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Abstract

In the wake of the recent resurgence of the Datalog language of databases, together with its exten-
sions for ontological reasoning settings, this work aims to bridge the gap between the theoretical
studies of DatalogMTL (Datalog extended with metric temporal logic) and the development of
production-ready reasoning systems. In particular, we lay out the functional and architectural
desiderata of a modern reasoner and propose our system, Temporal Vadalog. Leveraging the
vast amount of experience from the database community, we go beyond the typical chase-based
implementations of reasoners, and propose a set of novel techniques and a system that adopts
a modern data pipeline architecture. We discuss crucial architectural choices, such as how to
guarantee termination when infinitely many time intervals are possibly generated, how to merge
intervals, and how to sustain a limited memory footprint. We discuss advanced features of the
system, such as the support for time series, and present an extensive experimental evaluation.
This paper is a substantially extended version of “The Temporal Vadalog System” as presented
at RuleML+RR ’22.
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1 Introduction

In recent years, the Datalog language (Ceri et al. 1989) has been experiencing renewed

interest, thanks to the growing adoption for Knowledge Representation and Reasoning

applications (Gottlob 2022). The additional requirements introduced by reasoning

spawned prolific research towards new extensions of the language to support advanced

features such as existential quantification and aggregation. These extensions are fre-

quently shared under the common name of Datalog± (Cal̀ı et al. 2012) and include

languages, technically, “fragments,” that exhibit a very good tradeoff between compu-

tational complexity and expressive power, such as Warded and Shy Datalog± (Baldazzi

et al. 2022).

As the new logical languages flourish, the expectations for declarative, explain-

able expressivity of complex domains, jointly with feasible computation, are rekindling

the idea of using deductive languages in practical applications, with modern systems

(Leone et al. 2019) based on Datalog in production settings, often in combination with

knowledge-based AI models, such as knowledge graphs (Bellomarini et al. 2019).

With so many real-world adoptions, the temporal perspective is increasingly becoming

a first-class requirement of Datalog. In fact, with the pervasive constant and voluminous

streams of data, we are witnessing that temporal reasoning – the ability to reason about

events and intervals in time – is becoming of the essence in many fields, from healthcare

to finance, robotics to transportation. We can look at a plethora of use cases: the longi-

tudinal studies of anticancer treatments to explain and prevent adverse events (Ma et al.

2021), the analysis and prediction of stock market time series (Walega et al. 2019), the

tracking of objects for unmanned vehicles (Lin et al. 2022), the processing of IoT devices

interactions (Walega et al. 2019), and the exploitation of log data (Brandt et al. 2018).

The proposal for an extension of Datalog with Metric Temporal Logic operators, or

DatalogMTL (Brandt et al. 2018), shows an extremely promising impulse towards a

declarative language with sufficient expressive power to handle reasoning settings, such

as recursion, while offering time awareness within a computationally effective framework.

Positioning of the paper

This paper studies the theoretical and practical underpinnings at the foundation

of modern implementations of DatalogMTL. We illustrate the functional and archi-

tectural desiderata of such systems and present the Temporal Vadalog system, a

fully-engineered reasoning DatalogMTL tool. This work is a substantially extended ver-

sion of a RuleML+RR ’22 paper (Bellomarini et al. 2022) introducing the system. Besides

proposing a broader and completely reformulated presentation of the content, the con-

tribution is here enriched with (i) an in-depth discussion about the logical optimization

of the temporal operators; (ii) the implementation of new temporal operators (namely,

since and until); (iii) an entirely new part dedicated to the implementation of time series

in Temporal Vadalog; (iv) a corpus of new experiments.

To present the ideas at the foundation of Temporal Vadalog, let us start introducing

DatalogMTL with a financial use case example from our work with the Bank of Italy.
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Example 1.1.

Changes in strategically important companies may face government scrutiny to uphold

regulatory standards, focusing on both the companies and their new shareholders. We

describe the scenario by a database D of facts about company shares and the following

set Π of DatalogMTL rules.

[0,1]significantShare(X,Y ),

¬ [0,1]significantShare(X,Y )→ significantOwner(X,Y ) (1)

watchCompany(Y ), significantOwner(X, Y ),

connected(X, Z)→watchCompany(Z) (2)

We assume the reader is familiar with Datalog rule syntax: the left-hand side of the

rule (the body) is the implication premise and is composed of a logical conjunction of

predicates over terms, that is constants or variables; the right-hand side (the head) is

the implication conclusion. In the rules, we find predicates from the relational schema

of D. In particular, significantShare holds whenever X retains a high number of shares

of Y ; significantOwner is then a derived, namely, “intensional” predicate, obtained by

Rule 1. Then, by Rule 2, whenever Y is interested in a watchCompany fact to indicate

that the authority deems that company of some strategic relevance, given that X is a

significant owner of Y , then all companies Z connected to X will be watched over as

well. Neglecting for a moment the temporal angle of Π, its semantics is straightforward:

whenever the premise of one rule holds with respect to D, then D is augmented with new

facts to satisfy the implication if it does not already hold. For instance, if D contains the

facts watchCompany(ACME ), significantOwner(A,ACME ), connected(A,EMCA), then

the new fact watchCompany(EMCA) will be added to D. Here, the temporal perspective is

introduced by the � and operators. When prefixed with �, a predicate holds, only if the

predicate itself continuously holds in the interval ( [t, t+ 1], if Rule 1 is evaluated at t)

in the future, as indicated by the operator internal in the index. The operator modifies

a predicate’s semantics so that it holds if the predicate itself holds at least once in the

past interval ( [t− 1, t], if Rule 1 is evaluated at t). Clearly, in a temporal interpretation

of Datalog, all facts, including the “extensional” ones of D, are time-annotated. In the

example, Rule 1 fires only if X, who has never been a significant shareholder for Y in

the past, becomes such in the future.

