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Abstract. A fourth-order polynomial method for the integration of iV-body systems is described 
in detail together with the computational algorithm. Most particles are treated efficiently by an 
individual time-step scheme but the calculation of close encounters and persistent binary orbits is 
rather time-consuming and is best performed by special techniques. A discussion is given of the 
Kustaanheimo-Stiefel regularization procedure which is used to integrate dominant two-body 
encounters as well as close binaries. Suitable decision-making parameters are introduced and a 
simple method is developed for regularizing an arbitrary number of simultaneous two-body en
counters. 

1. Introduction 

Numerical integrations of the gravitational TV-body problem may in principle be 
performed by the simple method of advancing all equations of motion stepwise in 
time using constant forces. Any desired accuracy may be obtained by an appropriate 
choice of the time interval as long as rounding errors remain small. In view of the 
lengthy force calculation for large particle numbers it is desirable to employ high-
order schemes which allow the choice of greater intervals. More powerful methods 
have also been developed for dealing with special configurations which would other
wise lead to serious loss of accuracy, or at best require very time-consuming calcula
tions. 

The present paper describes in some detail an ordinary fourth-order polynomial 
method as well as the Kustaanheimo-Stiefel regularization procedure for studying 
close two-body encounters. Although the former is very efficient in general cir
cumstances, it is desirable to include special treatments of critical cases. Alternative 
regularization formulations are discussed elsewhere in this volume (Szebehely and 
Bettis, 1972; Heggie, 1972). A classical perturbation treatment of close binaries is 
also available, but this method is more suitable for small perturbations (Aarseth, 
1970). Several types of ordinary integration schemes have been used for direct N-
body calculations but high order polynomial methods appear to be the most efficient 
tried so far (Lecar, 1968). 

2. Individual Time-Step Method 

The motivation for introducing an individual time-step method stems from the desire 
to solve the equations of motion to the same relative accuracy in the absence of 
rounding errors. The resulting saving of force summations speeds up the calcula
tions by a large factor, while the additional requirement of co-ordinate prediction 
only represents 20-30% of the total computing time depending on the order used. 
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In the present formulation which follows an earlier derivation (Aarseth, 1968) we 
make explicit use of the first four terms of a fitting polynomial, but an additional 
correction term is included. Practical tests indicate that there is no significant gain 
in efficiency when going to higher orders, but an equivalent general derivation is 
available (Wielen, 1967). 

We begin by writing the extrapolating force polynomial for an arbitrary body as 
an expansion about the reference time t0, with the interval tr = t — t0, 

F = F0 + B% + C'fr
2 + D%3 + E ' £ . (1) 

The coefficients B', C , D' are obtained by fitting the polynomial at three previous 
times and can be expressed in terms of higher divided differences at the time t = t0 

weighted by the corresponding intervals, while F0 represents the force per unit mass. 
Let the three preceding time-steps be denoted by Atu At2, At3 in sequential order 
such that At3 is the most recent interval. The force expansion (1) is then considered 
valid over the time interval — (Atx +At2+At3)^tr^At4., but the coefficient E' is not 
known until the end of the fourth step At^ when its contribution is added. This 
procedure may be referred to as a semi-iteration since the main part of the improve
ment is achieved without recalculating the force which is based on the predicted 
position. In this way almost one extra order of integration is included at very little 
additional effort and only one force calculation is needed for each interval. 

It is more convenient for computational purposes to write Equation (1) in the form 

F = F0 + Btr + C(At3 + tr) tr + D(At2 + At3 + tr) (At3 + tr) tr 

+ E(Atx + At2 + At3 + tr) (At2 + At3 + tr) (At3 + tr) tr. (2) 

Explicit expressions for the coefficients B, C, D may then be obtained in terms of 
A AA AAA 

the divided backwards differences F0, F0, F0 defined by 

AA AA 

F0 - F_ 3
 AA F0 - F_ 3

 AAA F0 - F_ 3 
F0 = - ° - — - A F0 = - ° 3, F0 = - ^ - — - 3 (3) 

