pf

log p
p

− r

q

∑
((n+l)/(2q))/(1/2+r/(2q))<p<((n+l)/q)/(r/q)

p≡lr−1 (mod q)
p∈Pf

log p+ o(n)

=
n

φ(q)
log
(

1
2

+
q

2r

)
− n

φ(q)

(
1
2
− r

q + r

)
+ o(n)

by (56) and (57).

To estimate S2r3(n), we write

S2r3(n) =
∑

(q/r)(n+l/q)6p6(2q/r)(n+l/q)
p≡lr−1 (mod q)

p∈Pf

(
r

q
− l

pq

)
log p

+
∑

(q/r)(n+l/q)6p6(2q/r)(n+l/q)
p≡lr−1 (mod q)

p∈Pf

(
χ[r/2q−l/2pq,r/q−l/pq](νp,1/p)−

(
r

q
− l

pq

))
log p

=
n

2φ(q)
+ o(n)

by (56) and Lemma 10.
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To estimate S2r4(n), we write

S2r4(n) =
∑

(2q/r)(n+l/2q)<p<Cn
p≡lr−1 (mod q)

p∈Pf

(
2n
p

+
2l
pq

)
log p

=
∑

(2q/r)(n+l/2q)<p<Cn
p≡lr−1 (mod q)

p∈Pf

(
χ[r/q−l/pq−n/p,r/q−l/pq](νp,1/p)−

(
2n
p

+
2l
pq

))
log p

=
n

φ(q)
(log C − log(2q/r)) + o(n)

by (57) and Lemma 10.
Thus,

S2r(n) = S2r1(n) + S2r2(n) + S2r3(n) + S2r4(n) +O(1)

=
n

φ(q)
q

q + r
+ o(n)

+
n

φ(q)
log
(

1
2

+
q

2r

)
− n

φ(q)

(
1
2
− r

q + r

)
+ o(n)

+
n

2φ(q)
+ o(n)

+
n

φ(q)
(log C − log(2q/r)) + o(n)

=
n

φ(q)
(1 + log C − log 4 + log(1 + r/q)) + o(n).

Now sum over all r 6 q, (r, q) = 1 to finish the estimate of S2(n). 2

Finally, we substitute (52) in (38) to conclude the proof of Theorem 1.

3. Computation of the constant Bf

The sum
∑

p(d/p) log p/(p− 1), appearing in the formula of the constant Bf , converges very
slowly. The next lemma gives an alternative expression for this sum, more convenient in order
to obtain a fast computation.

Lemma 12. We have the identity∑
p

(d/p) log p
p− 1

=
∞∑
k=1

ζ ′(2k)
ζ(2k)

−
∞∑
k=0

L′(2k, χd)
L(2k, χd)

+
∑
p|d

sp, (59)

where sp =
∑∞

k=1 log p/(p2k − 1).

Proof. For s > 1, we consider the function Gd(s) =
∏
p(1− 1/ps)(d/p). Taking the derivative of

the logarithm of Gd(s), we obtain that

G′d(s)
Gd(s)

=
∑
p

(d/p) log p
ps − 1

. (60)
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Since L(s, χd) =
∏
p(1− (d/p)s/p)−1, we have

Gd(s)L(s, χd) =
∏
p

(
1− 1

ps

)(d/p)(
1− (d/p)

ps

)−1

(61)

=
∏

(d/p)=−1

(
1− 1

p2s

)−1

(62)

=
∏
p

(
1− 1

p2s

)((d/p)−1)/2 ∏
p|d

(
1− 1

p2s

)1/2

(63)

=G
1/2
d (2s)ζ1/2(2s)T 1/2(2s), (64)

where T (s) =
∏
p|d(1− 1/ps).

The derivative of the logarithm gives
G′d(s)
Gd(s)

−
G′d(2s)
Gd(2s)

=
ζ ′(2s)
ζ(2s)

+
T ′d(2s)
Td(2s)

− L′(s, χd)
L(s, χd)

.

Thus,

G′d(s)
Gd(s)

−
G′d(2

ms)
Gd(2ms)

=
m−1∑
k=0

(
G′d(2

ks)
Gd(2ks)

−
G′d(2

k+1s)
Gd(2k+1s)

)
(65)

=
m∑
k=1

ζ ′(2ks)
ζ(2ks)

+
m∑
k=1

T ′d(2
ks)

Td(2ks)
−
m−1∑
k=0

L′(2ks, χd)
L(2ks, χd)

. (66)

By (60), we have that, for s> 2,∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣6∑
n>2

Λ(n)
ns − 1

6
log 2

2s − 1
+
∑
n>3

log n
ns − 1

6
4
3

log 2
2s

+
9
8

∑
n>3

log n
ns

6
4
3

log 2
2s

+
9
8

∫ ∞
2

log x
xs

dx

=
4
3

log 2
2s

+
9
8

(
log 2

2s−1(s− 1)
+

1
2s−1(s− 1)2

)
6

1
2s(s− 1)

(
20 log 2 + 8

9

)
6

5
2
· 2−s

s− 1
.

