
15
Weak interactions

In the 1960s and early 1970s a theory was developed by Glashow [1],
Weinberg [2], Salam [3], ’t Hooft [4], and others that unified the weak and
electromagnetic interactions. This theory is presently in accord with all
experimental information. It is not our purpose here to go into a detailed
exposition of the model or the history of weak interaction physics. Rather,
we want to show that the spontaneously broken gauge symmetry that is
the cornerstone of the theory can be restored in a phase transition at a
critical temperature of order 100 GeV. The existence and order of this
transition depend on details that we shall discuss in this chapter.

15.1 Glashow–Weinberg–Salam model

We begin with a theory involving bosons only. The essence of the model
can be found without the inclusion of fermions: they will be added later.
The Lagrangian is

L = (DμΦ)† (DμΦ) + c2Φ†Φ − λ
(
Φ†Φ

)2

− 1
4g

μνgμν − 1
4f

μν
a fa

μν (15.1)

This Lagrangian has an SU(2) × U(1) symmetry. There is an SU(2) gauge
field Aa

μ and a U(1) gauge field Bμ. The field strengths are

fa
μν = ∂μA

a
ν − ∂νA

a
μ − gεabcAb

μA
c
ν (15.2)

gμν = ∂μBν − ∂νBμ (15.3)

There is a covariant derivative

Dμ = ∂μ + 1
2 igA

a
μτ

a + 1
2 ig

′Bμ (15.4)
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362 Weak interactions

which acts on a complex SU(2) field

Φ =
1√
2

(
φ1 + iφ2

φ3 + iφ4

)
(15.5)

Note that, according to (15.1), Aa
μ and Bμ are massless spin-1 bosons and,

if c2 > 0, Φ is a tachyon. Thus we should expect spontaneous symmetry
breaking. Altogether, there are apparently 12 spin degrees of freedom.

Owing to the gauge symmetry we may choose, without loss of generality,
the vacuum expectation value

〈Φ〉 =
1√
2

(
0
v

)
(15.6)

where v is a real constant. Then, for arbitrary Φ, we write

Φ =
1√
2
U−1(ζ)

(
0

v + η

)
(15.7)

where ζ(x, t) and η(x, t) are the independent fields and

U(ζ) = exp
(−iζ · τ

2v

)
(15.8)

This is the so-called unitary, or U , gauge. It is a useful gauge since it
makes the particle content of the theory manifest.

Now let

Φ → Φ′ = U(ζ)Φ =
1√
2

(
0

v + η

)
(15.9)

This is just a particular SU(2) gauge transformation, such that

Bμ → Bμ ,

τ ·Aμ → τ ·A′
μ = U(ζ)

(
τ ·Aμ − i

g
U−1(ζ)∂μU(ζ)

)
U−1(ζ) (15.10)

After some algebra, the Lagrangian is expressed in terms of the indepen-
dent fields as

L = 1
2(∂μη)(∂μη) + 1

2c
2(v + η)2 − 1

4λ(v + η)4

+ 1
4Φ′†(g′Bμ + gτ ·Aμ)(g′Bμ + gτ ·Aμ)Φ′

− 1
4g

μνgμν − 1
4f

μν
a fa

μν (15.11)

This can be written as the sum of a classical part, Lcl, a part quadratic in
the fields, Lquad, and a part giving rise to interactions that is cubic and
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15.1 Glashow–Weinberg–Salam model 363

quartic in the fields, LI;

Lcl = 1
2c

2v2 − 1
4λv

4 (15.12)

Lquad = 1
2(∂μη)2 − 1

2(3λv2 − c2)η2

− 1
4(∂μBν − ∂νBμ)2 − 1

4(∂μAc
ν − ∂νA

c
μ)2

+ 1
8v

2
[
(g′Bμ − gA3

μ)2 + g2(A1
μ)2 + g2(A2

μ)2
]

(15.13)

We define new fields

W±
μ =

(
A1

μ ± iA2
μ

)
/
√

2

Zμ =
(
g′Bμ − gA3

μ

)
/
√

g2 + g′2 (15.14)

Aμ =
(
gBμ + g′A3

μ

)
/
√

g2 + g′2

The masses are

m2
η = 3λv2 − c2

mA = 0
mW = 1

2gv

mZ = 1
2

√
g2 + g′2 v

(15.15)

The tachyon is avoided as long as v2 ≥ c2/3λ. In fact, from (15.12) we see
that the classical minimum occurs at v2 = v2

0 = c2/λ, so that indeed the
model shows spontaneous symmetry breaking.

