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Abstract. The Bowen-Margulis measure on the unit tangent bundle of the universal
covering of a compact manifold of negative curvature is determined by its restriction
to the leaves of the strong unstable foliation. We describe this restriction to any
strong unstable manifold W as a spherical measure with respect to a natural distance
on W.

Let M be a compact connected Riemannian manifold of negative curvature -oo <
—ft2s K s — a2<0 and fundamental group F. The geodesic flow g' acts on the unit
tangent bundle SM of the universal covering M of M. SM admits foliations Wss,
W\ Wsu, W" which are invariant under g' and the action of F on SM. The leaves
of W" (resp. W, Wsu, W") are called the strong stable (resp. stable, strong unstable,
unstable) manifolds of SM (see [6]) We write A c W if A <= SM is contained in a
leaf of W (i = ss, s, u, su).

The Bowen-Margulis measure p. on SM is the lift to SM of the unique g'-invariant
Borel-probability measure on SM of maximal entropy ([2], [6]). /I has natural
restrictions to measures /I' on the leaves of W (i = ss, s, u, su) and is determined
by fi".

The purpose of this paper is to show that for every v G SM the measure (Lsu on
the leaf Wsu(v) of Wsu containing v is a spherical measure with respect to a natural
distance on Wsu(v). In order to define this distance we have to fix some notations:

For veSM let <pv be the geodesic line in M with initial direction <p'v(0) = v. <pv

determines a point <pv(—oo) = £ of the ideal boundary dM of M. W(v) then consists
of all unit tangent vectors of geodesic lines y in M which satisfy y(-°o) = €- In
particular the restriction to Wu(v) of the canonical projection P:SM->M is a
diffeomorphism of W(v) onto M.

v € SM determines a Busemann function 0v at £ which is normalized by dv<pv(Q) = 0.
For feRu{oo} denote by n,v: M u ( d M - f ) - * 0v\t) the projection along the
geodesies which are asymptotic to £ Then for every y e dM — g the curve y. t-* ir,tV(y)
is the unique unit-speed geodesic in M with y'(0)e Wsu(v) and y(<x>) = y.

The projection w.SM^dM, w^<pw(<x>) maps Wsu(v) homeomorphically onto
dM-£ and TT( W) = Tr^ « P(w) for all w e SM. If w e Wsu(u) then (pw(-oo) = ^0(-oo)
and fl», = 6V, hence 17(>H, = v,tV for all reR.

In the sequel we will suppress the index v of the various objects depending on
v e SM whenever v is arbitrarily fixed.
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456 U. Hamenstadt

The level sets d~l(t) of 6(t e R) are C'-manifolds, the horospheres through f The I
restriction of the Riemannian metric to 6~\t) induces a distance dtv = d, on 0~'(O-
Fix K>0 and define, for x,yedM-jj, f(x,y) = sup{teU\d,(ir,(x), ir,(y))^R}.
The function r\ = r\vR : (dM - £) x (dM - f) -» R+, (x, y) -» e"/(x>>> is symmetric and
T|(JC, y) = 0 if and only if x = y.

Using the upper curvature bound -a2 on M, 17 can be estimated as follows:

LEMMA 1. Ifx,yedM-^andd,(TT,(x), ir,(y)) = e^R, then

Proof. Let r = a '(log J?/e); then K < -a2 implies by the estimates in [4] that
dl+r{nt+r{x), i r , + T( j0)S * Thus TJ(X, >>) > e - ' ( e / / ? ) 1 / a . D

As a corollary we find how T)VR varies with R>0:

COROLLARY 2. If 0<r<R then -qvR< T7ur<{R/r)l/ar)vR.

Proof. Let x, y e d M - £ and t =-log(r)vr(x, y)). Then d,(7r,(x), ir,(>')) = r hence
VV,R(X, y) — Vv,r(x> y)(r/R)1/a t>y Lemma 1. Moreover clearly rjvR < 7jrr. D I

COROLLARY 3. TJ" : (x, y) ->(r)(x, y))a is a distance on dM - $.

