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Abstract. The Bowen-Margulis measure on the unit taizgent bundle of the universal
covering of a compact manifold of negative curvature is determined by its restriction
to the leaves of the strong unstable foliation. We describe this restriction to any
strong unstable manifold W as a spherical measure with respect to a natural distance
on W.

Let M be a compact connected Riemannian manifold of negative curvature —o0 <
~b?=< K = —a?<0 and fundamental group I'. The geodesic flow g* acts on the unit
tangent bundle SM of the universal covering M of M. SM admits foliations W*,
W*, W*, W* which are invariant under g’ and the action of T on SM. The leaves
of W* (resp. W*, W™, W") are called the strong stable (resp. stable, strong unstable,
unstable) manifolds of SM (see [6]) We write Ac W' if Ac SM is contained in a
leaf of W' (i=ss, s, u, su).

The Bowen- Margulis measure i on SM is the lift to SM of the unique g'-invariant
Borel-probability measure on SM of maximal entropy ([2],[6]). & has natural
restrictions to measures s’ on the leaves of W' (i =ss, s, 4, su) and is determined
by & 3

The purpose of this paper is to show that for every v e SM the measure g™ on
the leaf W™ (v) of W™ containing v is a spherical measure with respect to a natural
distance on W*(v). In order to define this distance we have to fix some notations:

For ve SM let ¢, be the geodesic line in M with initial direction ¢,(0)=v. o,
determines a point ¢,(—00) = ¢ of the ideal boundary aM of M. W*"(v) then consists
of all unit tangent vectors of geodesic lines y in M which satisfy y(—0)=¢ In
particular the restriction to W"(v) of the canonical projection P:SM > M is a
diffeomorphism of W*(v) onto M.

v € SM determines a Busemann Junction 6, at £ which is normalized by 6,¢,(0) =0.
For teRu {0} denote by =,,: My (8M — £)> 6;'(1) the projection along the
geodesics which are asymptotic to £ Then forevery y € 9M — £ the curve y: t > . (¥)
is the unique unit-speed geodesic in M with v'(0)e W*™(v) and y(c0) = y.

The projection w:SM > 3M, w- ¢, () maps W*(v) homeomorphically onto
oM - fand w(w) = 7y, © P(w)forallwe SM.Ifwe W*(v) then ¢,,(—0) = @, (—0)
and 6, = 6,, hence =, = m,, for all teR.

In the sequel we will suppress the index v of the various objects depending on
ve SM whenever v is arbitrarily fixed.
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The level sets 87'(¢) of 8(¢R) are C'-manifolds, the horospheres through £ The
restriction of the Riemannian metric to 6~'(¢) induces a distance d,, = d, on 07'(1).
Fix R>0 and define, for x, y€ aM — ¢ f(x,y)=sup{te R|d,(m(x), m(y))=R}.
The function 7 =7,k (8M — £)x (3M — £) >R, (x, y) > e /™ is symmetric and
n(x, y)=0 if and only if x=y.

Using the upper curvature bound —a’ on M, n can be estimated as follows:

Lemma 1. If x, yeaM—g and d(7,(x), m(y))=e=R, then
1/a
€
= (9)”

Proof. Let r=a '(log R/¢); then K =<—a’ implies by the estimates in [4] that
dyir (s (X), mo,(y)) = R Thus n(x,y) = e '(¢/R)"" 0

As a corollary we find how 7, varies with R>0:

COROLLARY 2. If 0<r<R then n,g<n,,<(R/r)"*n,r.

Proof. Let x, yeaM—f and t=-log(7,.(x,y)). Then d,(m(x), m(y))=r hence
Nor(X, ¥)=n,,(x, y)(r/R)"* by Lemma 1. Moreover clearly 1,z < 7,,,- a

COROLLARY 3. n?:(x, y)=> (n(x, y))* is a distance on oM — ¢

Proof. We have to check the triangle inequality. For this let x, y, zeoM — ¢ and
t=—log (n(x,y)), i.e. d(m(x), m(y))=R. Then

n°(x, y) < e *'(d(m(x), m(2))+d(m(z), m(y)))/R

hence the claim follows from Lemma 1. |

Using the identification of W*(v) with 9M — ¢,(—c0) via the map , 7% can be
viewed as a distance on W™ (v). Let h be the topological entropy of the geodesic
flow on SM. Our aim is to prove the following

THEOREM. The measure ™ on W*(v) equals up to a constant the h/ a-dim. spherical
measure associated to 1, .

