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1. Introduction

For any collection of closed subspaces of a complex Hilbert space the set of
bounded operators that leave invariant all the members of the collection is a
weakly-closed algebra. The class of such algebras is precisely the class of reflexive
algebras as defined for example in Radjavi and Rosenthal (1969) and contains
the class of von Neumann algebras. In this paper we consider the problem of
when such algebras are finitely generated as weakly-closed algebras. It is to be
hoped that analysis of this problem may shed some light on the famous unsolved
problem of whether every von Neumann algebra on a separable Hilbert space is
finitely generated. The case where the underlying space is separable and the
collection of subspaces is totally ordered is dealt with in Longstaff (1974). In the
present paper the result of Longstaff (1974) is generalized to the case of a direct
product of countably many totally ordered collections each on a separable space.
Also a method of obtaining non-finitely generated reflexive algebras is given.

The author wishes to thank Professor P. Rosenthal for his helpful suggestions
concerning the content of this paper.

2. Notation and preliminaries

Throughout this paper the terms Hilbert space, subspace and projection will
be used to mean complex Hilbert space, closed subspace and orthogonal projec-
tion respectively. The set of all bounded linear operators acting on a Hilbert space
H will be denoted by B(H). The symbol ‘<’ will be used for set inclusion while
‘<’ will be reserved for proper inclusion. If M and N are subspaces and M = N
we denote by N © M the orthogonal complement of M in N. The symbol ‘@’ will
always denote orthogonal direct sum. An operator T € B(H) is said to leave a
subspace M invariant if Tx e M(xeM). We indicate this by TM < M. If Py,
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denotes the projection with range M, the invariance of M under T is equivalent to
(I —Py)TP,;;=0 where I is the identity operator. Most of the notation, definitions
and results we use concerning von Neumann algebras are to be found in Dixmier
(1957). If {H,}, ., is a collection of Hilbert spaces, we denote by @, . H, their
Hilbert space sum. If H= @, , ,H, and {T,}, ., is a collection of operators satisfying
T,e B(H)(xel) and sup,.; n T, H < o0 the mapping (x), 1 = (TyX,). e 1 defines
an element of B(H), which we denote by @ ,.; T,. If S, is a non-empty subset of
B(H)ae)by @ ,.;S,wemean theset of operators @ ,.; T, with T, e S (xeI).

If {N,} is any collection of subspaces of the Hilbert space H, V N, denotes
the smallest subspace of H containing each N, and A N, denotes the largest sub-
space of H contained in each N, A collection % of subspaces of H will be called
complete if

() 0),He F;

(ii) whenever ¢ #F o S F , A yeg, NeF and V y s NeF.
If ¥ < B(H) is any non-empty subset we let Lat% denote the set of all subspaces
left invariant by every member of ¥ and, for any non-empty collection # of sub-
spaces of H let Alg# denote the set of all operators in B(H) which leave every
member of # invariant. It is not difficult to show that Lat.% is a complete collec-
tion of subspaces, that Alg & is a weakly-closed algebra of operators and that
F < LatAlg# , ¥ < Alg Lat¥. If # is any collection of subspaces of H, since
the intersection of any family of complete collections is complete, it follows that
there is a smallest complete collection containing &, denoted by co(# ). The
following lemma generalizes Lemma 3.2 of Ringrose (1965).

LemMA 2.1. If & is a non-empty collection of subspaces of a Hilbert space
H then
AlgF = Algco(#) = AlgLatAlg#.

PRrROOF. Since # < Lat Alg# and the latter is complete we have # < co(#)
< Lat Alg# and so Alg Lat Alg# < Alg co(F) < AlgZ. The result follows from
the fact that & < Alg Lat & for any subset & < B(H).

The importance of this lemma is that, in the study of reflexive algebras i.e.
algebras of the form Alg %, we may assume without loss of generality that# is a
complete collection of subspaces.

If the collection A" of subspaces is totally ordered by inclusion it is called a
nest. Let A" be a complete nest.