Proof. We have to check the triangle inequality. For this let x, y, z e dM - £ and
t = -log (T7(X, y)), i.e. d,(ir,(x), v,(y)) = R. Then

hence the claim follows from Lemma 1. •

Using the identification of Wsu(v) with dM — <pv(—ao) via the map 77, 17" R can be
viewed as a distance on Wsu(u). Let h be the topological entropy of the geodesic
flow on SM. Our aim is to prove the following

THEOREM. The measure fi.s" on Wsu(v) equals up to a constant the h/a-dim. spherical
measure associated to r)lR.

It will be convenient to show first the analogous theorem for a slightly different
function p = pvR : (dM-f) x (dM -g)^U+(ve SM, R>0) which is defined as r)vR

but using the distance d on M which is induced by the Riemannian metric: For
x,yedM-€ let f(x,y) = sup{teU\d(n,(x), w,(y))*R} and p(x,y) = e~'nx-y\
Clearly Pt),R =pvv,R if we Wsu(v).

p is related to 17 as follows:

LEMMA 4. There is a number v > 0 such that vrj s p < r\ on dM — £.

Proof. If x, y £ dM - £ and d(7r,(x), ir,(y)) = R for some t e R, then d,(ir,(x), ir,{y)) a
R which implies p s 17. To show the first inequality, assume again d(ir,(x), irAy)) =
R. Since the curvature K on M is bounded from below by — b2, it follows from [4]
that d,(ir,(x), ir,(y))<2/bsmh(\bR), i.e. if we define r = 2b~1 sinh (\bR), then
Vv.r — pv,R- The claim now follows from Corollary 2. •
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COROLLARY 5. There is a number c>0 such that p(x, z ) s e , p(z,y)<e implies
p(x,y)<ce.

Proof. If p(x, z ) s e and p(z, y)^ e, then by Lemma 4 r\{x, z) and r)(z, y) are not
larger than e/v. Since rj" satisfies the triangle inequality, this implies r}a(x,y)<
2(e/ v)a. Thus by Lemma 4 p(x, y) < 21/ae/ K •

LEMMA 6. IfO<r<R then pvR<pl/r<((smh^aR)/(smh\ar))1/apvjt.

Proof. Assume that for all x,yedM - <pv(-oo) and all t e R, s > 0

(*) d(7rl+s(x), nt+s(y))^sinh-^eas sinh| d(ir, (*),

(here again TT, = 7r,u). With

r-ilog((Binhfn)/(»inhfr))

we then obtain d{ir,+r{x), ir,+T(y)) > R whenever d{ir,(x), TT,(y))^r, i.e. pv^
erpvR. Since pv,R^pv_r is obvious, it rests to prove formula (*). Consider a com-
parison situation in the hyperbolic plane Ha of constant curvature -a2, given by a
point £edHa, a Busemann function 6 at £ and geodesic lines % <p in / / a such that

# and rf(y(0), y(O)) = rf(ir,(x), ir.OO). Then

(see [4]) and the comparison arguments in [4] show d{(TTl+s(x), irl+s(y))zd(y(s),

LEMMA 7. Lef i; e SM, ft <= 3M - <p0(-oo) compact and e > 0. T7ien t/iere is a neighbour-
hood U of v in SM such that

(l-e)pWtR(x,y)<pv,R(x,y)<{l + e)pWtR(x,y) fo ra l lwe t / and x, .ye ft.
iVoo/ Choose an open, relative compact neighbourhood D of ft in dM -<pv(-oo)
and an open neighbourhood V of u in SM. Since ftcdM-^-oo) is compact,
fi =sup{pv(x,y)\x,y eft} is finite. Let r = log (l/fi) and define t : D x V ^ M by
^(x, w) = irTtW(x). Since ^ is clearly continuous there is for a fixed number S>0
and every y e ft an open neighbourhood D(y) of y in D and an open neighbourhood
U(v) of t> in V such that d(V(z, w), ̂ (y, v)) < 8/2 for every z £ D(y) and w e U(v).
By compactness ft can be covered by finitely many of the sets D(y), say ftc
UJLi D(y,) for some >\eft. U = (~)i=i U{yt) is an open neighbourhood of v in V.
If j e ft, then y e D(yt) for some i e { I , . . . , k}, hence

d(TTT,v(y)> ~!Tr,w(y))-d(7rr,v(y^ ^r,v(yi))+d(nr,v(yi)' ^T,w(y))<8 for all

we t / c L/(>-,).