After addition of the fermions, it becomes possible to identify the fields
and parameters described above: Aμ is the photon, W± and Z are the
weak interaction bosons, and η is the as yet unobserved Higgs boson.
Since all these are massive except for the photon, the total number of
spin degrees of freedom is 12, the same as before, since the W± and Z
each acquirie one degree of freedom from the Φ field. The electric charge
is

e =
gg′√

g2 + g′2
(15.16)

and the Weinberg angle is defined by

tan θW =
g′

g
(15.17)

Experimentally, it is found that e = 0.3028. . . and sin2 θW = 0.226±
0.004. This leads to g = 0.637 and g′ = 0.344. It turns out that the vac-
uum field v0 is related directly to the Fermi constant: v2

0 = (
√

2GF)−1 =
(246 GeV)2. The predicted masses of the gauge bosons in the tree
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364 Weak interactions

approximation are then mW = 78.4 GeV and mZ = 89.0 GeV. (Radia-
tive corrections increase these by several GeV.) These are consistent with
observation. Only the combination c2/λ is known, so there remains one
undetermined parameter. It may be taken to be the Higgs mass. The the-
oretical bounds are currently 130 < mη < 190 GeV [5]. The lower bound
comes from the requirement that the standard model vacuum be stable.
The upper bound comes from the requirement that λ be small enough
that perturbation theory can be used. It should remain valid up to a
supposed grand unification scale ΛGUT ∼ 1016 GeV.

The fermions are included according to the following scheme. The quark
mass eigenstates are not eigenstates of the weak interactions. The matrix
connecting the different sets of eigenstates is the Cabibbo–Kobayashi–
Maskawa (CKM) matrix. By convention the charge 2/3 quarks (u, c, t) are
unmixed. The CKM matrix, UCKM, is unitary and relates the eigenstates
of the charge −1/3 quarks (d, s, b) as⎛⎝d′

s′
b′

⎞⎠ = UCKM

⎛⎝d
s
b

⎞⎠ (15.18)

The elements of UCKM will not be needed in the subsequent discussion.
The fermions are then grouped into left-handed SU(2) doublets and

right-handed SU(2) singlets. For example, the electron and its neutrino
form the doublet

L =
(
νe
e−

)
L

(15.19)

where e−L = 1
2(1 − γ5)e−, and a singlet R = 1

2(1 + γ5)e−. These are cou-
pled to the gauge bosons via

R̄
(
i
∂ − g′
B)R + L̄

(
i
∂ − 1

2g
′
B + 1

2g 
Aaτa
)
L (15.20)

The other leptons and quarks are included in an analogous way. The
coupling to γ,W±, and Z can be written compactly as

eψ̄γμ
{
QAμ +

1
23/2 sin θW

(1 − γ5)
(
T+W+

μ + T−W−
μ

)
+

1
sin θW cos θW

[
1
2 (1 − γ5)T3 −Q sin2 θW

]
Zμ

}
ψ (15.21)

where ψ is one of the following doublets,(
u
d′

) (
c
s′

) (
t
b′

) (
νe

e−

) (
νμ

μ−

) (
ντ

τ−

)
(15.22)

and where Q is the electric charge operator, T3 is the third component
of the weak SU(2) spin (with eigenvalue 1/2 for νe, νμ, ντ , u, c, t, and
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15.2 Symmetry restoration in mean field approximation 365

eigenvalue −1/2 for e−, μ−, τ−, d, s, b), and T± is the raising or lowering
operator, which acts on the left-handed particles. The weak hypercharge
Y is determined by Q = T3 + 1

2Y .
In order to retain the left-handed SU(2) symmetry for the fermions it is

not possible to add a mass term in the usual form −ψ̄Mψ. The allowable
term for the electron, for example, is of the Yukawa form

−fe

(
R̄Φ†L + L̄ΦR

)
(15.23)

After using (15.9) we obtain the electron mass as me = 1
2fev

0 and zero
neutrino mass. A similar situation prevails for the other fermions. Thus
all quarks and leptons receive their masses on account of spontaneous
symmetry breaking. In the vacuum, a quark or lepton mass is therefore
∼ fiG

−1/2
F where fi is a dimensionless coupling constant. For all but the

t quark the fi are very small since G
−1/2
F = 293 GeV.