More formally speaking, the semantics of a set of Datalog rules Π is defined via the chase

procedure (Maier et al. 1979), which modifies D as long as all the rules of Π are satisfied.

Multiple variants of the chase arose, including many supporting DatalogMTL. At the

same time, several DatalogMTL fragments were also introduced, to carefully balance

expressive power and computational complexity: DatalogMTLFP (Walega et al. 2019)

and its core and linear eponymous DatalogMTLcore and DatalogMTLlin (Walega et al.

2020b), or Integer DatalogMTL (Walega et al. 2020a) offer a good prospect for reasoning

over time, with some of them being tractable, that is query answering can be evaluated in

polynomial time with respect to the database size. Moreover, the system should support

operations over numeric values and aggregations, as well as negation.

To get to the core of our discussion, let us lay out the characteristics that a reasoning

system should support to deal with time as a first-class system, via DatalogMTL.
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Functional desiderata

A temporal reasoning system is a “reasoner” in the first place. A good yardstick for

the features it should incorporate then comes from the experience with knowledge graph

management systems : such tools should adopt a simple, modular, low-complexity, and

highly expressive language. DatalogMTL fragments like the ones mentioned above should

then be supported. To cope with real-world applications, monotonic aggregations should

be supported as well (Bellomarini et al. 2021a).

Architectural desiderata

The existing systems implementing DatalogMTL adopt time-aware extensions of the

chase. Yet, the vast experience from the database community suggests that a direct

implementation of the chase can be a suboptimal choice, affected by multiple limita-

tions. For efficiency and memory footprint, the extensional database and all intermediate

facts must be in memory. We wish for reasoning systems to be memory-bound, using

a modern data processing pipeline architecture. As for desiderata specific to temporal

reasoners, temporal programs can produce facts that periodically hold over time, with

repeating patterns potentially generating infinite facts, which practically can be repre-

sented compactly depending on the DatalogMTL fragment. A temporal reasoner should

recognize these fragments, identify the patterns at runtime, and guarantee termination.

Architecturally, it should have a configurable toolbox of strategies for different fragments.

Time intervals should be carefully handled, with a selection of algorithms to merge and

compress them for a space-efficient representation.

The development of temporal reasoners is in its infancy, with the only proposals for

practical implementation of DatalogMTL being either not engineered for production use

or not supporting essential features such as recursion, like in the system by Brandt et al.

(2017). Conversely, MeTeoR (Wang et al. 2022) supports recursion; still, it does not offer

operations over numeric values or aggregations.

Contribution

In this paper, we present the Temporal Vadalog system, a fully-engineered reasoning

system that addresses the above desiderata. Functionally, it offers:

• support for multiple DatalogMTL fragments, including DatalogMTLFP (i.e.

forward-propagating ; resp. BP, i.e. backward-propagating) over the real timeline, and

DatalogMTLFP (resp. BP) over the integer timeline

• native support of the DatalogMTL operators (box, diamond, since and until)

• operations over numeric values

• recursion, aggregations, and stratified negation

• time series and time series operators.

Its architecture is based on a modern data pipeline style, where programs are evaluated

in a pull-based and query-driven manner, sustaining limited memory footprint and high

scalability for medium- to high-size settings. More in particular:
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• rewriting-based optimization

• fragment-aware termination control strategies

• seamless integration of temporal and non-temporal reasoning.

Overview

Section 2 presents DatalogMTL and an overview of time series operators. Section 3 cov-

ers the main contribution of the paper, detailing the Temporal Vadalog pipeline and its

components; Section 4 shows how the system can be used to reason over time series.

Section 5 presents the empirical evaluation of the system with a discussion of the experi-

ments. In Section 6 we discuss the related work; finally, we conclude the paper in Section 7.

Additional material can be found in the supplementary material.

2 Preliminaries

2.1 DatalogMTL

DatalogMTL is Datalog extended with operators from the metric temporal logic. This

section is a summary of DatalogMTL with stratified negation under continuous semantics.

DatalogMTL is defined over the rational timeline, that is an ordered set of rational

numbers Q. An interval �= 〈�−, �+〉 is a non-empty subset of Q such that for each t∈Q

where �− < t< �+, t∈ �, and the endpoints �−, �+ ∈Q∪ {−∞,∞}. The brackets denote
whether the interval is closed (“[]”), half-open (“[)”,“(]”) or open (“()”), whereas angle

brackets (“〈〉”) are used when unspecified. An interval is punctual if it is of the form [t, t],

positive if �− ≥ 0, and bounded if �−, �+ ∈Q.

DatalogMTL extends the syntax of Datalog with negation with temporal operators

(Tena Cucala et al. 2021). For the following definitions, we consider a function-free first-

order signature. An atom is of the form P (τ ), where P is a n-ary predicate and τ

is a n-ary tuple of terms, where a term is either a constant or a variable. An atom

is ground if it contains no variables. A fact is an expression P (τ )@�, where � is an

interval and P (τ ) a ground atom and a database is a set of facts. A literal is an expres-

sion given by the following grammar, where � is a positive interval: A ::=	|⊥ |P (τ )|
�A | �A | �A | �A | A S� A | A U� A. A rule is an expression given by the

following grammar, where i, j ≥ 0, each Ak (k≥ 0) is a literal and B is an atom:

A1 ∧ · · · ∧Ai ∧ notAi+1 ∧ · · · ∧ notAi+j →B. The conjunction of literals Ak is the rule

body, where A1 ∧ · · · ∧Ai denote positive literals and Ai+1 ∧ · · · ∧Ai+j denote negated