At3 At3 At3 

where the force at time tr= — At3 is denoted by F_3 . The adopted expressions take 
the final form 

A At* AA 

B = F ° ' C = ^ 7 F » (4) 
At2 + At3 

At2At3
 A^ 

(AtY+ At2 + At3){AtY+ At2) ° 

At\ - At1At3 

(Atx + At2 + At3) (Ati + At2) (At2 + At3) 
F0 

https://doi.org/10.1017/S0252921100028542 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100028542


120 S.J.AARSETH 

At, AA At, 
F4 - - ^ - ^ r Fo At3 + AtA At2 + At3 

{Atl + At2 + At3 + AtA) (At2 + At3 + AtA) 

D 

(At1 + At2 + At3 + AtAY 
AA AA 

where the coefficient E contains the divided difference F 4 equivalent to F0 evaluated 
at tr = At4. 

3. Computational Algorithm 

The integrations may be started by first calculating the Taylor series derivatives from 
explicit differentiation of the equation of motion for each particle /, 

N r - r 
r< = - I m '17-773. (5) 

where F 0 = r ; by the notation above. Denoting Taylor series derivatives by dots and 
writing ry = r; — r,-, rij=\TiJ\, we obtain the relations (Gonzalez and Lecar, 1968) 

J I/O' rij J 

v Y ™ P y 6 M v * u ) , 3 r yp(V*u) 2
 f f r ., "II 

Fo - Z » ^ - ̂  - £ k * U + *„-„ - " ( ^ 1 -
-%[*,-* ,o# •• 4 5 ( r y '*y) ( r y , i p y ) 

45 (fy-fy) (fy "Ty) 105 (fy ' f y) Fl-
Thus the second and third derivatives are readily determined once all the current 
forces and the corresponding first derivatives have been calculated. 

Initial time-steps must now be allocated to each particle and a simpler form of 
the general criterion is used for this purpose. Usually it is sufficient to adopt 

Atl = n^T (7) 

with F0 = |F0|, etc. The parameter r\ specifies the permissible relative change of force 
during the new step as contributed by the last known term and hence controls the 
convergence of the Taylor series expansion. The definition (7) is independent of mass 
and has the desired property of preserving the relative accuracy of each orbit during 
close encounters by reducing the integration interval. Although the integration proper 
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starts at the time t = 0, it is necessary to initialize the previous steps in order to make 
use of the general formulation; hence we put 

Atk = AtA (it =1,2,3), (8) 

where again the index i has been suppressed. A consistent conversion to polynomial 
derivatives is then readily obtained from the general relations 

A 

AA 

F0 = $V0(At2 + At3)/At3 - ^¥0(At2 + 2At3) (At2 + At3)IAt3, (9) 

"A " Atl-AttAt3 •-{Atl + At2 + At3){Atl+At2) 

(At2 + At3)At2At3 At2At3 

In order to proceed with the individual time-step scheme each particle must be 
assigned the time t, of the most recent force computation. The remaining part of 
the interval is introduced as an auxiliary quantity 

Ali = ti + Ati-t (10) 

where the current step is denoted by Att rather than the previous definition AtA. 
The integration is continued by finding the index a with the smallest value of At,, 

Ala = min,(Al,), (11) 

which determines the next particle to be considered. Advancing the time t to t+Atx, 
all quantities A~t, are subtracted by Ata in order to be consistent with the definition 
(10). The body /=<x now requires a new force determination but first all co-ordinates 
are predicted by low-order extrapolation. Increments to the positions are written as 

A 

AT, = l(i¥0At't + iF0) At[ + f0] At',, (12) 

where At'i=t — tl is the time interval since the previous force computation. If Atx is 
small, the calculation of dominant force terms may be improved by including one 
extra order in the co-ordinate prediction for any other particles with small steps. 