It will be convenient to show first the analogous theorem for a slightly different
function p=p,g: (oM — PR (oM — £)->R,(ve SM, R > 0) which is defined as No,R
but using the distance d on M which is induced by the Riemannian metric: For
x,yedM—¢ let f(x,y)=sup{reR|d(m(x), m(y))=R} and p(x,y)=e ™,
Clearly p, g = p..r if we W¥(v).

p is related to n as follows:

LEMMA 4. There is a number v> 0 such that vn<p =<1 on oM — &

Proof Ifx, y € oM — £and d(m,(x), m(y)) = R forsome t e R, then d,(7,(x), m,(y)) =
R which implies p < 5. To show the first inequality, assume again d (w7, (x), m,(y)) =
R. Since the curvature K on M is bounded from below by —b?, it follows from [4]
that d,(m,(x), m(y))=2/bsinh 3bR), i.e. if we define r=2b""sinh (3bR), then
Nur = Ppur- The claim now follows from Corollary 2. O
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COROLLARY 5. There is a number ¢>0 such that p(x,z)=<g, p(z, y)=< e implies
p(x, y)=ce.

Proof. If p(x,z)=¢ and p(z, y)=<¢, then by Lemma 4 n{x, z) and 7n(z, y) are not
larger than ¢/v. Since n® satisfies the triangle inequality, this implies 7°(x, y) =
2(e/v)°. Thus by Lemma 4 p(x, y)=<2"%/v. O

LEMMA 6. If 0<r<R then p, g <p,,=((sinh 3aR)/(sinh 3ar))"“p, &.
Proof. Assume that for all x, yeaM —¢,(—©) and all teR, s=0

*) d(mers(x), mars(y)) Z% Sinh_l(e‘” sinh g d(m(x), m(y))>

(here again =, = m,,). With

(Y

we then obtain d(m..(x), m.(y))= R whenever d(=,(x), w(y))=r, ie. p,, =
e’p,r. Since p, g = p,, is obvious, it rests to prove formula (*). Consider a com-
parison situation in the hyperbolic plane H, of constant curvature —a’, given by a
point £€6H,, a Busemann function 8 at £ and geodesic lines ¥, ¢ in H, such that
F(~00) = &= §(—00), §7(0) =0=65(0) and d(7(0), $(0)) = d(m,(x), m,(y)). Then

d(3(s), $(s)) =§sinh" (e"‘ sinhgd(v(ox ¢(o>))

(see [4]) and the comparison arguments in [4] show d((m,+s(x), 7 (¥)) = d(¥(s),
é(s)). O

LEMMAT7. Letve S]C[, QcoM - @,(—00) compact and £ > 0. Then there is a neighbour-
hood U of v in SM such that
(1=-8)pur(%,y)=p,r(x,y)=(1+e)p,r(x,y) forall welU and x,ye(l.

Proof. Choose an open, relative compact neighbourhood D of () in oM — ¢, (—0)
and an open neighbourhood V of v in SM. Since Qc oM —¢,(—0) is compact,
w=sup {p,(x, y)|x, y € Q} is finite. Let r=1log (1/x) and define ¥:Dx V> M by
¥(x, w)=m,,(x). Since ¥ is clearly continuous there is for a fixed number §>0
and every y € () an open neighbourhood D(y) of y in D and an open neighbourhood
U(v) of vin V such that d(¥(z, w), ¥(y, v)) < 8/2 forevery ze D(y) and we U(v).
By compactness ) can be covered by finitely many of the sets D(y), say Q<

X . D(y;) for some y;€e Q. U=(, U(y,) is an open neighbourhood of v in V.
If ye (2, then ye D(y;) for some i€{1,..., k}, hence

d(m.,(y), 7r0w(¥)) = d(m,,(¥), 7, (y:)) + d(7,,(y:), 7w(y)) <8 for all
we Uc U(y).

