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GENERATORS OF NEST ALGEBRAS 

W. E. LONGSTAFF 

1. I n t r o d u c t i o n . A collection of subspaces of a Hilbert space is called a 
nest if it is total ly ordered by inclusion. The set of all bounded linear operators 
leaving invariant each member of a given nest forms a weakly-closed algebra, 
called a nest algebra. Nest algebras were introduced by J . R. Ringrose in [9]. 
T h e present paper is concerned with generating nest algebras as weakly-
closed algebras, and in part icular with the following question which was first 
raised by H. Radjavi and P. Rosenthal in [8], viz: Is every nest algebra on a 
separable Hilbert space generated, as a weakly-closed algebra, by two opera­
tors? T h a t the answer to this question is affirmative is proved by first reducing 
the problem using the main result of [8] and then by using a characterization 
of nests due to J . A. Erdos [2]. For the special case of an ordered basis as 
defined by R. V. Kadison and I. M. Singer [5] the result is s tated separately 
as a corollary to the main theorem. Finally an example is given to show tha t , 
even on separable space, a certain class of weakly-closed algebras, called the 
class of reflexive algebras, which contains the class of nest algebras, does not 
have this double, nor even finite, generation property. 

This work formed par t of a thesis submit ted for a P h . D . degree a t the 
Universi ty of Toronto . 

2. N o t a t i o n a n d pre l iminar ie s . Throughout this paper the terms Hilbert 
space, subspace and projection will be used to mean complex Hilbert space, 
closed subspace and orthogonal projection respectively. The set of all bounded 
linear operators acting on the Hilbert space H and taking values in the Hilber t 
space K will be denoted by B(H, K) and we write B(H, H) as simply B(H). 
For the inner-product in a Hilbert space we will use the notat ion (•(•). T h e 
topology on B(H) induced by the set of seminorms A —> |(^4x|x)| (x £ H) is 
called the weak operator topology. The orthogonal complement of a subspace 
N will be denoted by H 0 TV and PN will denote the projection with range N. 
I t is easy to see t ha t the operator T G B(H) leaves N invariant if and only if 
(I — PN)TPN — 0 where / is the identi ty operator on H. The symbol 0 will 
always denote orthogonal direct sum. The symbol C will be used for set 
inclusion, while C will be reserved for proper inclusion and \ will be used for 
set theoretic difference. Our measure theoretic terminology follows [4] and 
most of the notat ion, definitions and results we use concerning von Neumann 
algebras are to be found in [1]. As in [8], if H is a Hilbert space and Zf C B (H) 
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is any subset we let Lat ,5^ denote the set of all subspaces left invariant by 
every member of ^ and, for any collection Ĵ ~ of subspaces of H, let AlgJ^ 
denote the set of all operators in B (H) which leave every member of ^ 
invariant. Thus 

L a t ^ 7 = {N : N a subspace of H, TN C N (T G ¥>)) 

AlgJ^ = {T G B{H) :TN QN (N G^~)}. 

Again as in [8], we use the abbreviation 'm.a.s.a.' for 'maximal abelian self-
adjoint algebra'. 

If {Na} is any collection of subspaces of the Hilbert space if, V Na denotes 
the smallest subspace of H containing each Na and A Na denotes the largest 
subspace of H contained in each Na. A family JV of subspaces of H is called 
a nest if it is totally ordered by inclusion, i.e. if, for any pair M, N of elements 
of JV, at least one of the inclusions M C N, N C M is valid. A nest JV is 
said to be complete if 

