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On Willmore’s Inequality for Submanifolds

Jiazu Zhou

Abstract. Let M be an m dimensional submanifold in the Euclidean space R
n and H be the mean

curvature of M. We obtain some low geometric estimates of the total square mean curvature
∫

M
H2dσ.

The low bounds are geometric invariants involving the volume of M, the total scalar curvature of M,

the Euler characteristic and the circumscribed ball of M.

1 Introduction

Let M be an m-dimensional submanifold, which is assumed to be C2 smooth in the

Euclidean space Rn, and let H be the mean curvature of M. If dσ denotes the vol-

ume density of M, we wish to find a low bound for the total square mean curvature
∫

M
H2 dσ. The answer is still open for many cases. There has been some progress for

the related mean curvature integrals since the last century. Reference can be easily

found in the geometric literature, for example, [2, 3, 8, 12].

We call the total square mean curvature
∫

M
H2dσ the Willmore functional based

on the following well-known result of Willmore.

Proposition 1 (Willmore) Let M be a compact surface in R3 and H be the mean cur-

vature of M. Then
∫

M
H2 dσ ≥ 4π, where dσ is the volume element of M, with equality

if and only if M is a standard sphere.

If dim(M) 6= 2, then the Willmore functional is not a Riemannian invariant, so

by applying a homothetic transformation, the value may approach zero. So there is

no lower bound in this case. However if we assume that Vol(M), the volume of M, is

positive, then the Willmore functional should have a lower bound.

The following result is due to B-Y Chen [2].

Proposition 2 (B-Y Chen) Let M be a closed submanifold of dimension m in the Eu-

clidean space Rn and H be the mean curvature of M. Then
∫

M
|H|m dσ ≥ Om, with

equality if and only if M is imbedded as an m-sphere of Rn.

Here Om is the area of the m-dimensional unit sphere, and its value is given by

Om =
2π(m+1)/2

Γ((m + 1)/2)
,
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where Γ denotes the gamma function.

B-Y Chen also achieved the following inequality:
∫

M
H2 dσ ≥

λp

m
Vol(M), where

p is the lower order of the immersion (in the case of Chen finite type theory), λp is

the p-th nonnegative eigenvalue of Laplacian, and the equality holds when and only

when the immersion is of 1-type with order p.

We can estimate a Willmore functional for a 3-dimensional convex hypersurface

M in R4 by applying the theory of kinematic measure and Minkowski geometry. The

integral
∫

M
H2 dσ obtained is bounded below by the surface area of M, the volume

of the convex body K that M bounds, and the Minkowski quermassintegrales of the

convex body K (see [19]). Also, if we assume that M is a convex hypersurface which

is C2 smooth and has a positive volume Vol(M) in Rn, then the Willmore functional

of M is bounded below by the 3rd-order Minkowski quermassintegrale of the convex

body K that M bounds, with equality when M is a standard (n−1)-sphere in Rn [20].

In this paper, we obtain some lower bounds of the Willmore functional for the

submanifold M of dimensions n+1
2

in the Euclidean space Rn. These lower bounds are

geometric invariants involving the volume of M, the total scalar curvature of M, the

Euler characteristic and the circumscribed ball of M. We cannot obtain a Willmore

functional lower estimate for the submanifold in [19, 20] since the results in [19, 20]

are restricted to convex hypersurfaces.

2 Preliminaries

For an m dimensional submanifold M in Rn, if we pick any pair of independent tan-

gent vectors in Tp(M), say u and v, then for every unit vector w = λu + µv, there

is a unique geodesic in M starting at p with tangent vector w. The set of all such

geodesics, as w describes the unit circle in the plan spanned by u and v, sweep a sur-

face whose Gauss curvature at p is the sectional curvature KΠ = K[u, v] of the plane

Π spanned by u and v.

Let e1, . . . , em be an orthonormal basis of the tangent space Tp(M) of M at p.

Then the quantity S = 2
∑

1≤i< j≤m K[ei , e j] is independent of the choice of basis

and is called the scalar curvature of M at p.

For a hypersurface Σ in Rn, we may choose the e1, . . . , en−1 to be the principal

curvature directions at p. Then the scalar curvature S of Σ may be expressed in terms

of the principal curvatures κ1, . . . , κn−1 by S = 2
∑

1≤i< j≤n−1 κiκ j . One considers

the Gauss map G : p → N(p), whose differential dGp : x ′(t) → N ′(t), (x(0) = p)

satisfies Rodrigues’ equations dGp(ei) = −κiei , i = 1, . . . , n − 1. We have the mean

curvature

H =
1

n − 1
(κ1 + · · · + κn−1) =

1

n − 1
trace(dGp)

and the Gauss–Kronecker curvature κ1 · · ·κn−1 = (−1)n−1 det(dGp). The jth-order

mean curvature is the jth-order elementary symmetric function of the principal cur-

vatures. We denote by H j the jth-order mean curvature, normalized such that

n−1
∏

j=1

(1 + tκ j) =

n−1
∑

j=0

(

n − 1

j

)

H jt
j .
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Thus, H1 = H, the mean curvature, and Hn−1 is the Gauss–Kronecker curvature.