Now for all yeCl and w e t / the function t->d(vltV(y), v,tW(y)) is decreasing.
Thus given y, zeft and l > r w e have

<*(flM,(>0, w,,»(z)) - 2 5 < d(7r,,w(^), TT,JH,(Z)) < d{iruv(y), ir,)X)(
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and consequently

pw,R+is(y, z ) s PvAy* z) - Pw,R-2s(y, z) for all y , z e n such that pu(>>, z) < e"T,
i.e. for all y, z € fl by the choice of T. Since S > 0 was arbitrary, the claim now follows
from Lemma 6. •

The function P = PV,R determines a family of balls Bp(x, e) =
{yeaM-£|p(x ,y)<e} ( j cedM-£e>0) . Our aim is to show that these balls
together with their radii give rise by Caratheodory's construction (see [3]) to a Borel
measure on dM — g which is finite on compact and positive on nontrivial open
subsets of dM - £ This fact is derived from the analogous property of an auxiliary
function B = BV'R which is defined on the subsets of dM - £ in the following way:
For a compact set il<= dM — g and e > 0 let qc(Cl) be the maximal cardinality of a
subset E of Q with the property that Bp(x, e) n Bp(y, e) = 0 if x, y e £ and x^y.
As above denote by h the topological entropy of the geodesic flow on SM and
define j8e(fl) = <?,((!) • eh and 0(fl) = lim sup^o /3e(ft). If fl,, O2c aM - ^ are com-
pact and fl ,cf l2 ) then /3O,</3fl2. Thus for A<^dM-£ arbitrary we can define
/3/4 = sup {{XI | fl <= A compact}.

Notice that /? may not be subadditive, i.e. /J may not be a measure on dM — £
However B has the following properties:
(1) It A<= B, then BA^BB.
(2) If n,( ieZ) are compact and ft<= U. ft.-, then /3fl <£,•£{!,.

We will need the following lemma which is due to Margulis (it is essentially
proved in [6]):

LEMMA 8. For every r>0 there are numbers 0<at(r)< a2(r)<oo such that a^r)^
/lu{w€ W(v)| d(Pw, Pv) < r}<a2{r) for all v e SM.

Lemma 8 shows in particular that /I" is finite on compact and positive on nontrivial
open subsets of W(v).

For p€ M let Bd(p, r) be the open r-ball around p in (M, d).

LEMMA 9. IfpeO~\t) then -n^B^p, R/2)c Trx(Bd{p, R)n0~\t)).
Proof. Let y € dM - g such that d(p, 77-,(.y)) > R. Determine a number T € R with the
property that d(p, TTT(V)) realizes the distance of p to the geodesic s-» irs(y). Then
irT(y)ed~\r), hence d(,p,irT(y))>\t-T\ = d(ir,(y),TrT(y)) and 2d{p,irr{y))^
d(p,-TT(y)) + d(TTr(y),v,(y))^R. But this shows y£irxBd(p,R/2) which is the
claim. •

Recall that the geodesic flow g' on SM transforms /I" by /I" ° g' = eh'fl" (h as
in the theorem). This and Lemma 9 is used in the proof of

LEMMA 10. 8 is finite on compact subsets of dM - (j.

Proof. Identify M with W(v), the set of all unit tangent vectors of geodesies y in
M with r(-oo) = <pv(-oo) = £ With respect to this identification the geodesic flow
g' acts on M by w € 0~\s) -» g'w = ns+,w e 6~l(s+t). The restriction of/Iu to W(v)
can be viewed as a measure on M.
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Let ft <= dM - f be compact and B^ = {yedM-(;\p(y, z)< 1 for some z eft}. Then

R R]
B{

7r,(w)
{

7r,(w)\weBl,t
is a compact subset of M, hence A = /I "B2 < oo.