Now for all ye Q) and we U the function t—»>d(m,,(y), 7, .(y)) is decreasing.
Thus given y, z€ () and = 7 we have

d(m,(y), m,(2)) =26 = d(m,u(y), m,W(2)) = d(m,(y), 7,.(2)) +28
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and consequently

pw,R+28(ya Z) = pv,R (y’ Z) = pw,R—ZS(ya Z) fOf all ya FAS Q SUCh that pv(ya Z) = e—‘r,

i.e. for all y, z € (} by the choice of 7. Since & > 0 was arbitrary, the claim now follows
from Lemma 6. 0

The function p=p,r determines a family of balls B,(x,¢)=
{yeaM—&|p(x, y)<e} (xedM —§ £>0). Our aim is to show that these balls
together with their radii give rise by Carathéodory’s construction (see [3]) to a Borel
measure on oM — £ which is finite on compact and positive on nontrivial open
subsets of oM — & This fact is derived from the analogous property of an auxiliary
function B = B>F which is defined on the subsets of dM — £ in the following way:
For a compact set < M — ¢ and & >0 let ¢,(£2) be the maximal cardinality of a
subset E of ) with the property that B,(x, e)"B,(y,e)=Q if x,yc E and x# .
As above denote by h the topological entropy of the geodesic flow on SM and
define B.(02) = ¢.(Q) - £" and B(Q) =lim sup._o B.(2). If Q,, O, < 9M — £ are com-
pact and Q,<Q,, then BQ, = BQ,. Thus for AcaM—g arbitrary we can define
BA =sup {BQ|Q < A compact}.

Notice that 8 may not be subadditive, i.e. 8 may not be a measure on oM —-&
However B has the following properties:

(1) If A< B, then BA=< 8B.
(2) If Q;(i€Z) are compact and Q< _; Q;, then SO =Y, BQ,.

We will need the following lemma which is due to Margulis (it is essentially
proved in [6]):

Lemma 8. For every r> 0 there are numbers 0< a(r) < a,(r) <o suck that a\(r)<
a“{we W*(v)|d(Pw, Pv) <r}= ay(r) for all ve SM.

Lemma 8 shows in particular that & * is finite on compact and positive on nontrivial
open subsets of W*(v).
For pe M let B,(p, r) be the open r-ball around p in (M, d).

LEMMA 9. If pe 67'(t) then 7B,;(p, R/2) < 7w(Bs(p, R) n 67'(1)).

Proof. Let y oM — £ such that d(p, m,(y)) = R. Determine a number 7€ R with the
property that d(p, 7.(y)) realizes the distance of p to the geodesic s - m,(y). Then
m,(y)€07'(r), hence d(p, m.(p))=|t—7|=d(m(y), m.(y)) and 2d(p, = (y))=

d(p, m,(y))+d(=.(y), m(y)) = R. But this shows y& 7.B,(p, R/2) which is the
claim. O

Recall that the geodesic flow g’ on SM transforms i“ by i*e g’ =e"i" (h as
in the theorem). This and Lemma 9 is used in the proof of

LemmMma 10. 8 is finite on compact subsets of oM — 3

Proof Identify M with W*(v), the set of all unit tangent vectors of geodesics v in
M with 'y( 00) = ¢,(—00) = ¢& With respect to this identification the geodesic flow
g'actson M bywe 07'(s)> g'w=m,, we 0 '(s+1). The restriction of 2" to W*(v)
can be viewed as a measure on M.
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LetﬂcaM—gbe compact and B, ={y€61\71—§|p(y, z)=<1for some z € 1}. Then
R R
B,= {w,(w)lwe B,, -5= tSE}

is a compact subset of M, hence A = ©LYB, <o,
Let £€(0,1) and {x,,..., x,} =) be a set of maximal cardinality such that the
balls B,(x;, ¢) are pairwise disjoint. This means

_ 1 L.
Bd(ﬂ'logl/e(xi)a R)n Bd("flogl/e(xj), R)n#6 l(IOg ;) = fori#j.