A more accurate position for the body i = a is obtained by integrating twice the 
increments from the coefficients C and D defined by Equation (4), after which the 
new force is calculated by the summation (5). The whole contribution from the fifth 
term of Equation (2) is now added as an improvement and the new velocity is obtained 
in a consistent manner by integrating the force polynomial once. At this stage it is 
convenient to initialize the individual reference time; i.e., tx = t, and update the 
quantities Atx, At2, At3 for the particle considered. Finally, the next time-step is 
predicted from the relative criterion 

At3 [_Fo + F0At3 1 
At* = n\ , (13) 

L-iF +-±-Fiiy)At -" 
6 r 0 + 2 4 r 0 Zil3 
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where two terms have been added to the expression (7) in order to ensure proper 
convergence in exceptional cases. The extra terms are usually small and only the 
third-order Taylor series derivative is converted from the polynomial expression (9). 
No upper limit is used but the new value is not allowed to increase by more than a 
factor of 1.4 in order to safeguard the numerical stability. The treatment of the body 
a is completed by initializing the auxiliary interval, hence Alx = Atx. A new cycle is 
entered at Equation (11) which determines the next particle to be considered and 
the calculations continue as discussed above. 

The integration procedure for a high-order scheme using individual time-steps is 
simple since all decision-making is controlled by the auxiliary variable A1t. It may 
be noted that the velocity is available only at the end of each interval and proper 
care must be exercised when evaluating sensitive quantities at a different time as for 
instance when calculating new integrals of motion. The co-ordinate prediction (12) 
makes it necessary to preserve all positions at the beginning of each dynamical step. 
It may also be remarked that the extrapolation of co-ordinates within an interval 
are not directly useful to the integration since the informations is lost at the next 
cycle, but this device forms an essential part of the scheme which permits the simul
taneous use of widely different time-steps. 

A minimum of 28 N storage locations is required by the present method which 
explicitly includes third-order force differences. It is desirable to make use of ex
tended precision when the computer word contains less than about 10 decimals 
or if extreme accuracy is intended. In the case of the I.B.M. 360/44 additional precision 
is used for all co-ordinates and velocities at the beginning of a time-step; r0, r0, 
as well as the times tv and current positions r,. This requires an additional 10 N 
storage locations but a 32000 word direct access store would still allow about 600 
particles to be studied unless further variables or special treatments are included. 
The additional time requirement is less than 30% for the same number of integration 
steps, but the gain in accuracy is considerable when using seven figure precision. 
Fortunately, more powerful methods are available for treating critical encounters. 

The actual choice of the time-step parameter r\ can only be determined from 
integration tests, but a value near 2 x 10~4 leads to satisfactory solutions in the 
absence of extremely close encounters.* A corresponding computing requirement of 
about one hour per mean crossing time may then be achieved for JV= 100 when the 
basic addition time is 3.8 \i%\ similar times for other particle numbers scale as TV2. 
Alternatively, the time per individual step is given approximately as 1 . 0 X 1 0 ~ 3 J V S 

for N$>2. Nearly all the computing time is accounted for by Equations (5) and (12) 
together with Equation (11) and the subtraction of the quantity Ala from all Al^ 

The ordinary polynomial method may be used separately or in combination with 
the regularization treatment discussed below. It is convenient to control the overall 
integration accuracy by the integrals of motion, in particular the relative error of 

* Relative energy errors for a binary with eccentricity 0.92 are then AE/E = 2 x 10~5 and 7 x 10~6 

per revolution, using the two alternative orders of prediction with 234 steps for each component. 
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total energy is sensitive to the adopted time-step parameter. An additional and more 
detailed check of the numerical solutions is provided by the time reversibility of the 
equations of motion. The ability to deal with close encounters without special 
treatments may be tested by studying eccentric binary orbits over many revolutions. 
Accurate solutions are available for a critical three-body case studied by regularization 
techniques (Szebehely and Peters, 1967); a substantial part of the evolution may also 
be reproduced reasonably well by the ordinary method. 