15.2 Symmetry restoration in mean field approximation

The existence of phase transitions in the early universe has been a ques-
tion that has preoccupied a generation of cosmologists. Early on, Kirzh-
nits [6] found that the symmetry between the weak and electromagnetic
interactions would be restored at high temperatures. This result was soon
complemented by similar works by Weinberg [7] Dolan and Jackiw [8],
and Kirzhnits and Linde [9]. Some consequences of this phase transition
will be discussed in Chapter 16. In the sections that follow, the stage will
be set for the theoretical investigation of the electroweak phase transition,
its existence, and its order.

The Glashow–Weinberg–Salam model is relatively easy to study at
finite temperatures in the mean field approximation. At high tempera-
ture, T > 50 GeV, the fermion masses can be ignored except for that of
the top quark. For simplicity, we shall ignore that for the moment as well.
First, we shall use the U -gauge and show that it leads to an erroneous
result, at least in the mean field approximation. This can be corrected in
a covariant gauge.

The U -gauge has the advantage of displaying immediately the physical
degrees of freedom. From (15.12) and (15.15) we can write the pressure
as

PMF = −1
4c

4/λ + 1
2c

2v2 − 1
4λv

4

+ 6P0(mW) + 3P0(mZ) + 2P0(0) + P0(mη) + 7
8π

2T 4

(15.24)
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366 Weak interactions

The last term is the contribution from three generations of massless quarks
and leptons. The previous four terms are the boson contributions, with

P0(m) =
∫

d3k

(2π)3
k2

3ω
1

eβω − 1
∼ π2

90
T 4 − m2

24
T 2 (15.25)

where the high-temperature limit is given. Using this limit we obtain

PMF =
(

7
8 + 2

15

)
π2T 4 + 1

2v
2
[
c2 − 1

4T
2
(
λ + 3

4g
2 + 1

4g
′2)]

−1
4λv

4 − 1
4c

4/λ (15.26)

Maximizing the pressure with respect to the mean field v gives the
temperature dependence v2(T ) =

[
c2 − 1

4T
2
(
λ + 3

4g
2 + 1

4g
′2)]/λ if T 2 <

4c2/
(
λ + 3

4g
2 + 1

4g
′2) and v(T ) = 0 otherwise. This would indicate restora-

tion of the gauge symmetry that was spontaneously broken at T = 0.
However, the result (15.26) is wrong. The reason can be traced to the U -

gauge itself. Although it makes the physical particle content of the theory
manifest, it is not, in practice, a renormalizable gauge. This follows from
the poor ultraviolet behavior of the massive vector meson propagators,
which is pμpν/m2p2 instead of 1/p2. The implication for finite temperature
is serious since T effectively acts as a physical high-momentum cutoff.
Another way to see the difficulty is to consider the transformation (15.8)
in the high-temperature phase, where v is supposed to vanish.

A more appropriate gauge for our purpose is the R-gauge, suitably
generalized from its first application to the Abelian Higgs model, given
in Section 7.4. Now we take as the independent fields η and ζ, defined by

Φ =
1√
2

(
0

v + η

)
+

iζ · τ√
2v

(
0
v

)
=

1√
2

(
ζ2 + iζ1

v + η − iζ3

)
(15.27)

which is suggested by (15.7) and (15.8). We choose the SU(2) gauge-fixing
function to be

F a = ∂μAa
μ − 1

2ρgvζ
a − fa(x, τ) (15.28)

and the U(1) gauge-fixing function to be

F = ∂μBμ + 1
2ρg

′vζ3 − f(x, τ) (15.29)

The gauge-fixing delta functions δ(F ) and δ(F a) in the functional integral
expression for Z are multiplied by

exp
{
− 1

2ρ

∫
d3x dτ(f2

a + f2)
}
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15.2 Symmetry restoration in mean field approximation 367

and integration over fa(x, τ) and f(x, τ) is carried out. The result is to
add to the Lagrangian the gauge-fixing terms

