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Characteristic mass-balance scaling with valley glacier size
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ABSTRACT. Previous work on the relation between glacier volume and area and on
accumulation area ratios suggests that balance rates measured at the glacier terminus are
not constant or random from glacier to glacier but instead scale with glacier length. Using
mass-halance data from a collection of 68 valley and cirque glaciers, we show that the
terminus mass-balance rate scales roughly linearly with surface area and scales with
length raised to an exponent constrained to fall roughly between 0.5 and 2 with 1.7 pre-
ferred if a glacier’s length is dependent on the mass-balance conditions (rather than
balance being dependent on length). When these exponents are used to predict valley-
glacier volumearea scaling, the results are very close to empirical volume-area obser-
vations. Although the data are noisy and the proposed fits could be modified by improved
observations, the scaling trend for terminus balance vs length remains clear. Although the
exact value of the scaling exponent is not well determined, establishing the existence of
this scaling relation will be important for studies of climate change and the impact of

glacier recession on sea level.

1. INTRODUCTION

Owing to limitations of time and expense, field measure-
ments of variables such as mass balance and velocity have
been made on only about 250 out of the roughly 160 000
glaciers worldwide. Some glacier properties are relatively
easy to measure (such as surface areas [rom remote sensing),
but others are virtually impossible to measure without
major investments in ground-based field studies (e.g. ice
volume, thickness, flux and mass balance). As a substitute
for direct measurements, power-law scaling relations are
gaining in popularity as a simple method for relating un-
known glacier quantities to casily measured parameters
such as length and surface arca. Volume area relations are
a much-studied example (e.g. Macheret and others, 1988
Chen and Ohmura, 1990; Meier and Bahr, 1996). Response-
time-area relations are another example (Pfeffer and
others, 1998). When no direct observations are available,
these power laws can also be used to predict the probability
that a glacier has some particular volume, response time,
average velocity or other property (Bahr, 1997a).

These predictions and power-law relations, however, all
rely on a set of three closure conditions (analogous (o
boundary conditions) which fix the power-law scaling
exponents (Bahr and others, 1997). These closures are the
relations between glacier Iengths and (1) widths, (2) slopes
and (3) mass-balance rates. Observations have shown that
valley glacier width is related to length raised to an expo-
nent of approximately 06 (Bahr, 1997h). In addition, indir-
ect theoretical considerations suggest that valley-glacier
slopes may be independent of length (Bahr and others,
1997), but this has not been verified by direct observations.

In this paper, we use recently compiled mass-balance
data (Dyurgerov and Bahr, 1999) to examine the third clos-
ure condition and to determine if glacier length scales with a
characteristic measure of the mass-balance rate. The mass-
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balance rate b can be measured at every point on a glacier;
scaling relations use the balance rate from a single represen-
tative point or average ol points. Although it is an obvious
first choice, averages over an entire glacier are not useful,
because no matter how large or small their size, glaciers in
a steady state must have net balances near zero. Instead, a
commonly selected characteristic point measurement is the
balance rate at the terminus or the average along the termi-
nus (e.g Johannesson and others, 1989; Oerlemans, 1997
PfefTer and others, 1998). The characteristic value could be
selected elsewhere, such as at the head of a glacier, but in this
paper we continue with the convention of choosing the
balance rate at the terminus, b;. Characteristic quantities
are enclosed in square brackets to clearly distinguish them
from functions which can have different values at different
points. For example b is a function of position, while [b] is
selected to be the value at the terminus, bl

Individual glaciers are expected to have increasingly
negative mass-balance rates at the terminus as they grow
larger and longer and sample the climate at lower eleva-
tions. Given a collection of glaciers, however, it is less clear
it the larger glaciers will typically have more negative
balance rates at the terminus than the smaller glaciers in
the same collection. Certainly local climate may play a role.
A large continental glacier could have a less negative termi-
nus balance rate than a similar-sized maritime glacier. In
addition, debris on the terminus, measurement errors and
other considerations specific to each individual glacier will
add significant noise to any scaling relation between glacier
size and terminus mass-balance rate. However, previous
observations of accumulation area ratios (the ratio of accu-
mulation area to glacier area) and volume area relations
have already suggested indirectly that [b] may scale roughly
as the square of glacier length (Bahr, 1997h; Bahr and
others, 1997). If such a relation (or similar one) can be con-
firmed, even partially and despite the noise, then the
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balance-rate closure condition could be used more confi-
dently in a variety of scaling applications ranging from
climate-change studies that use response-time estimates
(Pleffer and others, 1998) to sea-level-rise calculations which
use glacier volumes (Bahr and others, 1997).