Let e e (0,1) and {x, , . . . , xq} c ft be a set of maximal cardinality such that the
balls Bp(Xj, e) are pairwise disjoint. This means

Bd(irlogl/e(Xi), R)nBd(Trlosl/e(xj), R)ne~l(\og-J = 0 for i V /

By Lemma 9, the balls Bd(irloil/l,(xi), R/2) are pairwise disjoint and moreover
they are contained in glogl/<\B2 by the definition of B2. With a = a,(/?/2) as in
Lemma 8 this implies qa < /I"glogl/£B2 = (l /e)R • A and q • eh < A/a. Since e e (0,1)
was arbitrary, this is the claim. D

LEMMA 11. ft is positive on nontrivial open subsets of dM - £

Proof. It suffices to show that B is positive on compact sets B with nonempty interior.
Define B3 = {ir,y \y e B, -R < t <0} and A = /I"B3> 0. For e >0 let {x, , . . . , xq}c B
be a subset of maximal cardinality such that the balls BP(XJ, e) are pairwise disjoint.
By the definition of p this means that the balls Bd(TTIOBi/c(Xi), 2R) cover -irlOii/eB,
hence the balls Bd(7r,ogl/e(xj), 3R) cover gl°sl/eB3. If a = a2(3i?) is chosen as in
Lemma 9, then qa a ( l /e^A and q- eh>\/a which yields the lemma. •

Remark. In fact we have shown that lim infe^0 BeCl > 0 for all nontrivial open subsets
ft of dM - £

For a fixed number R > 0 we investigate now how /3" = /3">R varies with v € SM.

LEMMA 12. Lef ftcdM fee a compact subset with nonempty complement. Then the
map v-*B"il is continuous on SM — {w\<pw{—oo)eft}.

Proof. We show first that v->B"£l is upper semi-continuous on its domain of
definition.

Let v € SM - {w\<pw(-oo) e ft}; since y3"ft<oo by Lemma 10 it suffices to find for
every 5>0 an open neighbourhood U of v in SM — {w\<pw(—°o)eft} such that
Bwn<(l + 8)B"n for all weU.

Since Cl^dM-<pv(-<x>) is compact, A = {yedM\pvR(x, y)< 1 for some xeft} is
a compact subset of dM-<pv(-ao). By Lemma 7 there is for A = (1/(1 + 5))1/h a
neighbourhood U of v in 5M such that for all x, y e A and all tv e U ApwR(x, y) <
pr(x, y). Let e e (0,1) and {yt,..., ym} <= ft be a subset of maximal cardinality with
the property that the balls BPuR(y,, e) are pairwise disjoint. Then the sets
BPvK(yi, Ae)nA are pairwise disjoint. But by the choice of A for every _yeft the
Pus-ball of radius Ae < 1 centred at y is contained in A. This implies B™(£1)<
(l + 5)/3L(ft) and since ee(0,1) was arbitrary, Bw(n)<(l + 8)Bv(£l). The lower
semi-continuity of the map is shown similarly. •

Remark. The proof of Lemma 12 yields the following fact: If Q.<=dM -<pv(-oo) is
compact and /3"(ft) = 0, then Bw(il) = Q for all wedM-ft .
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For p = pViR let Bp(x, e) (xedM) be the closure of Bp(x, e) in dM. Let p = pvR

be as above and £ = <pv( - oo).

COROLLARY 13. Tfeere is a number K > 0 swc/i f/iaf /or a// x € dM - £ and all e > 0,
»ce*<;/JBp(x,e)2S»c-V.

Proo/ Use the notations of the proof of Lemma 12. Let D<^M be a compact
fundamental domain for r=7T1M and define u:SM\D-*U, w-*u(w) =
pwBPw(<pw(°°), 1).

Let {wj}c: SM\D be a sequence such that u(wj)^> sup {u(w)\weSM\D}. By the
compactness of SM\D we may assume that {wj} converges to weSM\D as j-»oo.