− 1
2ρ
(
∂μAa

μ − 1
2ρgvζ

a
)2 − 1

2ρ
(
∂μBμ + 1

2ρg
′vζ3

)2 (15.30)

The cross terms in (15.30) between the gauge fields and ζ are ρ-
independent. They combine with the cross terms from (DμΦ)†(DμΦ) to
produce total divergences that integrate to zero. Thus one advantage of
using (15.28) and (15.29) is that there is no mixing between the fields. The
terms −(∂μAa

μ)2/2ρ− (∂μBμ)2/2ρ are familiar from the covariant gauge.
The last terms in (15.30), when combined with the quadratic terms in
c2Φ†Φ − λ(Φ†Φ)2, yield the masses

m2
η = 3λv2 − c2

m2
ζ1 = m2

ζ2 = λv2 − c2 + 1
4ρgv

2 (15.31)

m2
ζ3 = λv2 − c2 + 1

4ρ(g
2 + g′2)v2

The fact that the ζ masses are gauge or ρ-dependent suggests that these
do not represent physical particles.

The determinants must be analyzed. They are det(∂F/∂α) and
det(∂F a/∂αb), where the infinitesimal gauge transformations are
parametrized by α(x, τ) and αb(x, τ). With the help of (8.11), we find

∂F a

∂αb
= −∂2δab − 1

4ρg
2v2δab + linear terms

∂F

∂α
= −∂2 − 1

4ρg
′2v2 + linear terms

(15.32)

where “linear terms” indicates terms that are linear in Aa
μ, ζ, and/or η.

The determinants can be written as functional integrals over the ghost
fields Ca and C. The ghost masses can be read off directly from (15.32):

m2
Ca

= 1
4ρg

2v2

m2
C = 1

4ρg
′2v2

(15.33)

The propagators for the W and Z fields are

Dμν =
gμν − pμpν/m2

p2 −m2
+

pμpν/m2

p2 − ρm2
(15.34)

where m2 = m2
Z or m2

W . The first term is the usual propagator for a
massive vector boson. The second term looks like the propagator for an
unphysical longitudinally propagating particle.

Now we are ready to put together this strange zoo of real and fictitious
particles. Again, in the mean field approximation at high temperature we
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368 Weak interactions

have

PMF = − 1
4c

4/λ + 1
2c

2v2 − 1
4λv

4 +
(

7
8 + 2

15

)
π2T 4

− 1
24T

2
[
3m2

Z + 6m2
W + m2

η +
(
m2

ζ1 + m2
ζ2 + m2

ζ3 + ρm2
Z

+ 2ρm2
W − 6m2

Ca
− 2m2

C

)]
(15.35)

The quantity in the second parentheses is all that distinguishes the U -
gauge from the R-gauge. These mass-squared terms add up to 3(λv2 − c2).
The pressure is thus

PMF = 121
120 π

2T 4 + 1
2v

2
[
c2 − 1

4T
2
(
2λ + 3

4g
2 + 1

4g
′2)]

−1
4λv

4 − 1
4c

4/λ + 1
6c

2T 2 (15.36)

This should be compared with (15.26). Note that all ρ-dependence has
vanished: a nice check on the calculation.

Minimizing PMF with respect to v we obtain

v2(T ) =
{

(c2/λ)
(
1 − T 2/T 2

c

)
T ≤ Tc

0 T ≥ Tc
(15.37)

PMF =

⎧⎨⎩
121
120π

2T 4 + 1
4(c4/λ)

(
1 − T 2/T 2

c

)2 + 1
6c

2T 2 − 1
4c

4/λ T ≤ Tc

121
120π

2T 4 + 1
6c

2T 2 − 1
4c

4/λ T ≥ Tc

(15.38)

and

T 2
c =

4c2

2λ + 3
4g

2 + 1
4g

′2 (15.39)

This yields a second-order symmetry-restoring phase transition at Tc

since ∂P/∂T is continuous but ∂2P/∂2T is not. If we take the zero-
temperature Higgs mass to be 120 GeV then c = 84.9 GeV and λ =
0.119. The critical temperature is Tc = 225 GeV. The effective poten-
tial is plotted in Figure 15.1 as a function of v for several values of the
temperature, including the critical value. Here the effective potential is
Ωeff

MF(v) ≡ PMF(0, T ) − PMF(v, T ); in the literature it is also written as
Veff . Minimizing the effective potential is equivalent to maximizing the
pressure.