(i.e. prefixed with not) literals. The atom B is the rule head. A rule is safe if each variable

occurs in at least one positive body literal, positive if it has no negated body literals (i.e.

j = 0), and ground if it contains no variables. A program Π is a set of safe rules and is

stratifiable if there exists a stratification of a program Π. A stratification of Π is defined

as a function σ that maps each predicate P in Π to a positive integer (stratum) s.t.

for each rule, where Ph denotes a predicate of the head, and P+ (resp. P−) a positive

(negative) body predicate, σ(Ph)≥ σ(P+) and σ(Ph)>σ(P−).
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The semantics of DatalogMTL is given by an interpretation M that specifies for each

time point t∈Q and each ground atom P (τ ), whether P (τ ) is satisfied at t, in which

case we write M, t |= P (τ ). This satisfiability notion extends to ground literals as follows:

M, t |= � for each t

M, t |= ⊥ for no t

M, t |= �A iff M, s |= A for all s with t− s ∈ �

M, t |= �A iff M, s |= A for all s with s− t ∈ �

M, t |= A S� A′ iff M, s |= A′ for some s with t− s ∈ � ∧ M, r |= A for all r ∈ (s, t)

M, t |= A U� A′ iff M, s |= A′ for some s with s− t ∈ � ∧ M, r |= A for all r ∈ (t, s)

M, t |= �A iff M, s |= A for some s with t− s ∈ �

M, t |= �A iff M, s |= A for some s with s− t ∈ �

An interpretation M satisfies notA (M, t |=notA), if M, t �|=A, a fact P (τ )@�, if

M, t |= P (τ ) for all t∈ �, and a set of factsD if it is a model of each fact inD. Furthermore,

M satisfies a ground rule r if M, t |=Ak for 0≤ k≤ i and M, t |=notAk for i+ 1≤ k≤
i+ j for every t; for every t, if the literals in the body are satisfied, so is the headM, t |=B;

M satisfies a rule when it satisfies every possible grounding of the rule. Moreover, M is

a model of a program if it satisfies every rule in the program and the program has a

stratification, i.e. it is stratifiable. Given a stratifiable program Π and a set of facts D,

we call CΠ,D the canonical model of Π and D (Brandt et al. 2018), and define it as the

minimum model of Π and D, i.e. CΠ,D is the minimum model for all the facts of D and

the rules of Π. In this context, “minimum” means that the set of positive literals in

M is minimized or, equivalently, that the positive literals of this model are contained

in every other model. Since Π is stratifiable, this minimum model exists and is unique

(Gelder et al. 1991). According to Tena Cucala’s notation (Tena Cucala et al. 2021), we

say that a stratifiable program Π and a set of facts D entail a fact P (τ )@�, written as

(Π,D) |= P (τ )@�, if CΠ,D |= P (τ )@�. In the remainder of the paper, we will assume the

stratification of programs (or set of rules) as implicit.

In this context, the query answering or reasoning task is defined as follows: given the

pair Q= (Π,Ans), where Π is a set of rules, Ans is an n-ary predicate, and the query

Q is evaluated over D, then Q(D) is defined as Q(D) = {(t̄, �)∈ dom(D)n × time(D) |
(Π,D) |=Ans(t̄)@�}, where t̄ is a tuple of terms, the domain of D, denoted dom(D), is

the set of all constants that appear in the facts of D, and the set of all the time intervals

in D is denoted as time(D). As we shall see in practical cases, the Ans predicate of Π will

be sometimes called “query predicate” and provided to the reasoning system with specific

conventions, which we omit for space reasons, but will render in textual explanations.

Fragments of DatalogMTL

We define DatalogMTLFP (Walega et al. 2019) as the DatalogMTL language restricted to

only make use of forward-propagating operators, that is the operators that only examine

the past, as in , � and S. DatalogMTLBP is symmetrical to DatalogMTLFP using

backward-propagating operators, for example , � and U . A linear language has at most

one intensional atom in the body of the rules, while in a core language, in addition, rules

without ⊥ in the head contain only one body atom. DatalogMTLcore, DatalogMTLlin
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(Walega et al. 2020b) are thus defined as the core and linear fragments using only the

operator. Finally, Integer DatalogMTL (Walega et al. 2020a) is DatalogMTL operating

exclusively on an integer (discrete) timeline.

2.2 Time series

Time series data is a sequence of data points, collected over time, that measure the

performance of a particular variable. For example, we may have time series for stock

prices or inflation expectations in finance and economics, humidity readings in domotics,

and all the relevant vital measurements for healthcare.

Time series are typically made of sequences of evenly-spaced punctual temporal inter-

vals, in which case they are considered regular ; otherwise, they are called irregular time

series. The distance between intervals defines the frequency (or time resolution).

To understand how to work with time series, we need a clear overview of the operators

that can be applied and how they manipulate and transform data to detect and mea-

sure patterns and trends. Let us go through an introduction to the common time series

operators, and we will later explore their implementation in Temporal Vadalog.

Shifting

The shifting operator moves the time index of the data, allowing to compare data points

from different periods (e.g., the same month in different years).

Rolling

The rolling operator calculates a moving time window (rolling window), typically to apply

statistical metrics to smooth out short-term data fluctuations.

Resampling

The resampling operator transforms the time series by changing its frequency, by lowering

it (downsampling) or by increasing it (upsampling).

Moving averages

Moving averages use rolling windows to smooth data and filter noise and fluctuations.

Types depend on the different weight over data points, and include: a) Simple Moving

Average, where all points have equal weight, and the Centered Moving Average variant;

b) Exponential Moving Average, where recent points have more weight.