4. Two-Body Regularization 

The Levi-Civita regularization of the plane two-body problem has only recently 
been generalized to three dimensions where it can be used to study close encounters 
in stellar dynamics (Kustaanheimo and Stiefel, 1965). It has already been demonstrated 
that this elegant formulation is extremely efficient in dealing with a variety of three-
body configurations (Peters, 1968). In particular, the improvement over ordinary 
methods becomes apparent in critical two-body encounters since the new equations 
of motion are non-singular. It is therefore natural to investigate whether this regula
rization procedure is also effective for the integration of close encounters in larger 
systems. An extension to large particle numbers requires a suitable formulation 
of the basic equations of motion as well as the ability to deal with an arbitrary 
number of two-body encounters at the sam etime. In addition, suitable regularization 
criteria must be developed in order to combine efficiently the special treatment with 
the direct method described above. 

In the following we make full use of the Hamiltonian formulation of Peters, 
preserving some of the notation. The four-dimensional equations of motion for the 
transformed relative co-ordinates u and momenta v are given by 

u' = -U, (14) 
4ju 

v' = 2 ( £ - V)u + 2nRSCT(Fk-¥l), (15) 

where primes denote differentiation with respect to the fictitious time x and [i is the 
reduced mass of the two particles being considered, subsequently to be identified 
by the individual masses mk and m,. The total energy of the system is denoted by 
E while the perturbing function of the relative motion is given by 

K = i ( m t + m,)Q2 + i £ mfi-iZ £ nvVf l r , - r,|) (16) 
N 

E mtf-
; = i 

i*k,l 

N N 

• i Z I 
1=1 J = l 
j*i,k,l 

which contains the kinetic energy of the centre of mass motion and excludes the 
contribution mkml from the double summation. The second term of Equation (15) 
contains the relative Newtonian perturbation 

F*-F, = - £ m J ^ ' J tZl ' l , (17) 
j*k,l 
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and 3?r is the transpose of the generalized Levi-Civita matrix 

(18) JSP = 

« ! — U 2 — « 3 

« 2 « l — W4 

|_M3 U 4 Mt 

Finally, the particle separation R is obtained from the transformed co-ordinates by 
the relation 

«=£>?, (19) v2 

j = i 

subsequently written in the form u u . 
It is readily recognized that an application of Equation (15) to systems with large 

particle numbers would be prohibitive because of the double summation term in the 
expression for the perturbing function. Instead we combine the explicit expressions 
for E and V which simplify to 

1 mkm, 
E - K = — P • P *--', (20) 

2[i R 

where P is the momentum of the relative motion. This relation also follows directly 
from the regularized Hamiltonian which should be zero (cf. Peters). Thus Equation 
(20) introduces the binding energy per unit mass of the two-body motion, 

h = {E-V)Jn. (21) 

In order to evaluate Equation (20) when working with regularized quantities we 
make use of the transformation property 

P P = y y . (22) 
AR 

Substituting u' for v from Equation (14) and dividing by \i finally gives the desired 
expression 

h = [2u'-u'-(mk + miy]l
D. (23) 
R 

The relative binding energy per unit mass is obtained at the expense of introducing 
a division by the particle separation and this procedure does not allow cases to be 
studied where i?->0. The probability of near collisions, however, is extremely low 
in simulated clusters and the expression (23) may therefore be used in most calcula
tions of practical interest, instead of the more accurate form (21). 

The eight first-order equations of motion (14) and (15) may be combined into 
four equations of second order for the regularized co-ordinates, giving 

u" = i / m + i K J 2 ' r ( F i - F , ) . (24) 
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The fictitious time is related to the ordinary integration time t by the regularizing 
transformation 

At = R dx. (25) 

In the present derivation each close pair is treated independently and all fictitious 
intervals A x are converted to ordinary time in order to provide a common frame of 
reference. This approach differs significantly from that of Peters and allows the 
introduction of multiple regularizations without affecting the integration of other 
particles. Such a scheme has many advantages and only requires accurate treatments 
of the conversion of fictitious time to ordinary time and vice versa. 