Since by Lemma 7 pw depends continuously on we SM, there is a number io>0
such that the closed ball of radius 1 around <pW|(°o) with respect to pw. is contained
in B = BPw(<pw(x>),2). Thus M(WI-)</3<V'B for all i>i0 and Lemma 12 shows
lim supj_oo tt(wj) < fiwB < oo. A similar argument yields inf{u( w) | w e SM|D}> 0, i.e.
there is a number K > 0 such that K < M(H>)< 1//C for all w€ SM\D.

For p = pvR and x e 3M - tpv( -oo), Bp(x, e) is the projection in dM - <pv{-<x>) of
the set Bd(irloii/CtVx, R)nd~l(log 1/e) along the geodesies which are tangent to
W(v). Choose $ € T such that ^(iTlogl/etVx) eD.lfwe SM is the tangent at log 1/e
of the geodesic t-*&(TT,IVX), then <$>Bp(x, e) = BPw(<&x, 1) and •tBpCy, S) =
BPw{<by, e'1 S) for all y e Bp(x, e) and all 5 > 0 (recall that T acts on dM in a natural
way). By the definition of 0 this means pBp(x, e) = ehp"BpJ&x, 1), hence KEH <
0B P (X, £ )<K-V. " n

Recall the definition of the h-dim. spherical measure cr = cr"'R = erp on dM - $ =
dM-<pv(-<x>) associated to p = pVtR (see [3]). For £ l c d M - £ a-((l) = supe_otrc(^)
where cr,,(fl) = inf {££li ej11 e} s e and ft <= Uy^i Bp(x,-, ey) for some x, e ft}. Corollary
5 implies that a is a Borel regular measure, i.e. cr(ft) = sup {cr(B)\B<^ ft compact}
for every Borel-subset ft of dM - £ (compare the argument in [3] for spherical
measures associated to distances).

COROLLARY 14. Let c > 0 be as in Corollary 5 and K > 0 be as in Corollary 13. Then
ch8(n)>o-(ft)> «0(ft) /or eueiy Borel set flcaM-f.

Proo/ By the definition of ft and the fact that cr is Borel-regular it suffices to show
the claim for compact subsets ft of dM - £

Let ft <= dM - 1 be compact, let e > 0 and {x!, . . . , x,} <= ft be a set of maximal
cardinality with the property that the balls Bp{xt, e) are pairwise disjoint. Then for
every y € ft there is i e { 1 , . . . , q) and z € Bp(x,, e) such that p(y, z) < e. Hence by
Corollary 5 the balls Bp(Xj, ce) cover ft, which shows o-ct(£i)<qehch = c*/3e(ft).
Thus cr(ft) < c'"/3(ft). On the other hand, for each 5 > 0 there is a covering of ft by
balls Bp(xit e,) ( i> l ) such that I " , e?<cr(ft) + 6\ Corollary 13 and property (2)
of fi implies

£ ? ( n ) +

Since S > 0 was arbitrary, this is the claim. •
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Now we are left with showing that the measures o~v'R indeed give rise to the
Bowen-Margulis measure on SM.

For a fixed R>0 recall that &° = avR depends on the choice of veSM and
a" = av if we Wsu(v). Now the strong unstable manifold Wsu(v) has a canonical
identification with dM - ^(-oo) via the map w: w-* <pw(°o). Thus a" can be viewed
as a Borel measure on Ws"(v). In this way we obtain a Borel measure fisu on the
leaves of the foliation Ws". If v € 5M and f e R, then 0U = flg>0 +1, hence pg-0 = e'pv

and M5" o g ' = <> V -
We have to construct a measure on SM which is invariant under the geodesic

flow and the isometry group of M and restricts to the measures /J.SU on the leaves
of Wsu. We first define a Borel measure M" on the leaves of the foliation W as
follows: For A<= W let fi"(A) be the infimum of all numbers £ £ , JT. /tJIi(g'A,-)df
corresponding to all families of Borel sets 7}<=R, A,c Wsu with A c
UJ^i (UteTjg'Aj). n" can be viewed as a weighted product measure on W(v) =
Wsu{v)xR(ve A; see [3] p. 114). If A = LUrgsA" for some Borel-set A c Wsu and
a Borel-set T<= R, then ti"(A) = j T /is"(g'A)df = fisu(A) J r e '̂df (this follows as the
analogous statement for product measures, see [3]). Furthermore fiu(g'A) =
eVC/ l ) for all teU.