Stock and flow

Measurements in time series can be stocks, quantities existing at a specific time, or flows,

variables measured over an interval of time, comparable to the rate or speed, and can be

derived from stocks (and vice versa). For instance, in real estate, the stock could refer to

the available housing units, while the flow represents the rate of new units entering it.
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For the conversion between measurement units, we use the following operators: a) Stock

to flow , the difference between stocks over consecutive time points; b) Flow to stock , the

cumulative sum of a series of flows over time.

Seasonal decomposition

The seasonal decomposition operator splits a time series into its trend, seasonal, and

residual components, which helps identify patterns and trends.

3 The Temporal Vadalog Architecture

The architecture aims to support query answering with DatalogMTL: given a database

of time-annotated facts and a set of rules with one or more query predicates, we produce

an execution plan for that query. Our approach is inspired by our extensive experience

in constructing database and knowledge graph management systems. Our architecture

builds on that of the Vadalog system (Bellomarini et al. 2018), which in its current ver-

sion does not support temporal reasoning. Vadalog adopts the volcano iterator model

(Graefe and McKenna 1993), thus employing consolidated query evaluation techniques

from a reasoning perspective. In this work, we go beyond and extend the approach in

such a way that the query plans include temporal operators (i.e. they are time-aware).

Rather than providing a comprehensive taxonomy of all the components in the architec-

ture, we will take a thematic walk-through, with a focus on addressing the challenges

of temporal reasoning. In the next section, we will introduce our time-aware execution

pipeline.

3.1 A time-aware execution pipeline

Similar to the pipe and filters architecture (Buschmann et al. 2007), a DatalogMTL

program Π is transformed into an execution pipeline that takes data from the input

sources, applies necessary modifications, including relational algebra operations (e.g.,

projection, selection) or time-based ones, and generates the intended output as a

result.

Building the pipeline

Building the pipeline involves four main steps: (i) A logic optimizer rewriting tasks to

simplify programs and ensure that only combined individual operators are allowed in

the canonical form. (ii) A logic compiler transforming the rules into in-memory place-

holder objects, each assigned the “task of knowing” the transformation to be performed.

(iii) A heuristic optimizer producing variations of the generated pipeline to improve per-

formance by introducing perturbations and ad-hoc simplifications. (iv) Finally, a query

compiler translating the logical graph structure into a reasoning query plan. Each place-

holder generates a filter responsible for performing the transformations; each read-write

dependency between rules induces a pipe. Figure 1 shows the Example 1.1 pipeline.
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Fig. 1. The reasoning pipeline for Example 1.1. The atom significantShare is denoted by the
filter S, significantOwner by O, watchCompany by W, connected by C, and J is an artificial filter

to decompose, for simplicity, the ternary join of Rule 2 into binary joins.

At runtime

At runtime, a pull-based approach is used: sinks iteratively pull data using next() and

get(), propagating calls through a filter chain to source filters. Source filters read from

the initial data source via data adapters. Each filter applies transformations based on

rule types (linear, joins, temporal operators, aggregations, etc.). In particular, a linear

filter handles Vadalog linear rules, defined as rules having a single atom in the body.1 As

long as data is available in the cascade of invoked filters, next() succeeds. In Figure 1,

for example, facts for the output filter W are generated both with the input data C and S

and recursively through the filter J since the watchCompany rule is recursive.

Temporal challenges

We will now give a full overview of the system, pointing out how Temporal Vadalog

provides support for tackling a number of time-relevant challenges.

• Applying Temporal Operators. Section 3.2 covers how the temporal operators

(e.g., the operator in Figure 1) are implemented in the pipeline.

• Merging strategies. The semantics for � requires the merging of adjacent and

overlapping intervals to function correctly. How merging strategies work and are

designed in Temporal Vadalog is covered in Section 3.3.

• Temporal Joins and Stratified Negation. Section 3.4 explains the implemen-

tation of joins in temporal reasoning (e.g. in the W filter), where time awareness, as

well as support for stratified negation, is required.

• Termination Strategies. DatalogMTL can formulate programs with infinite mod-

els (Bellomarini et al. 2021b), by capturing domain events that repeat infinitely, such

as weekdays. Section 3.5 outlines our strategy for program termination.

1 Different definitions of ’linear rule’ exist in the literature, which can lead to ambiguity when comparing
works and perspectives. To avoid confusion, we will refer to our version as the “Vadalog linear rule.”
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• Aggregate functions and numeric operations. The Temporal Vadalog System

provides standard scalar and temporal arithmetic operations, as well as support

for aggregate functions in the form of time point or cross-time monotonic aggre-

gations. This unique feature allows for a non-blocking implementation that works

seamlessly with recursion. As far as we know, the Temporal Vadalog System is the

only DatalogMTL reasoner capable of implementing aggregations. Their syntax and

semantics are explained in our recent publication (Bellomarini et al. 2021a).

• Temporal and non-Temporal Reasoning. Since many existential extensions are

undecidable (Lanzinger and Walega 2022), we consider temporal reasoning and exis-

tential reasoning as orthogonal fragments: in Datalog with existentials (Bellomarini

et al. 2022) we forbid temporal operators and in DatalogMTL we forbid existentials.

To support both modes within one program we added support for temporal wrap-

ping and unwrapping of rules by allowing to switch between intervals as metadata

and as atoms.

• Time Series. The handling of time series and the most common operators in this

kind of analysis will be presented in Section 4.

3.2 Temporal operators

The implementation of the temporal operators introduced by DatalogMTL is designed

in a two-phase procedure, first by applying logical optimization to reduce the number of

required rules, and then by introducing multiple filter nodes in the reasoning pipeline.