DEerFINITION 2.2. If N €A define
N_. = vV{Le #:L = N} if N #(0)
N, = NLe #':NcL} ifN#H
and define (0)_ = (0), H, = H.
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The definition of N_ is due to Ringrose (1965). With these definitions, it is
obvious that N_,N,e# andthat N_. = N & N, forevery Ne #/.If N_ = N,
N _ is called the immediate predecessor of Nin #". If N « N, N, is called the
immediate successor of N in A", It is obvious that if N < N, then (N,)_ = N.
If M, N e A then the corresponding projections P, Pycommute. Consequently,
if & is the set of projections onto the members of 4" then the von Neumann algebra
% generated by & is abelian. This von Neumann algebra is called the core of AlgA".

3. A doubly generated reflexive algebra

Let {H,}5_, be a family of separable Hilbert spaces with 1 < K < oo. When
K = o in the following, the index set is to be taken as the set of positive integers.
For every k with 1 £ k < K let 47, be a complete nest of subspaces of H,. Let
H = @®%_, H, and let # be the collection of closed subspaces N of H of the form
N = @ &N, where, for 1 £ k £ K, N, € 4,. Then AlgF is a weakly-closed
sub-algebra of B(H). We will prove the following.

THEOREM 3.1. Alg# is generated, as a weakly-closed algebra, by two
operators.

Observe that AlgF = @ X_,Alg#",. Let &, denote the collection of pro-
jections onto the members of A7, and%, denote the core of Alg A7, for1 < k £ K.
As is shown in Longstaff (1974), for every k, it is possible to choose a maximal
abelian self-adjoing algebra &, and an operator B, € Alg 4", such that

() €. < 2, cAlgA;
(i) whenever (I — E)B,E = 0 with E a projection belonging to &, then E €&,.

PRrROOF. Let &, and B, be as above. Without loss of generality we may suppose
that sup; ¢, <x||Bi| < . Let B= @, By¢B(H) and 2 = & §_, 2,.Then
2 is a maximal abelian self-adjoint subalgebra of B(H) (see Dixmier (1957,
pages 12 and 19)) and 2 < Alg#, BeAlg#. Hence # < LatB N Lat%. On
the other hand, if M is a subspace of H, which is invariant under B and every
element of 2 then Py e 2 and (I — P,)BP, = 0. It follows that P,y = ®F_,E,
where E, is a projection belonging to £, and that

(I"Ek)BkEk =0 (1=2k< K)

Hence, E,c&(1 <k<K) and M= @ {.,EH,e#. This shows that
% = LatB N Lat 9.

Since H is separable, by a well-known result of J. von Neumann there is an
operator A € Z such that 2 is the weakly-closed algebra generated by 4. Let U be
the weakly-closed algebra generated by 4 and B. Then % < Alg# since AlgZ is
weakly-closed, and so % < Lat¥. But any subspace which is invariant under
every element of U is, in particular, invariant under B and every element of 2
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(since Z = M) and so belongs to # . Thus Lat¥l =.% . Theorem 3 of Radjavi
and Rosenthal (1969) then shows that ¥ = Alg.%. This completes the proof of
the theorem.

4. A non-finitely generated reflexive algebra

Let.#” be a complete nest of subspaces of a Hilbert space H. If # = {L:La
subspace of H,N_ < L < N for some N € 4} then clearly 4" < #.

LEMMA 4.1, % = Lat Alg#.

ProoF. Obviously # < Lat Alg%. Let M e Lat Alg%# and let NeA” be
arbitrary. We first show that either M < N or N € M. Now Pye AlgF for if
Le% and K_ € L € K(Kef) then either K € N or N = K from which we
obtain, respectively, L < N or N < L. In either case PyL < L. Hence PJM = M
and it follows that PyP,, = P, Py and that M has the decomposition M = (M N N)
®MNHON).IfMNHEON)=(0thenM < NIftM Nn(H O N) # (0)
we show that N € M. Let ee M N (H © N) be a unit vector and let fe N be
arbitrary. Then the operator x — (x ] e)f(x € H) which we denote by e ® f belongs
to Alg# for if Le &, as we have seen either L = N or N < L. In the first case,
(e ® f)L = (0) < L and in the second case, (¢ ® f)L = N < L. Since M is in-
variant under every element of Alg# we have (e ® f)M < M. But ee M and so
f = (e ® f)(e)e M. This shows that N € M. Thus M is comparable with every
elementof /. Let N = A{Le A :M < L}. Then Ne A and M = N.If N = (0)
then M = (0)e & . If N # (0) and L A4 with L = N then M = L cannot be true
andso L ¢ M. Thus N_ = \/{LeA":L <« N} < M and M € #. This completes
the proof of the lemma.