Actual calculations show that the binding energy formulation leads to a numerical 
instability in special cases of rapidly varying separations. This difficulty arises because 
the predicted value of the relative binding energy appears in the equation of motion 
(24). An analysis of the corresponding unperturbed expression shows that the relative 
error in binding energy continues to grow if the parameter 

exceeds unity. In this first-order derivation which uses the scalar approximation the 
quantities u0 and UQ represent the transformed co-ordinate and velocity at the 
beginning of the interval Ax, while up is the predicted co-ordinate. It is usually 
sufficient to ensure that the predicted integration step does not violate the adopted 
stability condition e<0.5, but growing oscillations of the binding energy still appear 
at extremely small separations. This undesirable behaviour is finally eliminated by 
using the previously calculated binding energy, rather than the predicted value which 
is known to one order less accuracy. This procedure is now dynamically consistent 
for very small perturbations and is only required on rare occasions. 

An alternative formulation as yet untried makes it possible to retain the advantage 
of the binding energy description while avoiding the stability considerations entirely. 
Thus it has been suggested that an additional equation should be introduced for 
the binding energy itself (Stiefel, 1967). A convenient expression is obtained for h! 
by differentiating Equation (23), making use of the equation of motion (24) and the 
relation R' = 2 u • u', finally giving 

W = 2u ' - J*? r (F t -F i ) . (27) 

This equation is completely regular and the right-hand side contains the perturbation 
term required by the equation of motion (24). Again the new binding energy must 
be obtained by prediction but the perturbation contribution remains well behaved 
for small separations as in the classical expression h= R- (Ft —F,). In addition it 
may be noted that the procedure of integrating the binding energy separately gains 
one order of accuracy compared to Equation (23) which involves the regularized 
velocity. The subsequent discussion therefore assumes the integration treatment based 
on Equation (27) where the initial value is given by Equation (23). 
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5. Transformations 

Assuming that the pair mk, mh has been selected for special treatment, we introduce 
the relative co-ordinates and momenta* 

R = rt »;> 

P = M**-*0-

(28) 

(29) 

(30) 

The transformation to regularized co-ordinates takes two forms depending on the 
sign of the first component of the separation vector (X, Y, Z). Thus for X> 0 the 
initial components of the four-vector u are given by 

" 1 = [ i (K + * ) ] 1 / 2 , 
u2 = Y\2ux, 

u3 = Z/2MX , 

u4 = 0, 

while for X<0 the proper choice is 

u2 = [ i (R-ro 1 / 2 , 
ux = Yj2u2, 

u3 = 0, 

u4 = Z/2u2 • 

In both cases the inverse relations are 

X = u\ — u\ — u\ + u\ 

Y = 2(uiu2 — M3M4) 

Z = 2 ( 1 ^ 3 + U2U4). 

(31) 

(32) 

It can readily be seen that Equation (32) implies the relation (19). 
The regularized momentum vector v is transformed according to 

v = 2JS?rP, 

where the transpose matrix is given by 

<eJ = 

" 1 

" 2 

« 3 

U 4 

U2 

" l 

— u4 

- " 3 

" 3 

" 4 

" 1 

u2 

(33) 

(34) 

The relation (33) implies the non-holonomic condition 

u4i;1 — u3v2 + u2v3 — u^4 = 0. (35) 

* The definition of relative co-ordinates and momenta used by Peters should be reversed in order 
to be consistent with the final equation of motion. A correct derivation is given in the original 
Ph.D. thesis, Yale University, 1968. 
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The integration accuracy can be checked using Equations (27) or (35). In practice 
it is more convenient to work with u and u' where the latter is defined by Equation 
(14). The equation of motion (24) then plays the role of Equation (5) and we can 
make use of the polynomial method discussed above for the integration. 

The complete solution of the regularized motion is obtained by introducing the 
centre of mass co-ordinates 

mkxk + m,T, 
Q = — •'-', ( 3 6 ) 

mk + m, 

with the corresponding equation of motion 

mkFk + m,F, 
Q = _J _k Li. (37) 

mk+ m, 

It may be noted that only the two perturbations enter in the centre of mass accelera
tion since the dominant terms cancel analytically. The proposed two-body regulariza-
tion procedure requires in all 16 equations as compared to 12 equations for the 
ordinary method. Even so there is no loss of efficiency since the perturbation calcula
tion is by far the most time-consuming for large particle numbers. The longer intervals 
permitted by the regularized solution therefore represent a net gain over standard 
integration schemes. 