Logical optimization

The application of linear temporal operators, that is, the operators for Vadalog linear

rules, box and diamond , results in intervals computed through mathematical expressions

between the interval of a fact, 〈t1, t2〉, and that of the operator itself, �= 〈o1, o2〉, as
schematized by Walega et al. (2019):

〈t1 + o1, t2 + o2〉 ( )

〈t1 + o2, t2 + o1〉 ( )

〈t1 − o2, t2 − o1〉 ( )

〈t1 − o1, t2 − o2〉 ( )

with corresponding rules for determining the interval boundaries.2

Among these, offers one of the most accessible intuitions for understanding how

an interval is derived: let us say that a shop has recentlyOpened if it had its inau-

guration in the past 12 days: [0,12]inauguration(X)→ recentlyOpened(X). Assume

that shop A has had its inauguration on the 5th and 6th days of the month: D=

{inauguration(A)@[5, 6]}. Then, A can be considered to have recentlyOpened between

the 5th and the 18th: recentlyOpened(A)@[5, 18], that is [t1 + o1, t2 + o2].

As these expressions can be composed, one can rewrite a chain of Vadalog linear rules

containing temporal operators3 into a single rule with an equivalent temporal operator,

as long as every intermediate step of the chain yields a valid (i.e. non-empty) interval.

2 To be concise, we only see examples with closed intervals, where the application of temporal operators
does not change them. The transformation tables can be found in Walega et al. (2019).

3 The logical optimization does not consider S (Since) or U (Until) as these operators are not linear.
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Since the derived interval can include both positive and negative endpoints, an equiv-

alent operator cannot be chosen among the linear operators , , �, �, and instead is

implemented as a generic operator T 〈e1, e2〉 where 〈e1, e2〉 is the desired interval transfor-

mation. That is, T 〈e1, e2〉 applied to the interval 〈t1, t2〉 of a fact gives 〈t1 + e1, t2 + e2〉.
Note that T is not constrained by the usual restrictions for intervals in linear operators,

that is e1 and e2 are arbitrary for T . The linear operators , , �, � can easily be

seen as instances of the generic T operator: we have that T 〈e1, e2〉 expresses any of the

following: 〈e1,e2〉, 〈e2,e1〉, 〈−e2,−e1〉, or 〈−e1,−e2〉, or �〈−e1,−e2〉.

Algorithm

Given a chain of Vadalog linear rules, we apply the mathematical expressions of each

operator in order, starting from [0, 0], the smallest valid interval for facts. If the resulting

interval is empty – that is, the left endpoint is larger than the right endpoint, or, in case

it is equal, the interval is open – or if we reach the end of the chain, we stop and merge

the rules to an equivalent temporal operator applying the derived interval. This process

is applied exhaustively until all rules are merged.

Example 3.1.

Consider the following combination of three temporal operators, where (Expression 3) can

be reduced to T [9, 9], while (Expression 4) can be reduced only partially.

[5,10] [2,5] [1,3]A (3)

[2,5] [5,10] [1,3]A (4)

For Expression 3, we first apply [1,3]
4 to [0, 0], resulting in [−3,−1], then apply [2,5],

resulting in the interval [−1, 4]. Then, we combine this interval with the remaining oper-

ator �[5,10], resulting in [9, 9] and in the final expression T [9, 9]A. For Expression 4, we

again apply [1,3] to [0, 0], resulting in [−3,−1], but then apply �[5,10] resulting in the

interval [7, 4]. As no further optimization is possible, the final expression is [2,5]T [7, 4]A.

Reasoning pipeline

A filter node is introduced for each operation executed in the pipeline. For the operators

introduced by DatalogMTL, we consider the following:

• TemporalNode. This node computes the resulting interval of a fact at the application

of a linear temporal operator ( , , �, �, or the generic T operator introduced in

Logical Optimization, following the DatalogMTL semantics as shown above).

• MergeNode. This node merges overlapping and adjacent intervals, required for the

application of the box operator. Its functioning is addressed in Section 3.3.

• ClosingNode. This node computes the closure of the interval of a fact. It is required

before the application of S and U , as defined in (Walega et al. 2019): �S = ((�c1 ∩
�2) + �3)∩ �c1, resp. �U = ((�c1 ∩ �2)− �3)∩ �c1 where c denotes the closing operator

and + (resp. −) is the addition (subtraction) of intervals as defined for ( ).

4 Note that the operators are applied from inside to outside to the given fact.
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• TemporalJoinNode. An extension of the join node in Vadalog incorporating restric-

tions on intervals of facts, required for S and U to take the semantics of the special

join behavior of intervals into account. We discuss this node in detail in Section 3.4.

3.3 Merging strategies

This section discusses the implementation of the MergeNode, which provides us with two

orthogonal optimization choices: (i) the placement strategy and (ii) the merge strategy.

Example 3.2.

A person X that owns an amount Z of shares of a company Y is an investor of the

company (Rule 5), and a long-time investor of the company if it is an investor for at

least 3 years with gaps of at most half a year (Rule 6).

shares(X, Y, Z)→ investor(X, Y ) (5)

[0,3] [0,0.5]investor(X,Y )→ longTimeInvestor(X,Y ) (6)

with the following database:

D= {shares(A, B, 0.2)@[0.1, 0.5), shares(A, B, 0.2)@[0.4, 1.1),

shares(A, B, 0.3)@[1.5, 3.7), shares(A, B, 0.4)@[3.7, 4.2)}

Placement strategy

The system maintains an ordered data structure of intervals for each fact. Depending

on the program, there are multiple ways to merge facts to uphold correctness. Consider

Example 3.2, where one can merge directly before the box operator (minimal merge),

before the diamond operator (earliest merge), or continuously, that is always guaranteeing

that all intervals per fact are merged (always merge) throughout the reasoning process.

The placement options are described as follows:

• Minimal Merge. The planner inserts a merge operation before every box operator.