For n = 3, that is all, but in higher dimensions there are intermediate ones. Among

them, H2 plays a special role in differential geometry.

Therefore we have S = (n − 1)(n − 2)H2.

The jth-order integral of mean curvature M j(Σ) is defined by

M j(Σ) =

∫

Σ

H j dσ =

(

n − 1

j

)−1 ∫

Σ

{κi1
, . . . , κi j

} dσ, j = 1, . . . , n − 1,

where {κi1
, . . . , κi j

} denotes the j-th elementary symmetric function of the principal

curvatures. We let M0(Σ) = F, the area of Σ, for completeness.

If Σ is a convex hypersurface bounding a convex body K in Rn, we have the re-

lations M j(Σ) = nW j+1(K) between integrals of mean curvatures of Σ (≡ ∂K) and

jth-order Minkowski quermassintegrales W j of K, j = 0, 1 . . . , n − 1 (see [9–11]).

Note that Minkowski quermassintegrales Wi are well defined for any convex fig-

ure, whereas M j(∂K) makes sense only if ∂K is of class C2.

We have the total scalar curvature of a convex hypersurface Σ bounding a convex

body K in Rn : S̃ =
∫

Σ
S dσ = n(n − 1)(n − 2)W3(K).

Let G be the group of rigid motions of Euclidean space Rn. Let dg be the normal-

ized kinematic density (the Harr measure). Let M p, Nq be two compact submani-

folds in Rn, which are assumed to be in a general position, that is, dim(M p ∩ gNq) =

p + q − n ≥ 0 for almost all g ∈ G. Let I(M p ∩ gNq) be an invariant (intrinsic or

extrinsic). For example, one would like to let I(M p ∩ gNq) be Vol(M p ∩ gNq), the

volume of M p ∩ gNq, or let I(M p ∩ gNq) be the mean curvature of M p ∩ gNq. The

following integral is called the kinematic formula in integral geometry
∫

G

I(M p ∩ gNq)dg =

n
∑

j=1

C j pqn Inv j(M p) Invn− j(Nq),

where each Inv j(∗) is an invariant and C ’s are constants depending on indices.

Refer to [4–7, 9–11, 15, 17] for more concrete kinematic formulas.

If we can estimate the kinematic formula
∫

G
I(M p ∩ gNq) dg from below (or from

above) in terms of geometric invariants of M p and Nq, then we obtain a geometric

inequality of the form

n
∑

j=1

C j pqn Inv j(M p) Invn− j(Nq) ≥ f (A1
M , . . . , Ar

M ; A1
N , . . . , Ar

N ),

( ≤ ) f (A1
M , . . . , Ar

M ; A1
N , . . . , Ar

N),

where each of Aα
M , Aα

N (α = 1, . . . , r) is an integral geometric invariant.

In a special case, let M p ≡ Nq ≡ M. One can immediately obtain an inequality

about the integral geometric invariant of M:

F(A1
M , . . . , Ar

M) ≤ 0,

( ≥ ) 0.

This is a geometric inequality about the submanifold M. See [13–16, 21] for more

detail.
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3 Main Theorems

Main Theorem A Let M be a submanifold of dimension n+1
2

in the Euclidean space

Rn and let H be the mean curvature of M. Denote by S̃ the total scalar curvature of

M and R the radius of the circumscribed ball of M. Then
∫

M

H2 dσ ≥
1

3(n + 1)2

(

8S̃(M) +
n + 5

R2
Vol(M)

)

.

Main Theorem B Let M be a submanifold of dimension n+1
2

in the Euclidean space

Rn and let H be the mean curvature of M. Denote by χ(M) the Euler characteristic

of M and R the radius of the minimum circumscribed ball of M. If n+1
2

is even, then

we have
∫

M

H2 dσ ≥
1

3(n + 1)2

( 2
n+7

2 π
n+1

4

(n − 1)(n − 5) · · · 2
χ(M) +

n + 5

R2
Vol(M)

)

.

Let us first prove the following.