All the previously discussed difficulties associated with spontaneous
symmetry breaking and nonabelian gauge theories at finite temperature
arise in the Glashow–Weinberg–Salam model as well. For example, at
sufficiently high temperature the Higgs-mass-squared of (15.15) becomes
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15.3 Symmetry restoration in perturbation theory 369

Fig. 15.1. The effective potential in the mean field approximation, as described
in the text. The curves shown correspond to potentials calculated at T = 0,
T = 175 GeV, T = Tc = 225 GeV, and T = 275 GeV, from bottom to top, respec-
tively.

negative, and loop self-energy corrections are necessary to cure it. In the
high-temperature phase the mean field masses of the gauge fields are zero.
Thus the same infrared problems will arise as in QCD. The contributions
of exchange and ring diagrams to the pressure may be computed.

15.3 Symmetry restoration in perturbation theory

The applicability of finite-temperature perturbation expansions in the
electroweak theory will now be more closely examined. Consider a scalar
field theory, λφ4, like that discussed elsewhere in this book. At each order
in a loop expansion there will be terms of the form

T
∑
n

∫
d3p

(2π)3
f(ωn,p) (15.40)

where f(ωn,p) is a functional of propagators and vertices. The tadpole
diagram is a simple example, namely

T
∑
n

∫
d3p

(2π)3
1

ω2
n + ω2

(15.41)
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370 Weak interactions

with ω =
√

p2 + m2. Clearly this will be dominated by the Matsubara
zero mode. Omitting the integral over momentum, this fact is expressed
as

T
∑
n

1
ω2
n + ω2

∼ T

ω2
(15.42)

What might constitute a dimensionless loop-expansion parameter? The
argument above suggests that when the vertices contribute an overall
constant λ then the expansion parameter that controls the convergence is
λT/ω ∼ λT/meff for bosons (where meff is some soft scale in our theory)
and λT/T = λ for fermions. For bosons the perturbation expansion could
be ill defined if meff < λT , and then non-perturbative techniques would
be required. What happens in the standard model is more complicated
because of the inclusion of the gauge bosons. In what follows we study
the electroweak theory with the inclusion of the ring diagrams, that are
known to be important for long wavelengths.

In the Glashow–Weinberg–Salam model, the gauge boson mass term is
of the form

(Aa
μ, Bμ)M2

(
Aμ

a

Bμ

)
with a non-diagonal mass matrix

M2(v) =
v2

4

⎛⎜⎜⎝
g2 0 0 0
0 g2 0 0
0 0 g2 −gg′
0 0 −gg′ g′2

⎞⎟⎟⎠ (15.43)

The customary procedure is to define the physical fields W±
μ , Zμ, and

Aμ as linear combinations of the Aa
μ and Bμ fields, such that the physical

masses are m2
W (v) = g2v2/4, m2

Z(v) = (g2 + g′2)v2/4, and m2
A(v) = 0. For

this application, we now assume that only the top quark Yukawa coupling,
ft, is nonzero. The shift in the Higgs field generates a mass through the
term LYukawa = fttt̄v/

√
2.

The one-loop contribution to the thermodynamic potential is split into
zero-temperature and finite-temperature contributions. Following Car-
rington [10], one may write the contribution from the Higgs boson (φ),
the gauge boson (gb), and the top quark (ψ) loops as

Ω1(v) = Ωvac
1 (v) + Ωmat

1 (v) (15.44)

where

Ωvac
1 (v) = Ωvac

1,φ(v) + Ωvac
1,gb(v) + Ωvac

1,ψ(v)

Ωmat
1 (v) = Ωmat

1,φ (v) + Ωmat
1,gb(v) + Ωmat

1,ψ (v)
(15.45)
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The zero-temperature loops are regularized using a cut-off. Their contri-
bution may be obtained from Section 7.3; for an arbitrary mass mx(v) it
is

Λ2
c

32π2
m2

x(v) +
m4

x(v)
64π2

[
ln
(
m2

x(v)
Λ2

c

)
− 1

2

]
(15.46)

This procedure generates a correction to the tree-level zero-temperature
effective potential, so that