Thus, |ζ ′(2k)/ζ(2k)|6 (5/2) · (2−2k
/(2k − 1)). The same estimate holds for |G′d(2k)/Gd(2k)|,

|T ′d(2k)/Td(2k)| and |L′(2k, χd)/L(2k, χd)|. When m→∞ and then s→ 1, we get∑
p

(d/p) log p
p− 1

=
∞∑
k=1

ζ ′(2k)
ζ(2k)

−
∞∑
k=0

L′(2k, χd)
L(2k, χd)

+
∞∑
k=1

T ′d(2
k)

Td(2k)
. (67)

Finally, we observe that T ′d(2
k)/Td(2k) =

∑
p|d log p/(p2k − 1), so

∑∞
k=1 T

′
d(2

k)/Td(2k) =∑
p|d sp. 2

The advantage of the lemma above is that the series involved converge very fast. For example,
∞∑
k=0

L′(2k, χd)
L(2k, χd)

=
6∑

k=0

L′(2k, χd)
L(2k, χd)

+ Error

with |Error|6 10−40.
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Hence, we can write Bf = C0 + Cd + C(f), where C0 is an universal constant, Cd depends
only on d and C(f) depends on f . More precisely,

C0 = γ − 1− 2 log 2−
∞∑
k=1

ζ ′(2k)
ζ(2k)

=−1.172 547 167 419 014 850 858 752 152 8364 . . . ,

Cd =
∞∑
k=0

L′(2k, χd)
L(2k, χd)

−
∑
p|d

sp,

C(f) =
1

φ(q)

∑
16r6q
(r,q)=1

log
(

1 +
r

q

)
+ log a+

∑
p|2aD

log p
(

1 + (d/p)
p− 1

−
∑
k>1

s(f, pk)
pk

)
.

The values of sp and
∑

k>0 L
′(2k, χd)/L(2k, χd), can be calculated with MAGMA with high

precision. We include some of the values of Cd and C(f):

C−4 = +0.346 538 435 736 895 987 549− s2 = +0.066 550 762 366 036 180 349 . . . ,

C−8 =−0.076 694 093 066 485 311 184− s2 =−0.356 681 766 437 345 118 384 . . . ,

C−3 = +0.586 272 400 297 149 523 649− s3 = +0.435 045 713 698 422 447 292 . . . ,

C−7 =−0.070 022 837 990 444 988 815− s7 =−0.111 373 766 208 260 107 471 . . . ,

C−15 =−0.486 320 692 903 261 758 405− s3 − s5 =−0.707 190 640 126 000 030 028 . . . ,

C(x2 + 1) = (3 log 2)/2 = 1.039 720 770 839 917 964 125 . . . ,

C(x2 + 2) = (3 log 2)/2 = 1.039 720 770 839 917 964 125 . . . ,

C(x2 + x+ 1) = log 2 + (log 3)/6 = 0.876 249 228 671 296 924 649 . . . ,

C(x2 + x+ 2) = log 2 + (log 7)/(42) = 0.739 478 374 585 071 816 681 . . . ,

C(2x2 + 1) = 3 log 2 = 2.079 441 541 679 835 928 251 . . . ,

C(2x2 + x+ 1) = 2 log 2 + log 3 + (log 7)/(42) = 1.838 090 663 253 181 508 076 . . . ,

C(2x2 + x+ 2) = log 2 + (7 log 3)6 + (log 5)/(20) = 2.055 333 412 961 111 634 775 . . . ,

C(2x2 + 2x+ 1) = 3 log 2 = 2.079 441 541 679 835 928 251 . . . .

The table below contains the constant B =Bf for all irreducible quadratic polynomials
f(x) = ax2 + bx+ c with 0 6 a, b, c6 2. When f1, f2 are irreducible quadratic polynomials such
that f1(x) = f2(x+ k) for some k, we only include one of them since Ln(f1) = Ln(f2) +O(log n).

f(x) d q Bf

x2 + 1 −4 1 −0.066 275 634 213 060 706 38 . . .
x2 + 2 −8 1 −0.489 508 163 016 442 005 11 . . .

x2 + x+ 1 −3 1 +0.138 747 774 950 704 521 08 . . .
x2 + x+ 2 −7 1 −0.544 442 559 042 203 141 64 . . .