This ensures correctness but does not provide further performance optimization.

• Earliest Merge. The planner inserts the merge in the earliest position it can be

processed in the pipeline, so that the intervals of each fact are already merged when

it reaches the box operator, while the operators coming before the latter also benefit

from the reduced number of facts. If no merge operation is required (i.e. there is no

box operator) the planner avoids merging.

• Always Merge. Merge operations are placed after the input filters and all filters

that can generate facts with unmerged intervals. This can reduce the number of

intermediary facts, providing a memory usage improvement, yet has a tradeoff with

the time required for merging all existing facts.

In addition, for the Minimal and Earliest Merge, further optimization is obtained by

providing the planner hints on where to place additional merge nodes, such as: after

rules that share the same head; after a diamond operator produces many overlapping

intervals; after the input or before the output to eliminate duplicates.
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Fig. 2. Overview of interleaving strategies; merging positions are marked in fuchsia.

Algorithm 1 Streaming Strategy in the MergeNode

1: mergeStructure← createMergeStructure()
2: function Next
3: next← Linear .next()
4: if next then
5: (changed,mergedEntry)←mergeStructure.add(Linear .get())
6: set(mergedEntry)
7: return next

Figure 2 shows the merging strategies for Example 3.2. Temporal operators transform

any set of intervals into a merged set: coalescing is always applied before the output.

Merge strategy

In software development, we face a typical tradeoff between streaming and blocking-

based processing operations: the former typically aims for system responsiveness, limited

memory footprint, and in-memory computation, while the latter aims for improving

overall performance but requires more memory or materialization of intermediate results

(Sciore 2020). In the case of the merging operator, we recognize a similar behavior. The

merging operator is partially blocking: it can return a partial merge, but has to wait

for all facts to be processed to return the final merged intervals. Two implementation

options, Streaming and Blocking , were integrated into the system. Algorithms 1-2 present

these strategies through the function next(), which returns a Boolean denoting whether a

new fact has been retrieved (the caller will later retrieve the fact itself through a separate

getter function get()). It makes use of Linear.next(), inherited from the linear filter scan,

to check for new facts in the pipeline; thus it retrieves the facts, merges their intervals,

and saves them into a mergeStructure, a hash map with the ground atoms as keys and

the collections of intervals as values.5 Every node (and hence, every MergeNode) handles

only one atom. Updating mergeStructure via add also returns a Boolean newChange to

note whether mergeStructure has been updated (i.e. it added new facts or new intervals

not subsumed by already-present intervals.)

5 Intervals are stored in a tree-like structure that merges those adjacent and overlapping automatically.
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Algorithm 2 Blocking Strategy in the MergeNode

1: mergeStructure← createMergeStructure()
2: currentPosition← 0
3: function Next
4: changed← false
5: if currentPosition≥mergeStructure.length then
6: while Linear .next() do
7: (newChange,mergedEntry)←mergeStructure.add(Linear .get())
8: changed← changed or newChange
9: if changed then
10: currentPosition← 0
11: set(mergeStructure.getAtPosition(currentPosition)) � set() automatically handles nulls
12: currentPosition← currentPosition + 1
13: return currentPosition<mergeStructure.length

Streaming. (Algorithm 1) This operator pulls a fact from the previous node, merges

the fact on-the-fly with the intermediate merging result, and forwards the merged fact

without waiting until all incoming data has been processed.

Blocking. (Algorithm 2) This operator receives and merges all available facts before for-

warding them: currentPosition keeps track of the facts already served downstream. Newly

received facts6 are only retrieved if the facts in mergeStructure have already been handled

(Line 5); currentPosition is reset to 0 if mergeStructure is changed : as we do not know

which facts have been changed,7 all of them will have to be served again downstream

(Lines 9-10). With set() (Line 11) we specify which fact will be retrieved with get() by

the next() call from the filter below (an incremental value as long as the next() is called

and no new facts are retrieved, 0 in case we have to start again because the structure

changed). The calls are performed as long as there are new facts to pull from the filter

above. By construction, as shown in Section 3.1, our termination strategies ensure ter-

mination also in the presence of cyclicity. Note that the possible merges of the facts have

already been performed during the execution of the pipeline and no outstanding merges

are left after termination.

Example 3.3.

Example 3.2 (continued) with the merge operator placed directly before the box.

The Streaming Merge reads the first three entries, sufficient to apply �[0,3]

to derive the intermediate result longTimeInvestor(A,B)@[3.1,4.2], before the

final longTimeInvestor(A,B)@[3.1,4.7] is derived; the Blocking Merge strategy

waits for all facts to be read then applies the box operator, deriving only fact

longTimeInvestor(A,B)@[3.1,4.7].

6 We have to be aware of changes in case the node is part of a cyclic structure.
7 This behavior has been chosen as a trade off between space and frequency of occurrence.
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3.4 Temporal joins

Example 3.4.

A person X that goes to a movie matinee M (between [14, 16)) gets a discounted ticket

(Rule 7 and database). In the example, only person A will get a discount.

goesToTheMovies(X,M),matineeDiscount(M)→ discountedTicket(X) (7)

D= {goesToTheMovies(A, C)@[15, 17), goesToTheMovies(B, C)@[21, 23),

matineeDiscount(C)@[14, 16)}
When joining two or more temporal predicates, we are interested in joining them not

only based on their terms, but also on the temporal interval of each fact. We call this

particular join a “temporal join.”

The temporal join in Temporal Vadalog is an extension with intervals of the Vadalog

slot machine join (Bellomarini et al. 2022), an enhanced version of the index nested loop

join (Garcia-Molina et al. 2009) with the support of dynamic in-memory indexing: instead

of having a pre-calculated index, it builds the index in-memory during the first full scan.