THEOREM 4.2. If N is an element of #” with N_ « N < N, then Alg#
cannot be generated as a weakly-closed algebra by fewer than dim(N © N_) — 1
elements.

Proor. Let k = dim(N © N_). Then k = 1. We may suppose that k > 2.
Let A, A,, -, 4, be any finite set of elements of Alg# with n < k — 1 and let U be
the weakly-closed algebra they generate. Then ® < Alg % since Alg # is weakly-
closed, and so # < Lat¥. To show that W < Alg# it suffices by the previous
lemma to show that # < Lat¥. Let xe N \N be arbitrary and let [x] be the
one-dimensional subspace spanned by x. Now N € NV [x] € N, and (N,).
= N.Thus N V [x] e and so is invariant under 4, for i = 1,2,---, n. It follows
that for every i, there exist a;eC and m;e N such that A;x = o;x + m,. Let
M = N_V {x,my,my,--,m,}. Then since N_ < N_ V {my,m,,---,m,} < N,
it follows that A(N_ V {my,my, ---,m,}) = N_V {m;,my,--,m,} forl £j < n.
Thus M is invariant under every A; and hence M e Lat. But M ¢ & for if
L_ < M < L for some Le .4 then either L < N or N < L, The former cannot
be truesince x¢ N. Hence N =« Land N < L_ < M.But N € M caunot be true
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either for if so then N © N_ € M © N_ and so dim(N © N_) =k £
dim(M © N_) £ n+ 1 and this contradicts the fact that n < k — 1. Thus
N < AlgF# and the proof of the theorem is complete.

COROLLARY 4.3. If ¥ ={Ne #/":N_c N < N,} and sup y .o dim(N © N_)
= o0 then Alg# is not finitely generated as a weakly-closed algebra.

COROLLARY 4.4. If for some NeA', N_c Nc N, anddim(N O N_) = o
then Alg % is not finitely generated as a weakly-closed algebra.

A particular instance of this latter corollary, the case where.#” is the nest with
three elements (0), M, H where (0) « M < H and dimM = oo, has already been
established in Longstaff (1974).

5. Some additional results

In the previous section, starting with a complete nest 4" we saw that
& ={L:N_ c L < N for some N €47} was a complete collection of subspaces
such that 4~ < % and such that every element of # is comparable with every
element of 4. In a sense we can reverse the procedure. More precisely we prove

ProrosITION S5.1. 1. If A" is a complete nest and
F = {M:M a subspace, N_ = M < N for some N e A"}

then F is a complete collection of subspaces containing A" and

N = {NeZF :N is comparable with every element of F }.
II. If & is a complete collection of subspaces then

N = {Ne F :N is comparable with every element of F }
is a complete nest contained in # and

F < {M:M a subspace, N. = M < N for some Ne A},

Proor. 1. # is complete for by Lemma 4.1,% = co(#) = LatAlg#. It oaly
remains to show that if Ne % and N is comparable with every element of # then
NeA . SinceNe#, L. < N < LforsomeLe A . IfN¢g AN thenL_. <« N c L,
Now L_.cL_®LEN)c L and so L_® (L N)e#. But N and
L_ ® (L © N) are not comparable. This contradiction shows that N e 4",

I1. Obviously #” = % and 4" is a nest containing (0) and H. Let A4, be any
non-empty subset of A" andlet M = V y_ 4, N.Then M € # since F is complete.
If Le# then every element of A", is comparable with L. If N = L for every
Ne &, then M < L. If this is not the case then L < N for some N € 4", and so
L = M. Hence M € 4". A similar argument applies to Ay 4, N. Thus 4 is a
complete nest. Now let Me # andlet N= A {LeA":M < L}. Then N € 4" and
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M < N. If N = (0) then certainly N_ € M = N.If Le # and L = N then
M < L is impossible so L M and N_ = V {LeA :L = N} € M. Thus
N_ < M < N. This completes the proof of the lemma.
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