(i) ( 0 ) , H G i ' ; 
(ii) for any non-empty subset JV§ oiJV, the subspaces 

A iVand V N 

are both members oiJV. 
If JV is a complete nest of subspaces of H and (0) C N G J^, we define iV_ 
to be the subspace V {M : M G JV, M C N } and let (0)_ = (0). The 
completeness of JV clearly implies that iV_ G « ^ for every N G <̂ K If N_ ^ N, 
iV_ is called the immediate predecessor of N inJV. For a given nestJV, AlgJV 
is called the nest algebra associated with or determined byJV. It is not difficult 
to show that AlgJV is a weakly-closed algebra for any nestJV. By virtue of 
[9, Lemma 3.2], in the theory of nest algebras we may restrict our attention 
to complete nests. LetvK be a complete nest of subspaces of H. If M and N 
are elements of J/ then the corresponding projections PM and PN commute. 
Consequently, if S is the set of projections onto the members of JV then 
S is a self-ad joint abelian subset of B(H) and the von Neumann algebra 
generated by $ is abelian. This von Neumann algebra is called the core o(JV 
and will be denoted by fâ. If cêl denotes the commutant of fé7, i.e. the set 
{T G B(H) :TS = S r ( S G # ) } , then obviously 

<Jf c 9 " e A l g ^ . 

3. Statement and reduction of the problem. Let H be a Hilbert space. 
Following [8], a sub-algebra 21 of B(H) is called reflexive if 21 = Alg Lat 21; 
i.e. if whenever Lat 21 £ Lat B, then B G 21. The main result (Theorem 2) 
of [8] is the following, which we restate here for reference. 

THEOREM 3.1. / / 2t is a weakly-closed sub-algebra of B(H) which contains a 
m.a.s.a. and for which Lat 21 is a nest, then 21 is reflexive. 
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Obviously if 21 is a reflexive algebra and Lat 21 is a nest then 21 is a nest 
algebra. The converse statement also holds. Indeed, if 21 is a nest algebra 
then 21 = AXgjV for some complete nest ^Y and clearly 21 is reflexive. But 
Lat 2Ï = J/ by [9, Theorem 3.4]. This fact leads to an equivalent restatement 
of a question that was first raised in [8], viz: 

Is every nest algebra on a separable space generated, as a weakly-closed 
algebra, by two operators? 

The main result of this paper (Theorem 5.1) establishes that the answer 
to the above question is affirmative. The proof of this is reduced to the con­
struction of a single operator with certain properties by application of 
Theorem 3.1 and the following result which is due to J. von Neumann [7]. 

THEOREM 3.2. Every m.a.s.a. on a separable space is generated, as a weakly-
closed algebray by a single operator. 

Leto/K be a complete nest of subspaces of the separable Hilbert space H 
and let AXgJV, £*, ^ be as in the preceding section. If 2 is a m.a.s.a. con­
taining the core <é of JV then <% Ç Qf C AXgjV. If A Ç K\gJ/ then 
M C Lat A C\ Lat <3. If there were some A £ AXgJV such that 
JV 2 Lat A C\ Lat Of then, taking B to be an operator which generates 2f 
as a weakly-closed algebra, which exists by Theorem 3.2, it would follow that 
the weakly-closed algebra generated by A and B is AXgjV. For if we denote 
this weakly-closed algebra by 21 we have 21 C AXgJV and so JV Ç Lat 21. 
But 2 Q 21 and Lat 2Ï QJV by the properties of A and so Lat 21 = JV. 
Theorem 3.1 then shows that 21 = Alg Lat 21 = AXgJV. 

Since for any m.a.s.a. 2 it is true that the subspace M is invariant under 
every element of Qf if and only if PM £ 2iï, the proof that the above question 
has an affirmative answer is reduced to exhibiting 

(i) a m.a.s.a. 2 containing the core *$ olJV; 
(ii) an operator A G AXgjV with the property that whenever 

(/ — E)AE = 0 with E a projection belonging to £& and / denoting the 
identity operator on iJ, then E G $. 

The existence of such a m.a.s.a. and such an operator, given a complete nest 
of subspaces of a separable Hilbert space is established by using the charac­
terization of such nests given in [2]. 