Using mass-balance observations for 68 valley and
cirque glaciers. we regress glacier length [r] against termi-
nus balance rate, and vice versa; these show a definite scal-
ing trend that suggests [b] o []™ with m constrained to be
within the approximate range 064-17. As expected, the
data are noisy and the regressions have relatively low corre-
lations. Nonetheless, the data do imply that terminus
balance rates for all glaciers follow roughly the same
power-law scaling trend with length.

2. OBSERVATIONS

Dyurgerov and Bahr (1999) describe a compilation of 80
glaciers and ice caps worldwide, each with a comprehensive
set of morphological and mass-balance observations. We
consider a subset of these glaciers which is restricted to
cirque and valley glaciers. Polar ice caps were excluded
because of potential differences from temperate ice dynam-
ics, as were calving glaciers because the terminus mass bal-
ances are complicated by calving events. Two additional
glaciers (Sonnblickkees, Austria, and Nordlicher Schnee-
ferner, Germany) were also eliminated because their termi-
nus mass balances were positive over the periods of
observation (1964 78 and 196768, respectively), suggesting
unusual local climatic conditions or significant departures
from steady-state conditions.

For the remaining 68 glaciers, we have measurements of
terminus mass-balance rate, length and surface area. As dis-
cussed, the characteristic mass-balance rate is measured at
the terminus, so [b} is the same as b,. The glacier length, i,
and area .S are also the same as the characteristic length [2]
and characteristic area [S]. Because it does not make a dif-
ference in the context of this paper, we will use the charac-
teristic quantities ([z], [S] and [b]) interchangeably with the
measured values of the actual variables z, S and b; on each
glacier. Hutter (1983), Johannesson and other (1989), Fowler
(1992) and many others describe the choice of characteristic
quantities in more detail,

3. ANALYSIS

For the 68 valley and cirque glaciers, the terminus balance
rate can be plotted against glacier length (Fig. 1) and size
(Fig. 2). Surface area and length are also compared (Fig. 3).
The terminus balance-rate data have a lot of scatter, but
there is a clear trend towards increasing size and length
with increasingly negative terminus mass-balance rates,
Correlation coefficients, 7, for each plot suggest that
power-law relations are as likely as lincar relations. For area
vs length, power-law fits give 7 = 0.94, and linear fits give
r = 0.93. For terminus balance rate vs length, = = 06! for
power-law fits, and r = 0.60 for linear fits. For terminus
balance rate vs area, r = 0.56 for power-law fits, and
r = 0.57 for linear fits. Power-law relations between these
characteristic quantities are expected based on dimensional
arguments. Visual inspections of Figures 1-3 suggest that
the power-law relations are reasonable. (Because area and
length have a clear power-law relation, the balance length
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Fig. I Terminus balance rate vs glacier length with OLS re-
gressions —6, = 0.242"7" and —b.i = (.97z064 ( The
two equalions are obtained by using by as the dependent and
independent variable, respectively,) (a) Linear plot. (b)
Lag—log plot.

relation is a power law if, and only if, the balance—arca
relation is a power law. In other words, showing one will be
equivalent to showing the other. Consequently, much of this
discussion will focus on establishing the balance-length
relation)

Three different regressions, two ordinary least-squares
(OLS) and one organic correlation (OC), were performed
for each pair of variables (b; vs , b; vs S, and z vs ). OLS
regressions assume that one variable is dependent on the
other (e.g. 5¢(I) ), and then minimize the variance of only
the dependent variable relative to the fit. For example, using
OLS we can calculate two linear regressions, b = ay + bz
and & = as + bab,. The slopes are given by by = rs; /s, and
bs = rs,/s; where s; is the standard deviation of i. If the
two OLS regressions were the same, then b; would equal
1/bs, which is not the case (unless the relation between the
two variables were perfect). OLS regressions are most ap-
propriate when one variable can be identified as indepen-
dent and the other as dependent. On the other hand, OC
regressions minimize the variance of both variables
simultaneously, so OC is a more appropriate choice when
neither variable is clearly dependent on the other (e.g. Till,
1974). For OC regressions, the slopes are given by by = 3,;/3_,.
and by = s,/s;, so by = 1/by as expected.