The original quantities may be obtained at any time from the transformations 

R = JSfu, 

R = u u , 

P = 2/i.SV/K, 

rk = Q +nRlmk, (38) 

r, = Q - fiRIm,, 

ik = Q + Vlmk, 

f , = Q - P / m , , 

with the reduced mass 

H=—LJ-. (39) 
mk+ m, 

The present integration procedure requires an accurate determination of the 
ordinary time corresponding to a fictitious time-step. Several methods may be used 
for the conversion of regularized time; here we make use of the Taylor series expansion 

At = t'0Ax + itS AS + ¥o ^ + 2VoV) At4 + T ^ 4 V ) Ax5. (40) 

The desired coefficients evaluated at the beginning of the interval Ax are readily 
obtained by successive differentiations of the second Equation (38) with respect to 
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the fictitious time, using the definition (25). The first three terms are given by 

t'o = u u , 

' o = 2 u ' - u , (41) 

t% = 2 u ' u + 2 u ' u ' . 

All derivatives of u required by Equation (40) are known from the high-order integra
tion scheme, hence the conversion to ordinary time is very efficient. It may be noted 
that the regularized polynomial derivatives should be converted to actual Taylor 
series derivatives at the time x0 by the equivalent procedure of Equation (9). Numerical 
tests show that the adopted expansion converges rapidly since all the terms are well 
behaved. 

An inverse relation is also required for extrapolation within an interval Ax in order 
to transform the regularized co-ordinates at times not coinciding with the end-points. 
In this case less accuracy is needed and we adopt the expansion 

Ax = f0 At + if0 At2 + i'i0 At3, (42) 

using the definition (25), 

*o = l/K- (43) 

The two higher derivatives can be expressed in terms of the quantities (41) as 

T ° = R 
t 

3 ' 

The division by small values of R may be permitted since it does not effect the 
integration of the relative motion. Thus the procedure (42) is only required for the 

purpose of calculating Q or r;; the former may just as well be evaluated at the nearest 
end-point, while it is dynamically consistent to use the centre of mass approximation 
for very small separations when computing the force contribution to other particles. 

The regularized components are also integrated by the fourth-order polynomial 
method since the acceleration calculations are still time-consuming. The formulation 
described by Equations (6)—(10) may be used to obtain a consistent starting procedure 
for the centre of mass motion. Coefficients representing polynomial derivatives are 
first determined for each component, excluding the dominant contribution, and the 
desired expressions are combined in the manner of Equation (37). The centre of 
mass co-ordinates and velocities are initialized and the integration proceeds as in the 
ordinary method, except that the co-ordinate transformation (38) must be performed 
in order to calculate the acceleration (37). 

It is not possible to make use of the explicit starting scheme for the relative motion, 
however. Instead a fitting procedure is employed for obtaining Taylor series derivatives 
which are then converted in the usual manner. Denoting the regularized acceleration 
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at time x0 by G0 instead of u", we write an expansion in terms of xr = x — x0 as 

G = G0 + G'0xr + \G%xl + \G%x]. (45) 

Successive accelerations Gy, 7=1 , 2, 3 are determined from Equation (24) at three 
equal intervals dx by advancing all co-ordinates appropriately, including the centre 
of mass. The fitting intervals 8x are chosen such that 35x = 0.5Ax0, where Ax0 is 
the initial time-step to be used by the high-order integration. The resulting coefficients 
are given by 

Go = [— "V'G'o + 3GX - | G 2 + yG,
3] —, 

ox 

G;; = [G0 - l G t + 2G2 - i G 3 ] ~ , (46) 
ox 

Go = [— -5-G0 + \GX — \G2 + ^G3] _ 3-. 
ox 

Finally, the conversion to polynomial derivatives is performed in analogy with the 
procedure of Equations (8) and (9) and the regularized integration may be continued 
by the usual method. Starting coefficients for the right-hand side of Equation (27) 
are determined in a similar manner, writing Equation (45) as an expansion for the 
function H=h'. Subsequent values of the binding energy are then obtained by 
integrating the corresponding polynomial once. 