4. Character iza t ion of complete nes t s . In [2] Erdos constructs, for a 
given complete n e s t ^ o f subspaces of a separable Hilbert space H, a canonical 
nest that is unitarily equivalent to«yK. The result is generalized in [3] to giving 
a complete set of unitary invariants for a certain wider class of nests. The 
following introductory remarks are taken from [3] and are only those neces­
sary to understand the terminology of the result in [2] that we use. In the 
following JV will denote a complete nest of subspaces of the separable Hilbert 
space H. 
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U M, N e^V and M C N the set [K G ^V : M C K C N} is denoted by 
{M, N) and is called the 0/>e^ order interval determined by M and N. T h e inter­
pretat ion of the symbols [Af, iV), (Af, iV] and [AT, TV] should be obvious. An 
abuse of nota t ion is frequently used by writing (0, N), [0, N), (0, N] and 
[0, N] instead of ( (0) , N) etc. T h e collection of all open order intervals is a 
base for a topology on yK, called the order topology. Wi th this topology yK 
is compact and metrizable (compactness follows from [6, p . 162, Problem C ] ; 
metrizabil i ty is shown in [3, Theorem 2.2]). Hence, as shown in [4], the Borel 
sets of J/ are the elements of the a-r'mg generated by all closed, or all open, 
subsets of J/ and all Borel measures are finite. Le t R be the ring of subsets 
of y¥ generated by all the open order intervals of y¥. Then any member of R 
can be wri t ten as a finite disjoint union Ul= i R% where each Rt is ei ther an 
open order interval or a singleton. Let x G H be a rb i t ra ry and define the set 
function nx on R as follows. For open order intervals and singletons let 

nx{{NuN2)) = ( ( £ 2 _ - E i ) * | * ) 

M*({#i}) = ( (E i - E i - ) * | * ) 

wmere Et, Et- are the projections with ranges Nu Nt- respectively {i = 1 ,2 ) . 

Extend the definition of \ix to the general member of R in the obvious way. 

Then it can be shown t h a t \xx is a countably addi t ive set function on R 

[3, L e m m a 3.1] which extends to a measure on the Borel subsets oiJV. We 

denote this Borel measure by \xx and denote the set of Borel subsets oiJV by £$. 

In this way, every vector x G H gives rise to a Borel measure px defined owyV. 
T h e core *£ of y¥ is an abelian von N e u m a n n algebra and since the under­

lying space is separable, it is a well-known result (see e.g. [1, p . 19]) t h a t ^ 
has a separat ing vector, i.e. there is a vector x G H such t h a t Ax = 0 and 
A G *$ implies ^ 4 = 0 . Separat ing vectors for *% will be called separat ing for 
Af. In the characterizat ion given in [2] a major role is played by the Borel 
measures of the form JJLX arising from separat ing vectors x iovJ^. 

If jit is any Borel measure on SS we will use the usual nota t ion L2{JY, \x) 
for the Hilber t space of (equivalence classes of) Borel measurable, /z-square 
summable functions defined o n ^ K For any Borel subset 5 oîJY, %s will denote 
the characterist ic function of 8 and XiL2{^Y, JJL) will denote the following 
subspace of L 2 (yK, /JL) 

X 5 L 2 ( ^ , M ) = { / € £ 2 G A M ) : / = 0 a . e . M o n / \ S ) . 

Theorem 11 of [2] shows tha t , for any uni t vector x G H s e p a r a t i n g ^ , 
there is a family {/3i}"=i of Borel subsets oî^V with 1 ^ K ^ GO and J/ = fii, 
Pn 2 fti+i and a un i t a ry t ransformation of H onto 

*=i 

where the Borel measures {/Xi}J=i are given by 
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such t ha t the image of an element N of JV under this transformation is 

iV = ê x [ o , ^ 2 ( ^ , 4 
i= l 

(In the following, if K = co the index set is to be taken as the set of positive 

integers.) 

5. M a i n t h e o r e m . Using the above characterization of nests we will now 
prove 

T H E O R E M 5.1. Every nest algebra on a separable space is generated, as a 
weakly-closed algebra, by two operators. 