Algorithm 3 shows the operation for joining two predicates (n= 2). For each predicate

Ak with 0≤ k < n to be joined, we first use the index to get the next scanned fact that

matches the known terms used in the join, that is the joinTerm from the previous Aj

with 0≤ j < k (Line 8). If no further fact is found in the index, we do the full scan (Lines

10-14) until either a matching fact is found or the number of facts is exhausted. If no

further fact is found (Line 15-22), we continue the scan with the next Aj if it exists and

the current Ak is not negated. In case a fact has been found (whether from the index or

the full scan), we update the valid interval of the joined fact depending on the join logic

(Line 23): the difference for a negated literal, the intersection for a positive interval, or a

mixture of interval operations and set operations for U and S. Finally, we check whether

the resulting interval is valid and if not, if Ak is negated, we continue the scan with the

next Aj if it exists (Line 25-29), otherwise we continue with the loop; in case the interval

is not empty and Ak is not negated, we return true as we have found a valid joined fact

(Line 31-32); otherwise, we continue to retrieve the next “negated” fact.

As the temporal join supports negated atoms, it follows that Temporal Vadalog

supports stratified negation in safe rules.

3.5 Termination strategy for the infinite chase of intervals

In previous work (Bellomarini et al. 2021b), we discussed the fragments of DatalogMTL

that can generate infinite models that have finite representations in DatalogMTLFP . In

the following example, we depict one such case. This section explains how Temporal

Vadalog handles these cases to guarantee termination.

Example 3.5.

A 30-day Job Report is an economic indicator, released once every 30 days, whose content

can impact stock prices. Stock market analysts want to be aware of this indicator’s releases

to mark them as possible causes of stock price change over a certain threshold (K below).
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Algorithm 3 Temporal Join between two predicates

Input: predicates A0 and A1 to be joined, with A0 not negated
1: I0←A0.iterator()
2: I1←A1.iterator()
3: (a0, �0)← I0.getNext()
4: function Next
5: interval← �0
6: while true do
7: X← a0.joinTerm
8: (a1, �1)←A1.index.get(X )
9: if a1 is null then � Continue full scan, if index miss
10: while I1.next() do
11: (a1, �1)← I1.getNext()
12: A1.index.put(a1) � Update the index map for A1

13: if a1.joinTerm== a0.joinTerm then
14: break � Exit the inner loop if matching fact is found
15: if a1 is null then � No further matching fact A1 found
16: if A1 is negated then
17: return true
18: if I0.next() is false then
19: return false
20: (a0, �0)← I0.getNext() � Repeat loop for next a0

21: interval← �0
22: continue
23: interval← resultingIntervalFromJoinLogic(�1, interval)
24: if interval is empty then
25: if A1 is negated then
26: if I0.next() is false then
27: return false
28: (a0, �0)← I0.getNext() � Repeat loop for next a0

29: interval← �0
30: continue
31: if A1 is not negated then
32: return true

[30,30]30DayJobReport → 30DayJobReport (8)

StockPriceChange(X, V ), V >K →PriceEvent(X) (9)

PriceEvent(X), [0,1]30DayJobReport → PossibleCause(X, “JR”)

D = {30DayJobReport@[0 , 0 ],StockPriceChange(A,K + 1)@[121, 121], ...}
(10)

A DatalogMTLFP (resp. BP) program can fall into one of three categories (Bellomarini

et al. 2021b): (i) it is harmless , that is it satisfies the sufficient conditions for a finite

model; (ii) it is either DatalogMTLFP temporal linear or DatalogMTLFP
� union-free,

that is it satisfies the sufficient condition for a constant model under certain constraints;

(iii) otherwise, it belongs to the DatalogMTLFP category, a sufficient condition for a

periodic model.
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The Temporal Vadalog system guarantees termination by employing a two-phase

approach, one at compile time and one at runtime.

Compile time

In this phase, the planner detects the fragment of DatalogMTLFP :

(i) The planner checks if the program has “harmful” temporal cycles using

(Bellomarini et al., 2021b, Algorithm 1). If the program is harmless , it marks

modelKind=Finite.

(ii) In presence of harmful temporal cycles, the algorithm checks if the program is tem-

poral linear , that is, each rule has at most one body predicate mutually temporal

recursive with the head in the dependency graph of Π. If the program is temporal

linear and the operators allowed in temporal linear, defined over [t1, t2] are such

that t1 �= t2, then the algorithm sets the modelKind=Constant.

(iii) If the program is not temporal linear, the algorithm checks if the program is union-

free. A program is union-free if there are no rules of Π sharing the same head

predicate. If the program is union-free and the box operators �[t1,t2] are such that

t1 �= t2, then the algorithm sets the modelKind=Constant.

(iv) If the program does not meet the conditions to be temporal linear or union-free,

we assume it is in DatalogMTLFP and set modelKind=Periodic.

At this time, the system computes the repeating pattern length pLength in all non-finite

cases, based on the pattern lengths combination of the different Strongly Connected

Components of Π. The resulting facts are of the form P (τ)@� and {P (τ)@〈o1, o2〉, n},
while the intervals are given by 〈o1 + x ∗ pLength, o2 + x ∗ pLength〉 for all x∈N, where

x≥ n, in the case of periodic, or 〈o1 + x ∗ pLength,∞〉, in the case of constant . Functional

components called termination strategies wrap all filters in the pipeline, to prevent the

generation at runtime of facts leading to non-termination.