Ωvac(v) = Ωtree(v) + Ωvac
1 (v) (15.47)

with

Ωtree = −1
2
c2v2 +

1
4
v4

and

Ωvac
1 (v)

=
3

32π2
λc2v2 − v4

64π2

(
6λ2 +

3
16

g4 +
3
32

(g2 + g′2)2 − 3
2
f4

)
+

1
64π2

[
6m4

W (v) ln
(
λv2

c2

)
+ 3m4

Z(v) ln
(
λv2

c2

)
− 12m4

t (v) ln
(
λv2

c2

)
+m4

1(v) ln
(
m2

1(v)
2c2

)
+ 3m4

2(v) ln
(
m2

2(v)
2c2

)]
(15.48)

The one-loop finite-temperature thermodynamic potential for bosons and
fermions is just the negative of the pressure for the free particle of mass
mx(v). There will be contributions to the ring diagrams from both gauge
and Higgs bosons. The finite-temperature part of the one-loop potential
will combine with the ring contribution to define a potential in terms of
the shifted mass-squared. Therefore we need to evaluate the gauge boson
and Higgs boson self-energies in the leading infrared limit. For the ith
Higgs field,

Πi(0) = Π
(Aa

μ)

φ (0) + Π(Bμ)
φ (0) + Π(φ)

φ (0) + Π(ψ)
φ (0) (15.49)

where the individual contributions are

Π
(Aa

μ)

φ (0) =
1
8
g2T 2 Π(Bμ)

φ (0) =
1
16
(
g2 + g2

)
T 2

Π(φ)
φ (0) =

1
2
λT 2 Π(ψ)

φ (0) =
1
4
ftT

2
(15.50)

The ring contribution for the Higgs field is

Ωmat
ring(v) = −1

2
T
∑
n

∫
d3q

(2π)3

∞∑
�=1

1
�

(
− 1
ω2
n + q2 + m2

i (v)
Πi(0)

)�

(15.51)
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which, combined with the finite-temperature part of the one-loop poten-
tial, gives

Ωmat
φ (v) = −P0(m̃1) − 3P0(m̃2) (15.52)

where P0(m) is as in Section 15.2, m̃2
i = m2

i (v) + Πi(0), and the factor 3
is a degeneracy factor. For the gauge boson polarization tensors, as used
in Section 5.4,

Πμν(0) = ΠT(0)PTμν + ΠL(0)PLμν (15.53)

In the static infrared limit ΠAB
μν (0) = ΠAB

00 (0)PLμν , and ΠAB
00 is approxi-

mately diagonal if the ratio of the gauge boson masses and the tempera-
ture is small:

Π00(0) =

⎡⎢⎢⎢⎣
Π(2)

00 (0) 0 0 0
0 Π(2)

00 (0) 0 0
0 0 Π(2)

00 (0) 0
0 0 0 Π(1)

00 (0)

⎤⎥⎥⎥⎦ (15.54)

Here the superscripts (1) and (2) refer to the U(1) and SU(2) gauge
bosons, respectively. One defines as Π(2)

gb (0), Π(2)
φ (0), and Π(2)

ψ (0), the con-
tribution to the SU(2) gauge boson polarization tensor from the gauge
boson, Higgs boson, and t quark loops. One may use a similar notation
for the polarization of the U(1) gauge boson. Then

Π(1)
00 (0) = Π(1)

φ (0) + Π(1)
ψ (0)

Π(2)
00 (0) = Π(2)

gb (0) + Π(2)
φ (0) + Π(2)

ψ (0)
(15.55)

where

Π(1)
φ (0) =

1
6
g′2T 2 Π(1)

ψ (0) =
5
3
g′2T 2

Π(2)
gb (0) =

2
3
g2T 2 Π(2)

φ (0) =
1
6
g2T 2 Π(2)

ψ (0) = g2T 2
(15.56)

The rest of the calculation for the ring contribution to the gauge boson
effective potential proceeds as in the case of the Higgs particle. In terms
of the mass and self-energy matrices, it may be written as

Ωgb
ring(v) = − T

12π
Tr
{

[M2(v) + Π00(0)]3/2 −M3(v)
}

(15.57)
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Fig. 15.2. The ring-improved effective potential that is relevant for the elec-
troweak phase transition in the standard model. The physical parameters that
enter this calculation are the masses of the Higgs particle and the top quark. The
values here are mH = 120 GeV, and mt = 175 GeV. The curve at the critical
temperature Tc = 140.42 GeV is enclosed by curves at T = 140.40 (lower) and
140.43 GeV (upper).