Proof. As we showed in section 3, the theorem follows if we can exhibit a 
m.a.s.a. and an operator with certain properties. The results of the preceding 
section enable us to restrict our a t tent ion to the complete nest 

of subspaces of H. In this case, a m.a.s.a. containing the core *$ of the nes t^K 

is evident. Indeed, the von Neumann algebra 2f generated by the projections 

with ranges of the form 

where {<5*K=i is a collection of Borel subsets oî^V, is a m.a.s.a. on H (for this 

see [1, p. 118, p . 19]) and obviously contains (tf. Moreover, the range of any 

projection of 2$ is of the above form. The theorem will be proved if we can 

construct an operator A £ Alg^/K such tha t , whenever (I — E)AE = 0 and 

£ is a projection belonging to &, then E Ç S, the set of projections onto 

the members oî^Y. Notice t ha t /xi = Vx and tha t , for each i, Vi<^ixx with 

dfjLi/diJLx = xpi (Radon-Nikodym derivat ive) . We let Ht = L2(^V, /z*) for 

1 S Î ^ K, so t h a t 

H = ®Hi. 

T h e first step in the construction is to define an operator in B(Hi) with 
certain properties. Before doing this however, two preliminary lemmas are 
needed. A proof of the first lemma appears in [10]. 

L E M M A 5.1. If {Ma} is a totally ordered family of subspaces of a separable 
Hilbert space, and if N — C\aMa, then there is a countable sub-family {Mai\ 
such that N = C\t Mai and Mai +1 Ç Mai for each i. 

L E M M A 5.2. For any fixed i with 1 ^ i S K, if ô is a Borel subset of JV and 
the function L —» ixt(b C\ (L, H]) (L £ ^V) vanishes a.e. \_\it] onJV\b then there 
is a subspace N Ç JV such that xsHi = X[O,N]HÎ-
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Proof. If br = ô VJ y where y is the subset o(Jl^\ô on which the function 
does not vanish then Mi(7) = 0, x^Hi = x«' Ht and M*(O' H (L, if]) = 0 if 
£ Ç:JV\b'. li^Y\b' = 0 then the result follows with N = H. Otherwise, let 

M = fi i . 

Then I f 6 - ^ as ^K is a complete nest and by Lemma 5.1 there is a non-
increasing sequence {Mn}n=i of elements ofyK\ô' such that 

M = H M». 
w = l 

Then 

00 

ô'n (M,H] = u (5'n (Ji/„H]) 

and so, 

Mi(*' H (M,ff]) = limMi(ô' H (M^ff]) = 0. 

If we let 5" = A T ' where yf = ô' H (M, if] then x«"#< = Xs'ff* and 
[0, M) C ô7' C [0, Af]. Thus ô" = [0, M] or [0, M). If M-C M then 
[0, M) = [0, M-] and if M_ = M then 

Mi({ikT}) = M*08«n {M}) £ /**({M}) = 0 

and so jtx<([0, M)) = in([0, M]). This shows that xtHt = x*'#< = X*"#< = 
X[o,M]Hi or X[o,M-]fiz and since M- £ ^ the lemma is proved. 

LEMMA 5.3. Define 

(Bf ) (M) = f(M) + f f{L)d»x(L) (M e JV , / G f^ ) . 
«J (Af,.Hi 

r * e w 5 e B(Hi) and 
(0 11*11 ^ 2 ; 

(ii) ^(x[o,^]ifi) <= X[o,N]Hifor every N £ ^ ; 
(iii) If ô is a Borel subset of J/ and B(xsHi) Q X0H1 then there is a subspace 

N £ J/ such that x&Hi — X[O,N]HI. 

Proof. If / is Borel measurable and satisfies 

f \f(L)\%x(L) < « 

then the function 

M - * f J{L)d^{L) (M £JS) 
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is clearly Borel measurable and 

( f f(L)d„x(L) 

= f ( f(L)XatMi(L)dfix(.L) 

f \f(L)\%x(L) 

2 

dfix(M) 

< 

using the Cauchy-Schwarz Inequality and the fact that nx(JV) = \\x\\2 = 1. 
It is clear that if g is Borel measurable and g = f a.e. [/xj then the functions 

M^ f f(L)d»x(L), M-» f g(L)dy.x(L) 

are equal a.e. [/zj. Since linearity is obvious it follows that 

defines an operator, call it B G B(Hi), such that | | 5 | | ^ 1. Hence, if / is the 
identity operator on Hi, I + B = B G B(Hi) and (i) follows immediately. 
If / 6 ffi and / = 0 a.e. [/xj on (iV, H] where iV G ^ then if L G (N, H], 
(L,H] C (iV,#] and so / = 0 a.e. [/xj on (L,iT|. Thus (5/)(L) = f(L) 
and this proves (ii). If 8 G «^ and B(xsHi) Q XbHi then, in particular 
•5x5 G xs#i and so the function M-> »x(8 C\ (M, H]) (M G yV) vanishes 
a.e. [nx] onyV\8. By Lemma 5.2 with i = 1, result (iii) follows. 