By Lemma 9, the balls B, (mog1,.(x;), R/2) are pairwise disjoint and moreover
they are contained in g'**'/*B, by the definition of B,. With a = a,(R/2) as in
Lemma 8 this implies ga < £“g"*®*"/*B,=(1/¢)®- A and g ¢" = A/a. Since £ € (0, 1)
was arbitrary, this is the claim. O

LEMMA 11. B is positive on nontrivial open subsets of oM — 3

Proof. It suffices to show that B is positive on compact sets B with nonempty interior.
Define B;={my|ye B,—R=1t=0}and A =“B;>0. For >0 let {x,,...,x,} < B
be a subset of maximal cardinality such that the balls B,(x;, ¢) are pairwise disjoint.
By the definition of p this means that the balls By(mog,.(x;), 2R) cover o8B,
hence the balls By (o1, (X:), 3R) cover g'°#*B;. If @ = a,(3R) is chosen as in
Lemma 9, then ga =(1/¢)"A and q- £¢" = A/« which yields the lemma. O

Remark. In fact we have shown that lim inf, ., 8. > 0 for all nontrivial open subsets
Q of aM - £

For a fixed number R >0 we investigate now how 8° = B*® varies with ve SM.

LemMmaA 12. Let Q<M be a compact subset with nonempty complement. Then the
map v— B°Q is continuous on SM —{w]e.(—0)eQ}.

Proof. We show first that v—> 8°() is upper semi-continuous on its domain of
definition.

Let ve SM —{w|@,.(—) € Q}; since B°Q <o by Lemma 10 it suffices to find for
every 8>0 an open neighbourhood U of v in SM —{w|¢,(—)e Q} such that
B OQ=(1+8)B"Q for all we U.

Since Q< M — @, (—0) is compact, A={ye 61\7I|pv,R(x, y)=1 for some x € Q} is
a compact subset of M — ¢, (—0). By Lemma 7 there is for A =(1/(1+8))"" a
neighbourhood U of v in SM such that for all x,yeAand all we U Ap, r(x,y)=
po(x, y). Let €€(0,1) and {y,, ..., ¥y} < be a subset of maximal cardinality with
the property that the balls B,  (y;, &) are pairwise disjoint. Then the sets
B, .(yi, Ae) N A are pairwise disjoint. But by the choice of A for every ye () the
pyr-ball of radius Ae <1 centred at y is contained in A. This implies g7 (})=
(1+8)B.:.(Q) and since £ € (0, 1) was arbitrary, B“(Q) = (1+8)B8*(Q). The lower
semi-continuity of the map is shown similarly. ]

Remark. The proof of Lemma 12 yields the following fact: If Q< aM — @,(—0) is
compact and B8°(Q) =0, then B8*(£)) =0 for all wedM —Q.
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For p =p,r let B,(x, ) (x€aM) be the closure of B,(x, £) in M. Let g =%
be as above and ¢ =¢,(—).

COROLLARY 13. There is a number k>0 such that for all xc3dM — ¢ and all € >0,
keh = Bﬁp(x, e)y=xk"'e"

Proof. Use the notations of the proof of Lemma 12. Let D< M be a compact
fundamental domain for I'=7,M and define u: SI\7I|D—>R, w>u(w)=
B"B,, (¢u(0), 1). )

Let {w;}<= SM|p, be a sequence such that u(w;)-> sup {u(w)lwe SM|p}. By the
compactness of SM |p we may assume that {w;} converges to we SM |p as j—=co.

Since by Lemma 7 p,, depends continuously on we SI\7I, there is a number i, >0
such that the closed ball of radius 1 around ¢, (o) with respect to p,, is contained
in B=B, (¢.(x),2). Thus u(w;)<B™B for all i=i, and Lemma 12 shows
lim sup;... u(w;) < B”B <. A similar argument yields inf {u(w)|w € SM|p}> 0, i.e.
there is a number « > 0 such that k =u(w)=<1/« for all we SI\7I|D.