One may show that

Tr[M2(v) + Π00(0)]3/2 = 2a3/2 +
1

2
√

2

[
(a + c) −

√
(a− c)2 + 4b2

]3/2
+
[
(a + c) +

√
(a− c)2 + 4b2

]3/2
(15.58)

where a = g2v4/4 + Π(2)
00 (0), b = −gg′v2/4, and c = g′2v2/4 + Π(1)

00 (0).
The final expression for the effective potential is obtained by adding to

the zero-temperature parts the ring-improved finite-temperature expres-
sions [10]. We remark that two-loop topologies have also been considered,
along with their contribution (with resummations) to the effective poten-
tial [11, 12, 13].

With the methods described here, it has been shown that the standard
model has a first-order phase transition, driven by the v3 term [10, 14].
Using modern values of the physical parameters yields the effective poten-
tial shown in Figure 15.2. One observes that the perturbation approach
appears to predict a very weak first-order phase transition with a critical
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temperature Tc = 140.42 GeV. However, this brings us to the core of
the issue. Consider the behavior of the perturbative expansion in the
standard model. To make the discussion specific, consider a temperature
near Tc. A parameter can be associated with each loop in the expan-
sion of the effective potential. For example, the expansion parameter for
vector loops is g2Tc/mW (vc) (generically writing g2 for a linear combina-
tion of g2 and g′2), according to the analysis earlier in this section. We
may write g2Tc/mW (vc) ∼ gTc/vc ∼ λ/g2. This last value is ∼ m2

H/m2
W ,

evaluated at T = 0. The current experimental value of the mass of the
W boson is 80.425 ± 0.033 GeV [15], and comes from direct measure-
ments. The Higgs boson, at the time of this writing, is still a hypotheti-
cal particle. The bounds on its mass placed by self-consistent arguments
have been reviewed earlier. Indirect experimental bounds for the stan-
dard model Higgs mass can also be obtained from precision electroweak
measurements and from fits to measured top quark and W± masses. The
global electroweak fits give a preferred value of 96+40

−38 GeV [15]. However,
a recent high-precision measurement of the top quark mass raised the
world average for mt to 178.0 ± 4.3 GeV [16]. The impact on the best
standard-model fit of the Higgs mass is that it is raised from 96 to 117
GeV. In line with arguments presented earlier, those numbers clearly cast
doubt on the usefulness of a perturbative loop expansion in theoretical
searches for an electroweak phase transition in the standard model. It is
therefore important to consider lattice-based nonperturbative numerical
approaches.

15.4 Symmetry restoration in lattice theory

As the quartic self-coupling λ becomes large, the accuracy of perturbative
calculations decreases. For large enough λ, corresponding to a large Higgs
mass, the order of the phase transition, and even its existence, cannot
be determined using perturbation theory. As for QCD one might turn
to numerical calculations of electroweak theory on a lattice. In general
this is a more intensive numerical endeavor than in the QCD case for
several reasons: there are two types of gauge field, there is a scalar dou-
blet field, and there are three generations of fermion fields to deal with.
Also, surprisingly, the weaker gauge coupling makes the simulations more
demanding since it introduces a scale hierarchy that is very difficult to
handle numerically.

Significant progress in finite-temperature lattice calculations of
electroweak-like gauge theories has been realized in recent years with the
help of the technique of dimensional reduction. Provided that we are inter-
ested in the computation of static quantities, we may generically write a
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four-dimensional boson or fermion field in terms of its Matsubara modes:

φ(τ,x) =
∞∑

n=−∞
exp(i2nπTτ)φn(x)

ψ(τ,x) =
∞∑

n=−∞
exp(i(2n + 1)πTτ)ψn(x)

(15.59)

The original four-dimensional theory is formally equivalent to a three-
dimensional theory albeit with an infinite number of fields, each cor-
responding to a mode. The three-dimensional “masses” of bosons are
mB = 2πnT and those of fermions are mF = (2n + 1)πT . If we are con-
cerned with soft physics below some scale Λ, the heavier fields (on that
scale) may be integrated out. This leaves an effective field theory where
the parameters of the effective Lagrangian are functions of the temper-
ature and of the scale Λ. This integration over heavy modes might be
done perturbatively, and the expansion parameter would be Λ/πT . If the
relevant scale is T or smaller then all fermionic modes, and all bosonic
modes with n 
= 0, will have masses larger than πT and can be integrated
out.