For every 2 let Ft G B(H\) be the projection with range xp%Hi- Then F* 
is 'multiplication by x/s*' a n d since ^K = 0i 3 /32 2 £3 • . . we have I = 
Fi ^ F2 ^ Fz . . . . For any fixed i with 1 ^ i ^ K the spaces Ht and F*i?i 
may be identified. More precisely, there is a natural unitary transformation 
from Hi onto FtHi. In fact, the transformation Ut : Ht-+ FJHx defined by 
Utf = Xfiif ( / £ ^*) is s u c n a transformation with inverse given by Ui~lf = 

/ ( / G FtHi). This unitary transformation has the property that, for any 
Borel subset 8 OÎJV, the image of XhHt under Ut is xs^i ^ XfaHi-

For every i , j with 1 ^ i, j ^ K let i?0- G B(Hj,Ht) be the operator 
^ i j = Ui^FiBFjUj, where B G B(H\) is the operator as defined in Lemma 
5.3. Then 

(Btjf)(M) = Xfiin0i(M)f(M) 

+ xe< (M) f f(L)dN(L) {f e Hjy M G JV ) 

and 5 n = 5 . 

LEMMA 5.4. The collection {Bij)i^Uj^K of operators satisfies 
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(i) \\Btj\\ ^ 2for alii and j ; 
(ii) Bijixio^Hj) Ç Xio,N]Htfor every N G Jf and every i,j; 

(iii) for any fixed i, if ô is a Borel subset of JV and Bu{xhHi) Ç xsHt then 
there is a subspace N G J¥ such that XbHt = X[O,N]HU 

(iv) if -z and j are fixed with i 7^ j and if M, N G ~N with M CI TV and 
Bij(x[o,N]Hj) £ X[o,M]Ht then X[o,N]Hk = X[o,M]Hk where k = max( i , j ) . 

Proof, (i) follows from the définition and Lemma 5.3 (i). Now let i , j and 
iV G - ^ be fixed. T h a t Bi:f(x[o,N]Hj) Ç X[O,N]HÎ is equivalent to showing t h a t 

FiBFj(X[o,N]H1 H x/jy#i) £ X[Q,N]H1 C\ xtiHx 

and this follows from L e m m a 5.3 (ii) and the fact t h a t Fk(xbHi) ÇI x s ^ i f ° r 

every k and every 5 G «â?. This proves (ii). Let i be fixed and let ô G ^ such 
t h a t Bu(xtHi) £ Xa#«- Then since 

(3„X«) (M) = x * W x a ( M ) + Xfii(M)^t(ô H (M, # ] ) ( M G ^ ) 

it follows t h a t 

0 = M<({Me^ \« :x* (MWôn ( M , ^ ] ) ^0}) 

= ^ ( | M G ^ \ S : / i , ( « n (MfiT|) ^ 0!). 

In other words, the function jfcf —> /x*(ô H (M", i7]) ( M G ̂ V) vanishes 
a.e. [ni] onJV\b. By Lemma 5.2 the result (iii) follows. Now let i and j be 
fixed with i ^ 7 and suppose t h a t M, N G ^ with M Q N and 

Btj(x[o,N]Hj) Q X[o,M]Ht. 