For p=p,r and x € aM — @, (—0), Bp(x, €) is the projection in oM — ¢, (—0) of
the set E,,(mog, JesX% R)N 6,'(log 1/€) along the geodesics which are tangent to
W¥(v). Choose ® € I" such that ®( 551/, ,x) € D. If we SM is the tangent at log 1/ ¢
of the geodesic t-®(m,,x), then ®B,(x,e)=B, (&x,1) and ®Bp(y,8)=
B, (®y, £7'8) forall y € B,(x, £) and all 6 > 0 (recall that I acts on aM in a natural
way). By the definition of B this means BB,(x, ¢) =¢"8“B, (®x, 1), hence xe" =
Bﬁp(x,e)sx_lsh. O

Recall the definition of the h-dim. spherical measure o =o"® =0, on IM—¢£=
oM — ¢,(—o0) associated to p =p, r (see [3]). For Qc oM — g o(Q)) =sup,.e0.(Q)
where 0,(Q) =inf {£;2, £/ | ;< e and Q = U2, B,(x;, ¢;) for some x; € Q}. Corollary
5 implies that o is a Borel regular measure, i.e. o(Q) =sup {o(B)|B < Q compact}
for every Borel-subset () of M — ¢ (compare the argument in [3] for spherical
measures associated to distances).

CoOROLLARY 14. Let ¢ >0 be as in Corollary 5 and « > 0 be as in Corollary 13. Then
c"B(Q) = (Q)=«kB(Q) for every Borel set ()< oM — &
Proof. By the definition of 8 and the fact that o is Borel-regular it suffices to show
the claim for compact subsets ) of oM — ¢

Let QCBM——{ be compact, let € >0 and {x,,...,x,} = () be a set of maximal
cardinality with the property that the balls B,(x;, £) are pairwise disjoint. Then for
every yef) there is ie{l,..., g} and ze B,(x;, ) such that p(y, z) <e Hence by
Corollary 5 the balls B,(x;, ce) cover 2, which shows 0. (Q) = ge"c" = "B, (Q).
Thus o(Q) = ¢"B(). On the other hand, for each 8 >0 there is a covering of Q by
balls B,(x;, &) (i=1) such that Y2, ¢} = o(Q)+ 8. Corollary 13 and property (2)
of B implies

B(Q)slz sf'sl o-(Q)+é.
K K K

Since 6 > 0 was arbitrary, this is the claim. O
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Now we are left with showing that the measures o*® indeed give rise to the
Bowen-Margulis measure on SM.

For a fixed R>0 recall that o®=0"® depends on the choice of ve SM and
o’ =0" if we W™¥(v). Now the strong unstable manifold W*(v) has a canonical
identification with 9M — ¢, (—00) via the map 7: w- ¢, (). Thus ¢’ can be viewed
as a Borel measure on W™ (v). In this way we obtain a Borel measure u* on the
leaves of the foliation W**. If ve SM and te R, then 6, = 6,,+ ¢, hence p,, = €'p,
and p™og'=e"u™ ’

We have to construct a measure on SM which is invariant under the geodesic
flow and the isometry group of M and restricts to the measures u™ on the leaves
of W*. We first define a Borel measure u* on the leaves of the foliation W* as
follows: For Ac W* let u“(A) be the infimum of all numbers 32, {7, u*(g'A;)dt
corresponding to all families of Borel sets T,<R, A;c W™ with Ac
Uizt (Uier,8'A)). 1" can be viewed as a weighted product measure on W*(v)=~
W™ (v)xR(ve A; see [3] p. 114). If A= Userg *A for some Borel-set Ac W* and
a Borel-set T<R, then u*(A) = [ n™(g'A)dt = u™(A) | e"dt (this follows as the
analogous statement for product measures, see [3]). Furthermore u“(g'A)=
e"u*(A) for all teR.