Table | lists the scaling exponents determined by each of
the different regressions. The appropriate regression depends
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Fig. 2. Terminus halance rate vs glacier surface area with OLS
regressions —by = 0485 and —b, = 1.395"3. (a)
Linear plot. (b) Log—log plot.

on the variable’s functional relations. Which of [b] and [x] is
dependent on the other is difficult to establish with certainty.
The usual form of the continuity equation (Paterson, 1994)
relates ice thickness (and hence size) to mass-balance rate
which implies that a glacier’s length and area ave at least par-
tially dependent on the balance flux. This suggests the OLS
fits (using by as independent)

; 70
5] o [a]" (1)
and
: 1,08 ;
[b] o )" (2)
are most appropriate. The functional relation between sur-
face arca and length is less clear, but previous work by Bahr
(1997h) with a larger dataset (303 Eurasian glaciers) has
shown that [S] x [#]™" with ¢ = 0.6, so the appropriate re-
gression is most likely to be the one that predicts an expo-
nent of ronghly 1.6. If area is selected to be dependent on
length, then an OLS fit of the 68 glaciers predicts
g 1.61 ;
(9] e [z} (3)
in close agreement with the previous study. The OC regres-
sion [S] o [2]"" is also reasonable.

4. DISCUSSION

Some noise in the data (and hence some difficulty in choos-
ing an appropriate regression) is expected. Glaciers can ex-
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Fig. 3. Glacier surface area vs length with OLS regressions
S = 0.50x"" and S = 0.382'%%. (a) Linear plot. (b)
Log log plot.

perience similar climates, be at the same mean elevation
and have the same length, but due to bedrock geometries
they may have different surface slopes. Steeper glaciers of
the same length will reach lower clevations and have more
negative terminus mass-balance rates. Even though two
glaciers may have the same length, differences in local
climate can also lead to different terminus balance rates.
Differences in debris cover can also alter the terminus
balance rates for otherwise similar glaciers. Additional data
may improve the regressions, but Figures 1 and 2 demon-
strate that despite natural variability and inherent noise, a
trend (holding across many glaciers) does exist between
characteristic mass-balance rate and length.

Establishing the existence of a scaling trend is sufticient
to validate using a closure condition for mass balance, but

- et . - i . *
Table I. Scaling exponents for OLS and OC regressions

Variable  Tariable OLS, OLS. o ¥
! 2 varl =f{var?) var?=[{varl)
] B Boc =™ Bl 2] B x ™ 06l
(] 18] o< [ST™* [l x (S [B] x [S]"® 056
(5] ][9] o []"® 8] [¢]"™  [S]ec[a]'" 094

. 2 : y . ; :
Power-law fits were performed by linear regressions on logarithms of the
data.
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pinning down an exact value for m is still important. The
regressions suggest that the exponent m should fall roughly
between 0.64 and 17, the latter value being optimal if the
glacier length is dependent on the balance rate. Certainly,
mass-balance rates are usnally treated as the forcing func-
tion when studying changes in glacier geometry (e.g. Johan-
nesson and others, 1989; Paterson, 1994; Raper and others,
1996; Oerlemans, 1997). So as long as climate (and not the
glacier) dictates the mass-balance—altitude relation and as
long as the glacier’s bedrock profile is fixed, then the gla-
cier’s length will depend on the halance, and Equation (I)
with m = 1.7 is the hest option. Other arguments, however,
support m = 0.64, or at least suggest that none of the values
between 0.64 and 1.7 are better than another.

For example, smaller values of m appear more reason-
able when considering the change in terminus balance rates
with a corresponding change in length. If m = 2, then two
glaciers with lengths differing by a factor of 100 (say 1km
and 100 km) will have terminus balance rates differing by a
factor of 10", On the other hand, when m = 0.5, glacier
lengths differing by a factor of 100 will translate to terminus
balance rates differing by a factor of 10. The latter seems
physically more plausible. The existing data in Figures 1
and 2 can support either claim, but the balance and length
data only span two orders of magnitude.

Both OLS regressions are shown in Figures 1-3. On the
log-log plots, the fits [B] o [2]"%* and [b] o [$]"** (see Table
1) appear visually to be slightly better than the regressions
selected for Equations (1) and (2). Noise in the data, however,
makes such visual judgements tricky, and the correlation
coeflicients are the same for both of the fits shown on each
plot; without additional information there is no statistical
reason to believe that either OLS fit is superior. These alter-
native OLS fits are also heavily biased by the four largest
glaciers, those greater than 15 km in length (Andrei, Tiede-
mann and White Glaciers in Canada, and Tunsbergdalsh-
reen in Norway), and the fits in Equations (1) and (2)
appear more rteasonable if' these glaciers are neglected
(although we have no reason to eliminate these data points).