Then since 

( ^ o X [ 0 , i V ] ) ( ^ ) = X / 3 , - n / 3 i ( i ) X [ 0 . i V ] ( i ) 

+ x * ( ^ ) ^ ( [ 0 , iV] H (L, # ] ) ( L f ^K) 
it follows t h a t 

0 = n{{L G (M, H] : x * n*;(£)x[o,*] (L) 

+ Xfii(L)fij([09N]r\ (L,H]) ^ 0 } ) 

= M*( /3 ,n{L G ( M , f T | : ^ ( L ) x [ o ^ ] ( L ) + M,([0, N] H ( L , i f ] ) ^ 0 } ) 

= M i ( { i € ( M , i 7 ] : x ^ ( L ) x [ o ^ ( L ) + M , ( [ 0 , i V ] n ( L , # ] ) ^ 0 } ) . 

In other words, the function 

L - x * (i)x[ojfl ( i ) + M,([0, N] n (L, H]) (Le JY) 

vanishes a.e. [/*J on (M, H]. B u t on 0 , P \ [0, N] Pi (M, # ] Ç (M, H] this 
function is certainly no t zero, so if k = max(i,j), 

o = M*(/3, n [o, TV] r , (M, #]) = **«(& n (M, N]) 

= MxÛîi H 0 , P (M, JV]) = M*0S* n (M, iV]) = M * ( ( M , iV]). 

T h u s X[O,N]HJC = X[o,M]Hk and the proof of the lemma is complete. 
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Recall t ha t H = © * = i # * where Ht = L2(JS, M t) and 1 ^ K ^ oo. Since 
for every i and j the operator Btj G B(Hj,Ht) satisfied \\Btj\\ ^ 2, there 
exist positive scalars J T ^ J I ^ , ^ (e.g., Ttj = 2~ (*+ i ) / 2 for every i, j) such t h a t 
the K X K matr ix with operator entries which has as i-jth element the operator 
TijBij, represents an operator A G B(H). I t will be shown tha t 

(i) A G AlgJ"; 
(ii) if ( / — E)AE = 0 where / is the identi ty operator on H and £ is a 

projection belonging to 2) then E £ (f. 

Firstly, let N G JV be arbi t rary. Then 

is the corresponding element oî^V. To show tha t AN Ç N we have to show 
t h a t (I — Pfr)APfr = 0. Using the representat ions of A and Pfr as K X K 
matrices with operator entries this reduces to showing t ha t (It — E^BijEj = 0 
for every i and j where It is the ident i ty operator on Ht and Ek G B(Hk) 
(1 ^ k ^ K) is the projection with range X[O,N]HJC- T h a t is, we have to show 
t h a t Bij(x[Q,N]Hj) C X[o,tf]Hi for every i and j . Bu t this is so, by Lemma 5.4 
(ii). This proves t ha t A G Alg^V. 

Now let £ be a projection belonging to 2) satisfying (I — E)AE = 0. Then 
the range of E is of the form 

where {8i} "=i is a collection of Borel subsets of^K. For every i let Pt G B(Ht) 
be the projection with range XôiHf. Then ( / — E)AE = 0 implies t ha t 
(It — Pi)BijPj = 0 for every i and 7, and in part icular t ha t 

Bu(xuHi) C X 5 t . i7, 

for every 2". By Lemma 5.4 (iii), for every i there is a subspace 7V̂  G ^ such 
t h a t XhiHi = X[o,Ni]Hi- Also, for any i > 1 we have 

^i*(X[ojv.-]-ff*) £ X[o,jvi]-ffi 

^n(X[o,2Vi]# i ) £ X[o,Ni]Hi 

and since either iV\ Ç Nt or iV* C Ni, Lemma 5.4 (iv) shows t h a t 

X[o,Ni)Hi = X[o,Ni]Ht for every i. T h u s the range of E is the subspace 

-$1 = ©*=i Xio,Ni]Hi and so £ G <^\ From our previous remarks this completes 

the proof of Theorem 5.1. 

Remark. From any collection { ^ ^ Î I ^ - . ^ K of operators satisfying 

Bij G B(H3; Hi) and the four conditions of Lemma 5.4 we can construct an 

operator A G B(H) with the ' r ight ' properties with respect to the nest <J/. 