6. Regularization Parameters 

Close encounters between ordinary particles lead to a shortening of the corresponding 
time-steps which is essentially independent of the relative binding energy for small 
separations. It is therefore natural to specify a critical interval Atmin and a cor
responding separation Rmin to be used as an indication of suitable cases for special 
treatment. Once a particle mk satisfies the condition Atk<Atmin and the time-step is 
decreasing, a search is made for the body ml which contributes the greatest force 
component, at the same time noting all other particles j inside a somewhat larger 
separation, say, 37?min. The pair mk, m{ is accepted for regularization, provided that 
R < Rmin and the relative force is dominant. The latter requirement implies that 

m4 + m, m, + m, 

k - r , | 2 | r , - r / ^'} 

for all /', k, I. The condition (47) allows for the possibility of body mk being close 
to another regularized pair. It is also prudent to include approaching particles only 
in view of the additional calculations for the starting procedure. 

The special treatment may be terminated in several ways, depending on the cir
cumstances. It is convenient to make use of the invariant two-body perturbation 
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defined by 

y = . (48) 
mk + mv 

The latter quantity is particularly useful for deciding when to end the regularization 
of close binaries. Thus it is natural to replace the components mk, ml by, say, the 
pair mh rrij when the latter particle gives rise to the perturbation y > l since the 
original binary motion is then no longer dominant. 

Regularization of hyperbolic cases or wide binaries is normally terminated by the 
combined criterion 

R>R0, 7>y m a x , (49) 

where R0 denotes the initial separation. The second condition (49) makes it possible 
to continue the special treatment outside the initial separation; this feature is par
ticularly useful for hyperbolic orbits with R0 <? Rm{n, or when dealing with eccentric 
binaries where the apocentre distance exceeds the critical value Rmin. The regulariza
tion criteria discussed above are completely general; consistent values may be chosen 
from trial integrations or invariant definitions of close encounters. 

The integration interval for regularized binary motion may be determined by 
reference to the orbital period. Bearing in mind the form of the equation of motion 
and the time transformation (25), we adopt an expression of constant time-step 
modified by perturbations, 

Ax=—\ — ,-j=, (50) 
A" [2 \h\ J (l + 1000y)1/3 

where the parameter Jf denotes the number of integration steps during one un
perturbed revolution. The correction term is usually small but allows for a significant 
reduction of step-size in the presence of strong perturbations which lead to rapid 
variations of the binding energy. 

Equation (50) is equally suitable for treating hyperbolic motion. The precaution 
is taken of replacing the unperturbed part of the predicted time-step by a constant /? in 
all cases which would otherwise give At>fi in the absence of perturbations. An 
additional safety measure is included by using half the predicted value of the initial 
step A T0 ; subsequent intervals are allowed to increase by a factor of 1.2. The adopted 
time-step definition is not unique and alternative expressions may therefore be tried. 
It may be noted that the period of the regularized equation of motion (24) corresponds 
to twice the Keplerian value. This fundamental property of the Kustaanheimo-
Stiefel transformation demonstrates clearly the effectiveness of the method. 

Direct calculations of close binary orbits are also time-consuming when using the 
regularization description. In such cases the number of binary revolutions per 
crossing time may be very large, while the corresponding perturbation is often 
sufficiently small to be neglected (Aarseth, 1970). The simplification of unperturbed 
motion may also be introduced here since the Keplerian period is known in ordinary 
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time units. Instead we reduce the number of interacting bodies to include the nearest 
neighbours which contribute the main part of the fluctuating force field. Thus the 
effect of distant particles tends to cancel when the relative motion is integrated over 
one complete revolution. Furthermore, it is only by replacing the variables rk, r, by 
the set Q, R that this technique can be used advantageously since the total centre 
of mass acceleration is usually required much less frequently. 