For v, we SM such that ¢,(—%) # ¢, (%) there is a geodesic y joining ¢,(—00) =
y(—00) to ¢,,(0) = y(0), and v is unique up to reparametrization. Thus the intersec-
tion W*(v) » W*(w) consists of a unique point. Following Margulis ([6]) we call
sets A, W, A,c W*(w) equivalent if A,={W"(w)n W*(v)|ve A,}. If A,c W*
and w e SM is such that ¢.(—0) € wA,, then A, is equivalent to a subset of W*(w).

For equivalent sets A;, A, W" there is a homeomorphism ¥: A, > A, such that
Y(v)e W¥(v) for all ve A,. A, and A, are called e-equivalent if A, and A, are
equivalent and if furthermore the homeomorphism ¥: A,> A, satisfies
d(Pw, PYw)<e¢ for all we A,. If A, and A, are £-equivalent for some ¢ >0, then
LU (A)=p1"(A,) ([6]). This is also true for u*™.

LEmMMA 15. If A;, A, W" are relatively compact and equivalent, then u*A, = u"“A,.

Proof. We want to show u“A,=u"“A, if A;, A, are as above. Since u" is Borel
regular we may assume that A, is compact. Denote by W7 the leaft of the foliation
W* which contains A,.

Let € A,, we A, and choose a compact subset  of W*™(7) such that 7Q is a
compact neighbourhood of w4, in oM ~ ¢.(—00). Then there is a number 7> 0 such
that V={J_,.,=, g'Q is a compact neighbourhood of A, in WY,

By the choice of ), V is equivalent to a subset of W3. This means that there is
a homeomorphism ¥ of V onto a compact neighbourhood ¥V of A, in W3 such
that VA, = A, and ¥(v)e W*(v)n W} for all ve V.

By the definition of u*, for every 6>0 there are Borel sets S;< (-1, 7), {);c
QGi=1) such that A1CU}11 (Usesj g'Q)cVv and ni(A) =
S s w(g*Q)ds =5, Since  u*(A)=EP, p*(¥(U.e,g'?))  and
,u,“(U,e,jg’Qj) = js,- 1™ (g°Q;)ds, it thus suffices to show u“(B,) = u* (¥ B,) for every
subset B, of V of the form B,=\J,.sg°B with Borel sets Sc[—7, 7], B< ).
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Let >0, B, as above and A = u™(g"1) < 0. Since the Lebesgue-measure on
coincides with the 1-dim. spherical measure with respect to the Euclidean distanc
there are countably many closed intervals S;<[-7,7](j=1) such that {sdt
Y21 fs dt—8/A and S| UL, S;. Write T, = (S~ S)\/Z) Si; then S =72, T, ar

J dit=7Y I dtzzj dt+zj dt—8/A.
s =17 i=1JT i=1Js8-T,
Thus the choice of A yields

Y J‘ p‘“(g'B)dtsJ uw™(g'B)dt+é.
i=1Jsi s

Since the sets |, s, 8B(j= 1) cover B,, it follows as above that we need on
consider sets B, =|_J,.+ g'B where B< ) is Borel and T <[—7, 7] is a closed intervi

Assume without loss of generality that B,=\J_,.,, g'B for some »>0. 1
eventually enlarging ) we may also suppose that the closure B of B is contain
in the interior of (. Define B, =¥ B, and let £ > 0. By continuity there is for eve
ve B an open neighbourhood U(v) of v in Q such that d(P¥(w), P¥(v))<e f
all we U(v). The compact set B admits a finite cover by open sets U(v;) (v €
and i=1,..., k). In particular B has a Borel-partition B=Y_, C' into pairwi
disjoint sets C' < (U(v;)(\B).

Define D'=\J_,<,-, g°C’; then B,=\J<, D' and D'N\D'=Q if i#j, i
.Uvu(Bl)=Z.IF=1.“u(Di)- _

For fixed ie{1, ..., k} we want to compare the measures w“(D') and p“(¥ D'

This is done by estimating the measure of a set E' >¥(D') which is defined 1
E'=\U_y_ccs<rss 8°E' where E'={we W™(¥v,)|mwe nC'}.