However, inasmuch as the collection {Btj}i^itj^K actually used is derived, 

using the Ui's and F/s, from a single operator B on Hi, it is in this sense, 

canonically related to the nes t^K. 
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6. A corollary. In the theory of triangular operator algebras introduced by 
R. V. Kadison and I. M. Singer [5] an important role is played by a certain 
class of such algebras called the ordered bases. Since, by [5, Theorem 3.1.1] 
every ordered basis is a nest algebra we have the following corollary of our 
main theorem. 

COROLLARY 5.1. Every ordered basis, on a separable space, is generated, as a 
weakly-closed algebra, by two operators. 

A particular instance of the above result was proved by H. Radjavi and 
P. Rosenthal in [8] and led to the formulation of the more general question 
regarding nest algebras. 

7. An example. Having proved the theorem it is of interest to know to 
what extent it can be generalized. I t is not difficult to see that the theorem is 
false without the separability condition. Indeed if H is a Hilbert space then 
B(H), which is the nest algebra associated with the complete nest { (0), H], 
is finitely generated as a weakly-closed algebra if and only if H is separable. 
Another generalization of this result would be to keep the separability con­
dition and enlarge the class of weakly-closed algebras to which it applies. For 
any collection ^ of subspaces of the Hilbert space H, AlgJ^~ is a reflexive 
algebra and every reflexive algebra on H is of this form. Every reflexive algebra 
is weakly-closed and the class of reflexive algebras contain the class of nest 
algebras and the class of von Neumann algebras. The question of whether every 
von Neumann algebra is finitely generated is a well-known unsolved problem. 
Such considerations lead us to the following question. Is every reflexive 
algebra, on a separable space, finitely generated as a weakly-closed algebra? 
The answer is negative as the following example shows. It is due to Professor 
P. Rosenthal who has kindly permitted its inclusion in this paper. 

Let H be a separable, infinite dimensional Hilbert space and let M be a 
subspace of H whose dimension and co-dimension are both infinite. Let Ĵ ~ 
be the following collection of subspaces of H 

& = {N : N Q M or iV 3 M). 

Then A l g ^ is a reflexive algebra and it will be shown that AlgJ^~ is not 
finitely generated as a weakly-closed algebra. Notice first t h a t ^ C Lat Alg J^ . 
If N is a subspace of H which is invariant under every operator belonging to 
Alg &~ then since PM G Alg #~, PMN Ç N. Hence PMPN = PNPM and N 
has the decomposition N = (N C\ M) 0 (N Pi (HQ M)). If 

N r\ {He M) = (o) 

then N C M and so N G 3F. If N Pi (HO M) is not the zero subspace it will 
be shown that M C N and hence that N € «^~. Let y G N H (H 0 M) be any 
fixed unit vector and let x G M be arbitrary. Let Fx be the finite rank operator 
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defined by Fxz = (z\y)x(z G H). Then Fx Ç Alg J T For if L C i f then 
/ y * = ( 0 ) C I and if I D Jtf, FXL Œ M Q L. Thus /yV C JV and since 
y £ N, Fxy = x £ N. Thus M Q N. This shows that ^ = Lat Alg «F. 

Now let ^4i, A 2, . . . , An be any finite collection of elements of A l g ^ and 
let 91 be the weakly-closed algebra they generate. Then since Alg Ĵ ~ is weakly-
closed, 21 C A l g ^ and so & C Lat 21. It must be shown that 21 C AlgJT 
To show this it is sufficient to show that#~ C Lat 21 by the preceding remark. 
Let x 6 H be any vector not belonging to M. Let [x] denote the 1-dimensional 
subspace spanned by x. Then [x] V M £ ^ and so is invariant under each A t 

for each i with 1 ^ i ^ n. Hence for each i, there is a complex scalar at and 
a vector m* G i f such that 4̂ + mt. Since each 1-dimensional sub-
space of M belongs to^~ , it follows that ii mt 9^ 0 then m * is an eigenvector 
of 4̂ j . Let iV = V {x, mi, ra2, . . . , mn}. Then N is invariant under every element 
of 21 and N € ^" . Thus ^ C Lat 21 and 21 C Alg &. This shows that Alg &* 
is not finitely generated as a weakly-closed algebra. 
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