Theorem 1 Let M p and Nq be two submanifolds of dimensions p and q, respectively,

in the Euclidean space Rn. Let H̃ and S̃ be, respectively, the total square mean curvature

and the total scalar curvature. Denote by R the radius of the smallest circumscribed balls

of M and N. If p + q − n = 1, then we have

1

R2
Vol(M) Vol(N)

≤
2π

(p − 1)p(p + 2)

Oq−1

Oq+1

[3(p − 1)p2H̃M − 2(n − q)S̃M] Vol(N)

+
2π

(q − 1)q(q + 2)

Op−1

Op+1

[3(q − 1)q2H̃N − 2(n − p)S̃N ] Vol(M).

Proof For submanifolds M p, Nq in Rn, let Hg be the mean curvature of the in-

tersection M p ∩ gNq. We have the corrected C-S. Chen’s kinematic formula (see

[4, 7, 15, 17, 18]):
∫

G

(

∫

M p∩gNq

H2
g dσ

)

dg

= C0[(p − 1)p2(p + q − n + 2)H̃(M) − 2(n − q)S̃(M)] Vol(N)

+ C2[(q − 1)q2(p + q − n + 2)H̃(N) − 2(n − p)S̃(N)] Vol(M),

where

C0 =
1

(p + q − n)(p − 1)p(p + 2)

Op−1

Op+q−n−1

On · · ·O1Oq−1Op+q−n+1Op+q−n

Op−1OpOq+1Oq

,

C2 =
1

(p + q − n)(q − 1)q(q + 2)

Oq−1

Op+q−n−1

On · · ·O1Op−1Op+q−n+1Op+q−n

Oq−1OqOp+1Op

.
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When dim(M p ∩ gNq) = p + q−n = 1, let κ be the curvature of M p ∩ gNq. Then

we have
∫

G

(

∫

M p∩gNq

κ2 ds
)

dg

=
C ′

0

(p − 1)p(p + 2)
[3(p − 1)p2H̃(M) − 2(n − q)S̃(M)] Vol(N)

+
C ′

2

(q − 1)q(q + 2)
[3(q − 1)q2H̃(N) − 2(n − p)S̃(N)] Vol(M),

where

C ′
0 =

On · · ·O1Oq−1O2O1

O0OpOq+1Oq

, C ′
2 =

On · · ·O1Op−1O2O1

O0OqOp+1Op

.

One known inequality (see [1]) for the curve Γg = M p ∩ gNq in Rn becomes

Lg =

∫

Γg

ds ≤ R

∫

Γg

κ ds,

where R is the smaller radius of the minimum circumscribed balls of M p and Nq.

By Hölder’s inequality we have

L2
g ≤ R2

(

∫

Γg

κ ds
) 2

≤ R2Lg

∫

Γg

κ2 ds,

and therefore
Lg

R2
≤

∫

Γg

κ2 ds.

Hence
1

R2

∫

G

Lg dg ≤

∫

G

(

∫

Γg

κ2 ds
)

dg.

By Santaló’s formula [9, 10]

∫

G

Vol(M p ∩ gNq) dg =
On · · ·O1Op+q−n

OpOq

Vol(M p) Vol(Nq),

we have

1

R2
Vol(M) Vol(N) ≤

O2

(p − 1)p(p + 2)

Oq−1

O0Oq+1

[3(p − 1)p2H̃(M) − 2(n − q)S̃(M)] Vol(N)

+
O2

(q − 1)q(q + 2)

Op−1

O0Op+1

[3(q − 1)q2H̃(N) − 2(n − p)S̃(N)] Vol(M).

This completes the proof of Theorem 1.
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Let M p ≡ Nq ≡ M, i.e., p = q =
n+1

2
. Then by Theorem 1 we have

∫

M

H2 dσ ≥
8

3(n + 1)2
S̃(M) +

n + 5

12(n + 1)πR2

O n+3

2

O n−1

2

Vol(M).

Noticing that
O n+3

2

O n−1

2

=
4π

n + 1
,

we obtain the Main Theorem A.

If n+1
2

is even, then by Theorem 1 and the Gauss–Bonnet formula [6], we have

∫

M

H2 dσ ≥
8

3(n + 1)2

(4π)
n+1

4

(n − 1)(n − 5) · · · 2
χ(M) +

n + 5

3(n + 1)2R2
Vol(M),

where χ(M) is the Euler characteristic of M. This completes the proof of Main The-

orem B.

When n = 3, we immediately obtain the following.

Theorem 2 Let Σ be a compact surface of C2 smooth in R3. Denote by χ(Σ) the

Euler characteristic, H the mean curvature, A the surface area and R the radius of the

minimum circumscribed ball of Σ. Then we have

∫

Σ

H2 dσ ≥
π

3
χ(Σ) +

A

6R2
.
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