The effective three-dimensional action can be written as

Seff = bV T 3 +
∫

d3xLeff +
∑
n

On

Tn
(15.60)

Here Leff is a three-dimensional effective Lagrangian with temperature-
dependent parameters, b is some number that is related to the number
of degrees of freedom, V is the volume, and the On represent the contri-
bution from operators of dimension n. The latter will be suppressed by
powers of the temperature but, in the high-T limit, the three-dimensional
couplings contained therein will also be large. A typical way to rewrite the
last term in the equation above is O(m2

i (T )/T 2), the mi(T ) being relevant
mass scales for the problem at hand, such as inverse screening lengths,
etc. The condition for omitting the last term in the effective action is
tantamount to that controlling the convergence of the zero-temperature
perturbative expansion, namely, g2 � 1 where g is a dimensionless cou-
pling constant. At first it would appear that little has been gained by for-
mulating the problem in a reduced number of dimensions. However, the
expansion parameter is different at zero and finite temperature. At finite
T the perturbative expansion should prove useful if g2T/Λ = g2

3/Λ � 1,
where g3 is the three-dimensional coupling. Therefore, at finite tempera-
ture it is entirely possible for the four-dimensional perturbation expansion
to be unsuitable but for the dimensionally reduced theory to be applica-
ble. For applications in the vicinity of a critical temperature, it turns out
that the criterion of applicability of dimensional reduction is satisfied for
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Fig. 15.3. A plot of the phase diagram of the standard model, investigated with
lattice Monte Carlo techniques. The broken line is the perturbative (first-order)
result; the solid line is a fit to the numerical results and shows a first-order
transition with a second-order endpoint. The figure is adapted from Ref. [18].

electroweak theory but not for QCD, since the four-dimensional gauge
coupling is not small at Tc.

Finite-temperature electroweak theory has been studied in lattice
Monte Carlo simulations for a number of Higgs mass values by Kajantie
et al. [17]. The effective Lagrangian they use is

Leff = 1
4f

a
ijf

a
ij + (DiΦ)†(DiΦ) + m2

3Φ
†Φ + λ3(Φ†Φ)2 (15.61)

This is electroweak theory in three-dimensions without the U(1) gauge
field, without fermions, and where the time component of the SU(2) gauge
field has been integrated out. There are three parameters: g3, that enters
via the covariant derivative Di, m3, and λ3. To lowest order (and ignoring
Yukawa couplings and g′) they are

g2
3 = g2T

m2
3 =

(
3
16g

2 + 1
2λ
)
T 2 − c2

λ3 = λT

(15.62)

where g, c, and λ are all parameters in the fundamental four-dimensional
theory (15.1). These parameters have been computed with one-loop
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corrections too. This allows for a precise connection between physically
measurable quantities such as the W, Z, and Higgs-boson masses and the
thermodynamic properties of the electroweak theory.

The numerical results indicate that the theory has a first-order phase
transition for small Higgs masses. The transition gets weaker as mH grows
and terminates around mH ∼ 80 GeV at a second-order endpoint. Those
results, together with those obtained in perturbation theory, are summa-
rized in Figure 15.3. It might be that these conclusions are modified by
physics beyond the standard model; this is a topic still under investiga-
tion.

15.5 Exercises

15.1 Find explicitly the “linear terms” in (15.32).
15.2 Verify that (15.34) is the propagator for the W and Z bosons.
15.3 Express Tc in (15.39) in terms of the observable parameters e and θW

and the zero-temperature Higgs mass. Assuming that perturbation
theory is valid and using the quoted bounds on mH , determine the
allowable range for Tc.

15.4 Show that the term in the effective potential that is cubic in the
vacuum expectation value of the scalar field is from the Matsubara
zero-mode.

15.5 Derive the three-dimensional couplings in (15.62).
15.6 How is the temperature dependence of m2

3 in (15.62) related to the
critical temperature given by (15.39)?
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