For v,we SM such that <pv(-<x>) # ^(oo) there is a geodesic y joining <pv( -oo) =
y(-oo) to ̂ .v(oo) = y(oo), and y is unique up to reparametrization. Thus the intersec-
tion W(v)r\ W"(w) consists of a unique point. Following Margulis ([6]) we call
sets A,c r , A 2 c W"(w) equivalent if A2 = {W"(w)nW"(v)\veAl}. If A,<= W"
and w € 5M is such that <pw(-<x>) £ TTAX , then Ax is equivalent to a subset of Wu( w).

For equivalent sets A,, A2 <= W" there is a homeomorphism ^P: A! -» A2 such that
^(u)€ W"(u) for all «€ A,. A, and A2 are called e-equivalent if A, and A2 are
equivalent and if furthermore the homeomorphism ¥ : A! -»A2 satisfies
d(Pw, PWw) < E for all w e A,. If A, and A2 are e-equivalent for some e > 0, then
/I"(A,) = /IU(A2) ([6]). This is also true for ft".

LEMMA 15. IfAi, A2<^ W are relatively compact and equivalent, then fi"Ai - fi"A2.

Proof. We want to show yu."A12/x"A2 if AX,A2 are as above. Since ft" is Borel
regular we may assume that Ax is compact. Denote by W" the leaft of the foliation
W which contains A,.

Let veAlt we A2 and choose a compact subset il of Wsu(v) such that IT£1 is a
compact neighbourhood of TTA, in aM - <pw(—oo). Then there is a number T > 0 such
that V = {J_TSIST g'il is a compact neighbourhood of A! in W".

By the choice of O, V is equivalent to a subset of W". This means that there is
a homeomorphism ¥ of V onto a compact neighbourhood ¥ V of A2 in W" such
that ¥A, = A2 and V(v) e Wss(v) n W^ for all t> e V.

By the definition of fi", for every 5>0 there are Borel sets S ; C ( - T , T), iljC
flO>l) such that AIc=Ur-i(U,es /g 'nj) c V and M U (A, )&

Zr-ij5,/*™(gJfiy)*-& Since / ( A 2 ) < ^ , / ( * ( U ! E ! , A ) ) a nd
M ^ U . ^ g 5 ^ ) = k fJisu(gsilj)ds, it thus suffices to show /i"(B,) > /i"(*B.) for every
subset B, of V of the form B, = U*ESgs£ with Borel sets S^[-T, T], B e ft.
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Let 5>0, B, as above and A = /u/"(gTft)<oo. Since the Lebesgue-measure on
coincides with the 1-dim. spherical measure with respect to the Euclidean distanc
there are countably many closed intervals S , C [ - T , r](_/al) such that Js dt
IT-i k dt - 8/A and S c \Jfml Sj. Write 7} = (S n Sj)\\J,Z\ S,; then S = (Jf=. ^ ai

c °° r °° r « c
A = I *& I A+I A-8/A.

Js J = lJTj J=1JTJ J = l JSj-7)

Thus the choice of A yields

I [ M-(g'B)dr< [ ,xsu(g'B)dt + 8.
i = \ Jsi Js

Since the sets Uses, g*B(j — 1) cover B,, it follows as above that we need on
consider sets B, = {J,sT g'B where B <= ft is Borel and T<=-[-T, T] is a closed intervi

Assume without loss of generality that B, =U-*sJ S | , gsB for some v>0. 1
eventually enlarging ft we may also suppose that the closure B of B is contain*
in the interior of ft. Define B2 = ^PB, and let e > 0. By continuity there is for eve
« e B an open neighbourhood U(v) of « in ft such that d(PV(w), PV(v)) < e f
all we t/(u). The compact set B admits a finite cover by open sets l/(u,) (u,e
and i = 1 , . . . , k). In particular B has a Borel-partition B = £f=1 C" into pairwi
disjoint sets C* <= ({7(^)0^).