We have to show E' > W(D'): Indeed, for every ve C' there is a number s(v) €
such that g*“W(v)e E. Then s(v)=0 and consequently s(v)=<d(P¥(y,
P¥(v))<e for all veC’ by the choice of C' Since = '(wv)n¥(D)
U<—y=s=» 8°¥(v) this implies ¥(D')c E'.

In order to estimate p,“(ﬁi) we have to estimate u*(E’). For this purpose 1
veC’, we E' and p=p,g, p = p..r- Since B is compact and ¥(g*v) = g*¥(v) fi
all s e [—v, v], there is a number t,€ R such that g'B, and g'B, are e-equivalent fi
all t=1,, i.e. d(Pg'v, Pg'¥(v)) <e for all ve B, (compare [6]).

Let 8 < e ". For every x € wC' there are unique points w,(x) € g'#"°C’ w,(x)
g'8"?E" such that ww;(x)=x (i=1,2). The choice of § yields

d(Pw,(x), Pwy(x)) < d(Pw,(x), P¥w(x))+d(P¥wy(x), Pwy(x))
<e+|s(g7'®"°w,(x))| < 2e.

Thus y € B,(x, §)(\7C’, i.e. d(Pw,(x), Pw,(y)) =< R, implies d(Pw,(x), Pw,(y))
R +2¢. If we define

(€)= ((sinhgR(l+25))/(sinh§R))l/a

then Lemma 6 shows as before that B,(x, 8) n wC'< B;(x, 7(¢)8)nwC' for ¢

xenwC, 8§<g b,
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Given 8 € (0, e ") arbitrary, there is a covering of wC’ by balls B,(x;, 8,) (x;¢€
#C',j=1, §;=<8) such that ¥ 2, 8] < u™(C’)+ 8. By the above consideration the
balls B;(x;, (¢)§;) cover wC’=wE' which implies u*™(E’)=(7(¢))"u™(C").

Using this inequality we obtain
v+e

[.Lu(E.i) ehtﬂsu(Ei) dt

[l
—

—V—E

( h(v+s)_e—h(v+e))ﬂsu(Ei)

T(E) (ehv he _ —hue—he)#su(ci)

:~|n—- | -

hence
r“(By)= Z pt(E' )<—T(E) (e"e™ —e e ") u*(B).

On the other hand p*(B,) = h™'(e" — e ") (B); since £ >0 was arbitrary and
1(e)-> 1 as £ >0, this shows u*(B,) = u"“(B,) and finishes the proof of the lemma.
O
For every ve SM, the leaf W*(v) of the strong stable foliation has a canonical
identification with W*“(—v). Thus u** induces a measure u*° on the leaves of W*.
Clearly u=og'=e""u*
As in [6], Lemma 15 yields the existence of a g'-invariant measure u on SM
which restricts to ' on the leaves of W' (i=ss, u, su). If Ac SM is compact and

if W*(v)n A is equivalent to W*(w)n A for all v, we A, then we have

r(A) =I pE (WS (w)n A)du*
W (v)nA

where ve A is arbitrary. Now u” and u* are clearly invariant under the action of
I on SM, hence the same is true for w. Thus w induces a finite Borel measure on
SM which is positive on all open subsets of SM. The standard computation (see
[2]) shows that the measure-theoretic entropy of this measure equals the topological
entropy h of the geodesic flow on SM, so u coincides indeed (up to a constant)
with the Bowen-Margulis measure . In particular the construction of u and g
shows @™ = u™ on the leaves of W™,

Now let & = 6>® be the h-dim. spherical measure associated to 7 = 7, . Lemma
4 yields v"¢ = 0™® < &; in particular & is finite on compact subsets of aM — @p(—0)
and determines the same measure class as o’. The proof of Lemma 15 can easily
be modified to be valid for the measure 2" on the leaves of W* which is induced
by the measures ¢>% on W*“(v) ~3M —@,(—0). As above we obtain a measure
on SM in the measure class of p which is invariant under g’ and I and restricts
to #°% on W*™(v). By the ergodicity of the geodesic flow on SM with respect to
K, & equals u up to a constant. This finishes the proof of the theorem.
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