Also note that each of the OLS and OC regressions is
consistent with observations of volume-area scaling. Ice
volumes V' are not available for most of the glaciers used
in this analysis, but observations for 144 other valley
glaciers demonstrate that [V] o [S]” with v 2 1.36 (Meier
and Bahr, 1996). Theoretical arguments show that
v=1+{(1+m+3r)/[5(g+1)]} for valley glaciers
where 7 is the slope scaling exponent mentioned in the in-
troduction (Bahr and others, 1997). (The characteristic
slope [a] is related to glacier length by the closure condition
[]  [2]™".) In the past, r has been assumed zero for valley
glaciers. In that case, when m = 170 (Equation (1)) and
¢+ 1 = 16l (Equation (3)), the volume-area scaling cxpo-
nent is 7 = 1.34, which is within 2% of the observed value.

The other OLS regression (m = 0.64) may be consistent
with volume-—area observations when 7 has a different value.
If valley-glacier profiles have a roughly square-root shape
(as commonly suggested for ice sheets (e.g. Paterson, 1994))
then the slope exponent is # = 0.5. In that case, when m =
0.64 (the other OLS regression) and ¢ + 1 = 1.61 (Equation
(3)), then the volume-area scaling exponent is y = 1.39,
which is within roughly 2% of the observed value.

Similarly, the remaining OC regression (m = 1.04) is
consistent with the volume-area scaling exponent as long
asr =~ 1/3. In that case, v = 1.38. For » = 0-0.5 (a reasonable
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range (Bahr and others, 1997)), other values of m between
0.5 and 2 will also agree with the volume-area observations.
So until a better slope-length scaling relation can be estab-
lished, volume—area scaling can support any of the
proposed 1.

The balance-rate scaling exponent m also plays a role in
glacier response times. As detailed in Pfeffer and others
(1997), smaller values of m imply that response times short-
en for increasingly large glaciers. However, larger values of
mm imply that response times shorten with increasingly large
glaciers. In particular, m = 064 (with r = 0.5) implies that
larger glaciers have longer response times. On the other
hand, m = 1.7 (with » = 0) and m = 104 (with r = 1/3)
both imply the less intuitive result that larger glaciers have
shorter response times. Actual data on response times are
nearly non-existent, and another study, verified to some
extent using Storglacidren data, concludes that response
times decrease with increasing glacier size (Raper and
others, 1996). Basing the choice of m solely on intuition
about response times could be misleading,

Most balance-rate profiles are concave down-glacier,
positive at the head and negative at the terminus. Visually
these halance profiles appear to be roughly quadratic
(m =~ 2). Such visual inspections can be misleading, how-
ever, and over a limited range, even a square root can be
crudely approximated by a quadratic fit. Also, balance
profiles are typically presented as a function of altitude,
and not distance along the glacier as required for the closure
condition. Additional data-compilation efforts could focus
on converting existing bhalancealtitude data to balance—
length relations by using observed arca-altitude curves.
The observed areas could be converted to lengths with the
comparatively well-established area—length scaling relation
(Bahr, 1997b).

CONCLUSIONS

The characteristic glacier mass-balance rate (terminus
balance rate) scales with glacier length and surface area.
Larger glaciers have increasingly negative terminus balance
rates. The trend is easily identified in Figures 1 and 2,
although scatter in the data results in relatively low correla-
tion coeflicients. Only 68 valley and cirque glaciers are rep-
resented, and more terminus balance, length and area data
arc necessary to refine the f[its. Without additional
constraints, any of the fits in'Table 1 might be reasonable.

Much of the preceding discussion supports a power-law
relation [b] o [2]™ with m & 0.5-2. The data in Figures |
and 2 can support any value of i within the range 0.64-17.
The larger value ot m ~ 2 is consistent with glacier lengths
being dependent on the mass-balance rate. Smaller values of
m appeal to intuition about the physically plausible range of
balance rates. However, all of the values between 0.64 and 1.7
arc consistent with a previously derived volume area scaling
relation. Clearly, the presented data (which we believe to be
the most complete currently available) are insufficient to
determine the balance—length scaling exponent accurately.
Until clearer arguments or additional data are presented,
we conclude only that m = 0.5 and m = 2 are reasonable
lower and upper bounds.

Regardless of the exact value for the power-law scaling
exponent, the analysis of the terminus mass-balance data
supports the existence of' a mass-balance-rate closure condi-
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tion. By supporting its general validity, the closure condition
[b] o [2]™ can be used in theoretical analyses of volume scal-
ing, response-time scaling and the derivation of other glacier
parameters that are difficult to measure. Future analyses of
the physical basis of the mass-balance closure condition
could have tangible benefits for climate-change and sea-
level-rise studies which make use of the volume and
response-time scalings that depend on m. Although the data
arc not yet conclusive, this study is a first step in establishing
bounds for m and focusing attention on the importance of
mass-balance scaling. Given the wide-ranging social conse-
quences of climate and sea-level scenarios, it is particularly
important to continue making progress in establishing a
value for the mass-balance scaling exponent.
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