Define D'' = \J-v***v g'C; then B ^ U t i D ' and D/fli>' = 0 if iVj, i.
=Zf-

For fixed i e { 1 , . . . , fc} we want to compare the measures n"(D') and
This is done by estimating the measure of a set E' =>^(D') which is defined 1

£ '=LU- E < s < , + £ g s £ ' where £ ' = {H>€ V - ^ e J l w w e TTC1}.

We have to show E' => *(D') : Indeed, for every i? e C there is a number s(t;) €
such that g'MHr(v) e E'. Then s(w,-) = 0 and consequently 5(t))
P*(t;))<e for all veC' by the choice of C\ Since 7r"1(7ru
U-,S S Sp gs*(u) this implies ¥(D')<= fK

In order to estimate fj.u(E') we have to estimate /i.su(£'). For this purpose 1
veC, weE' and p = pv_R, p = pw,R. Since B is compact and Vd'v) = gsV(v) fi
all se[—v, v], there is a number toeU such that g'B, and g'B2 are e-equivalent fi
all t>t0, i.e. d(Pg't), Pg'*(«))<e for all DGB, (compare [6]).

Let 8 < e~'°. For every xeirC' there are unique points w1(x)e glogl/*C, w2(x)
glogl /8£' such that OTV,(*) = x (i = 1,2). The choice of 5 yields

Thus ye Bp(x, 8)P\TrC', i.e. d(Pw,(x;), Ptv,(y))< i?, implies d(Pw2(x), P
. If we define

x(e) = ( / s i n n | /?(1 + 2 e ) J / ( s inh | /?^)

then Lemma 6 shows as before that Bp(x, 8)n TTC'C Bp(x, T(e)8)n irC for <
xeirC', 8<e~'°.
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Given 5e(0, e~'°) arbitrary, there is a covering of TTC" by balls Bp(Xj, 8j) (x,€
nC'jsil, 8j<8) such that ££L, 5*<ft™(C') + & By the above consideration the
balls %(xj, T(E)SJ) cover irC' = irE' which implies /i'"(£i)<(T(e))V'°(C'').

Using this inequality we obtain

,*"(£')=[" " eht^(E')dt
J —V — E

h

h
hence

On the other hand //."(B,) = h~\e1"' - e~l"/)fj,su(B); since e > 0 was arbitrary and
r(e) -» 1 as e -» 0, this shows iiu{B2) s ^"(B,) and finishes the proof of the lemma.

•
For every ve SM, the leaf Wss(v) of the strong stable foliation has a canonical

identification with Wsu(—v). Thus fisu induces a measure /AM on the leaves of Wss.
Clearly fi" ° g'= e 'V*-

As in [6], Lemma 15 yields the existence of a g'-invariant measure n on 5M
which restricts to fi' on the leaves of W (i = ss, u, su). If A c SM is compact and
if W"(v)nA is equivalent to Wu(w)nA for all t>, we A, then we have

H(A)=\ »ss(Wss(w)nA)dv"

where ve A is arbitrary. Now fi" and / i " are clearly invariant under the action of
T on SM, hence the same is true for fi. Thus /u. induces a finite Borel measure on
SM which is positive on all open subsets of SM. The standard computation (see
[2]) shows that the measure-theoretic entropy of this measure equals the topological
entropy h of the geodesic flow on SM, so fi coincides indeed (up to a constant)
with the Bowen-Margulis measure fi.. In particular the construction of ft and fi
shows fisu = fisu on the leaves of Wsu.

Now let a = avR be the /i-dim. spherical measure associated to 17 = t]vR. Lemma
4 yields vhd-<o~"'R^a; in particular a is finite on compact subsets of 3M -<pv(-oo)
and determines the same measure class as o-v. The proof of Lemma 15 can easily
be modified to be valid for the measure fi" on the leaves of W which is induced
by the measures av'R on Wsu(v)~dM — (pv(-oo). As above we obtain a measure fi
on SM in the measure class of /J. which is invariant under g' and T and restricts
to crVtR on Wsu(v). By the ergodicity of the geodesic flow on SM with respect to
ix, fi equals /x up to a constant. This finishes the proof of the theorem.
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