The perturbation is included from all particles i which satisfy the condition 

m, 1 
- , £ - i — i , (51) 

| Q - r ; | 3 ~ K 3 R 3 ' 
where KR represents the limiting separation for bodies of mean mass unity. Con
versely, the force contribution to ordinary particles may be calculated by the centre 
of mass approximation when the distance to regularized pairs exceeds KR. It may 
be noted that the adopted expression is consistent with the tidal limit approximation 
of the perturbation (48) and corresponds to y~/c~3, neglecting the mass dependence. 
The list of neighbours is updated at every apocentre passage as determined from 
the change in sign of the radial velocity R'. 

Numerical values of the regularization parameters have not been discussed above 
since the choice is to some extent arbitary and depends on the desired integration 
accuracy. One example with eccentricity 0.7 shows that .yf = 50 is sufficient to keep 
the relative binding energy error per revolution below 1 x 10 ~ 6, while JT = 63 improves 
the accuracy to 3 x 10"7, when all calculations are performed in extended precision. 
The adopted parameters for the first large JV-body integration using regularization 
are given for completeness; i.e., Atmin=l x 10"5, Rmin = 0.0l, •ymax = 0.01, f̂" = 50, 
fl = 0.01, K = 1 0 0 for one case 7V=500, employing the energy scaling E= —^N2 with 
mass units £ « ; = # . The fast perturbation calculation is only used for close binaries 
satisfying the condition h< —N, but this procedure would be equally consistent for 
all regularizations. Finally, we remark that the additional transformations required 
when treating other particles inside the distance KR partly offsets the advantages of 
regularizing large separations, hence the conservative choice of the first three para
meters. 

7. Special Considerations 

It is essential to organize tables of variables in a systematic way in order to facilitate 
the simultaneous treatment of ordinary particles and regularized pairs. For con
venience we distinguish between global quantities gt such as r;, f,, etc. and regularized 
variables pj denoting u, u'. The sequential arrays {g{} are modified to include the 
regularized components first. The last member of a global particle array is then gN as 
usual but the centre of mass corresponding to the first regularization is added as 
0jv+i- The extension to an arbitrary number of regularized pairs follows quite naturally 
in the present treatment. Thus an alteration to the existing situation is performed 
by moving all relevant quantities up or down in the tables and deleting or adding 
the corresponding centre of mass. 
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Consider a general situation with n separate close pairs. The particle arrays {#;} 
where i^2n then represent the transformed components with corresponding relative 
parameters {pj},j^n. Subsequent locations 2n + l, ..., N are assigned to ordinary 
particles, followed by the centre of mass arrays {gN+J} withy'<«. It is therefore quite 
simple to distinguish between the different procedures required by the three cases 
oc<2«, 2«<a<N, x>N, where a is determined by Equation (11). In addition, co
ordinate predictions and force calculations are more efficient when similar quantities 
are stored sequentially. 

Regularization treatments are terminated by the transformations (38) after which 
the component co-ordinates and velocities are restored to the original locations. At 
the same time any quantities gN+J and pj introduced more recently are updated 
consistently. Finally, the starting procedure described by Equations (5)—(10) is applied 
to each component and the integration proceeds normally. A minimum of reorganiza
tion is achieved by arranging all arrays {gt} in terms of decreasing mass initially 
since heavy bodies are most frequently involved in close encounters. It is then 
numerically advantageous to perform the force summation (5) in reverse order. 

In conclusion, it may be emphasized that a considerable programming effort is 
required in order to make efficient use of the methods described above. At the same 
time the introduction of two-body regularization represents a significant improvement 
of technique which permits more critical configurations to be studied. Some efficiency 
is lost, however, when integrating multiple close encounters if there are no dominant 
pairs which may be selected for regularization. An alternative treatment is available 
for such cases (Heggie, 1972) but the introduction of a third procedure has not yet 
been attempted. Further programming details are available upon request*. 
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* The treatment based on Equation (27) has now been adopted. Energy errors for a binary with 
eccentricity 0.92 then improve from AE\E= —5 x 10^6 to —8 x 10~8 per revolution, if ^K = 50. 
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