2x2 + 1 −8 1 +0.550 212 607 823 475 959 00 . . .
2x2 + x+ 1 −7 2 +0.554 169 729 625 906 549 74 . . .
2x2 + x+ 2 −15 2 +0.175 595 605 416 096 753 88 . . .
2x2 + 2x+ 1 −4 1 +0.973 445 136 626 857 257 74 . . .
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The table below shows the error term Ef (n) = log Ln(f)− n log n−Bfn for the polynomials
above and some values of n.

f(x) Ef (102) Ef (103) Ef (104) Ef (105) Ef (106) Ef (107)

x2 + 1 −18 +6 −111 +34 −2634 −1557
x2 + 2 −36 −11 −263 −761 −1462 −8457

x2 + x+ 1 −6 −9 +17 −654 −2528 −1685
x2 + x+ 2 +9 −20 −218 −2120 +687 −686

2x2 + 1 −15 −1 −301 −251 +1084 −14 821
2x2 + x+ 1 −1 +6 +18 −1289 +235 −2553
2x2 + x+ 2 −34 +4 −295 +27 +1169 +1958
2x2 + 2x+ 1 −9 −89 +9 −232 −2876 −10 624

4. Quadratic reducible polynomials

To complete the problem of estimating the least common multiple of quadratic polynomials, we
will study here the case of reducible quadratic polynomials. As this case is much easier than the
irreducible case, we will give a complete description for the sake of completeness.

If f(x) = ax2 + bx+ c with g = (a, b, c)> 1, it is easy to check that log Ln(f) = log Ln(f ′) +
O(1), where f ′(x) = a′x2 + b′x+ c′ with a′ = a/g, b′ = b/g, c′ = c/g.

If f(x) = (ax+ b)2 with (a, b) = 1, then, since (m2, n2) = (m, n)2, we have that Ln((ax+
b)2) = L2

n(ax+ b) and we can apply (1) to get

log l.c.m.{(a+ b)2, . . . , (an+ b)2} ∼ 2n
a

φ(a)

∑
16k6a
(k,a)=1

1
k
. (68)

Now we consider the more general case f(x) = (ax+ b)(cx+ d), (a, b) = (c, d) = 1.

Theorem 3. Let f(x) = (ax+ b)(cx+ d) with (a, b) = (c, d) = 1 and ad 6= bd. Let q = ac/(a, c).
We have

log l.c.m.(f(1), . . . , f(n))∼ n

ϕ(q)

∑
16r6q,(r,q)=1

max
(

a

(br)a
,

c

(dr)c

)
. (69)

Proof. Suppose that p2|Ln(f). It implies that p2|(ai+ b)(ci+ d) for some i. If p|ai+ b and
p|ci+ d, then p|(ad− bc)i. If p - (ad− bc), then p|i and consequently p|b and p|d. Thus, if
p - (ad− bc)bd and p2|(ai+ b)(ci+ d), then p2|(ai+ b) or p2|(ci+ d). In these cases, p6Mn =
max(

√
an+ b,

√
cn+ d, |(ad− bd)bd|).

Thus, we write

Ln(f) =
∏
p6Mn

pβp(n)
∏
p>Mn

pεp(n) =
∏
p6Mn

pβp(n)−εp(n)
∏
p

pεp(n), (70)

where εp(n) = 1 if p|f(i) for some i6 n and εp(n) = 0 otherwise. Since pβp(n) 6 f(n), we have
that βp(n)� log n/log p and then∑

p6Mn

(βp(n)− εp(n)) log p� (log n)π(Mn)�
√
n. (71)
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Thus,

log Ln(f) =
∑
p|f(i)

for some i6n

log p+O(
√
n). (72)

Let q = ac/(a, c). Suppose that p≡ r−1 (mod q), (r, q) = 1. Let k = (br)a be the least positive
integer such that k ≡ br (mod a). Then p|(ai+ b) for some i6 n if and only if kp6 an+ b.
Similarly, let j = (dr)c be the least positive integer such that j ≡ dr (mod c). Again, p|(ci+ d)
for some 6 i6 n if jp6 cn+ d. Thus, the primes p≡ r−1 (mod ac) counted in the sum above
are those such that p6 max((an+ b)/k, (cn+ d)/j). The prime number theorem for arithmetic
progressions implies that there are ∼ (n/ϕ(q)) max(a/k, c/j) of such primes.

We finish the proof by summing over all 1 6 r 6 q, (r, q) = 1. 2
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