Runtime

In this phase, the system behavior depends on the detected fragment (the one associated

with the set modelKind), denoting fragment awareness . If modelKind is finite, non-

termination can only be caused by Datalog recursion, and standard termination strategies

are employed. The reasoning produces facts of the form P (τ)@�. If the model is constant

or periodic, the termination strategies recognize facts generated by the “non-finite” filters

and mark the matching repeating patterns. In the case of a constant model, the base

interval of ground atoms is converted into 〈o1 + x ∗ pLength,∞〉, and the generation

stops. If the model is periodic, the termination strategies related to the “non-finite”

filters represent the numeric intervals with the equivalent of their pattern-based symbol,

so that repeating sub-intervals are not generated, and termination is guaranteed.

Looking back at Example 3.5, at compile time the planner determines that

modelKind=Periodic, and, from Rule 10, that pLength= 1. At runtime, after fact

30DayJobReport@[60, 60] is generated, the termination strategy for PossibleCause infers

that n= 0 and so that all facts generated from Rule 8 have form 30DayJobReport@[x×
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(a) (b) (c)

Fig. 3. Basic time series operators in Temporal Vadalog: a) Shifting by 1; b) Rolling operator
with n= 3; c) Join of the extended intervals with the original ones.

30, x× 30 + 1] for x≥ 0, and their generation is put on hold. Applying the join for

PriceEvent@[121, 121] and the pattern generated from Rule 8-Rule 10, x∈N such that

[x× 30, x× 30 + 1]∩ [121, 121] is not an empty interval and corresponds to x= 4. We can

conclude that PossibleCause(A,“JR”)@[121,121].

4 Time Series in Temporal Vadalog

Time series analysis is vital across many sectors, using historical data to identify trends,

detect anomalies, predict events, and inform decisions to improve efficiency, reduce costs,

and allocate resources. While many Time Series Database systems exist, considering time

series analysis relevance in data science, we want to explore how to handle it with a more

general-purpose system like Temporal Vadalog. allowing us to use common operators for

time series in the broader scope of reasoning applied, for instance, to KGs, specifically

exploiting its characteristics of explainability and context-awareness, especially important

for domains dealing with sensitive data and particular needs.

In this section, we will present how the Temporal Vadalog System can be used to rea-

son over time series, by showing how many of the core functions of time series databases

are easily and immediately available by using DatalogMTL operators, monotonic tem-

poral aggregations and arithmetic operations. Since we focus on regular time series,

the examples in the following sections are intended to be used in discrete time (e.g.

timestamps).

4.1 Basic operations

Temporal Vadalog natively handles the sum and other arithmetical operations over the

same time intervals. This section covers other basic operations that deal with time series:

shifting, rolling, and resampling. We will proceed informally by example, as the temporal

operators’ semantics has already been introduced.

Shifting

Shifting re-positions the time points of a time series by adding a delay, achieved through

the box or diamond operator by stating a fact holds at t if it held at some past time point.

The example adds a lag of one unit of time to the stock facts, where stock(X,Value)

represents any time series X with value Value. Figure 3a shows the shifting operation

over a discrete timeline.
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[1,1]stock(X,Value) → shiftedStock(X,Value) (11)

Rolling

Rolling defines a fixed-size window that slides through a time series one data point at a

time, allowing for the computation of statistics over the data points within the window.

A rolling window of size n is achieved by extending each data point’s interval by [0, n)

with the diamond operator (Figure 3b). The time series is later joined with the original

one, applying the full window’s data points to each specific interval for further operations

(Figure 3c where at t= 3, 4 we have the n= 3 rolling windows.)

[0,n)stock(X,Value) → extended(X,Value) (12)

stock(X,Value), extended(X,Roll)→ rolling(X,Roll) (13)

Resampling

The resampling of a time series changes its time resolution. Working with different time

resolutions (e.g. one monthly series and one daily) may require this change in both

directions: downsampling , lowering the frequency of the data (e.g. daily to monthly),

and upsampling , increasing the frequency (e.g. monthly to daily).

Downsampling. In Temporal Vadalog we can achieve downsampling by using the aggre-

gation operator �unit , where unit is the frequency we want to transform our time series

into. This operator was introduced in a previous work (Bellomarini et al. 2021a).

�monthdailyStock(X,Value)→monthlyStocks(X,Value) (14)

The set of facts that were valid daily will be now valid over the entire month. To obtain

the final value for the monthly data point, we can use arbitrary aggregations, depending

on the domain (e.g. arithmetic mean, minimum, maximum, etc.)

Upsampling.We can convert a time series to a higher frequency by using the temporal join

with a series with a higher frequency that we can create on the spot with a diamond opera-

tor. In the following example, we will convert a weeklyStock(Company,Value,WeekStart),

where WeekStart is expressed in a day unit, into a daily time series.

[1,1]dailySeries(X), Y = X + 1 → dailySeries(Y ) (15)

[0,7)weeklyStock(C, V,W ) → nextWeek(C, V,W ) (16)

dailySeries(Z),weeklyStock(C, V1, W1),

nextWeek(C, V2, W2), W =W1 +
(V−V1)(W2−W1)

(V2−V1)
→ upsampling(C,W ) (17)

Note that Rule 15 generates an infinite chase of intervals, which requires us to employ a

mechanism for terminating the generations like the strategies discussed in Section 3.5.
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(a) (b)

Fig. 4. From simple moving average (a) to centered moving average (b), with n= 3.

4.2 Moving averages

Moving averages use the rolling window described above to calculate different types of

averages, typically to smooth out fluctuations and noise.

Simple moving average (SMA)

In this moving average, each data point contained in the window has the same weight

in the calculation of the average. Hence, we compute first the rolling window and then

derive the arithmetic mean of the data points (Figure 4a).

rolling(X, Y ),Avg = avg(Y )→ sma(X,Avg) (18)

Exponential moving average (EMA)

With the EMA operator we give more importance to the more recent data points. The

first value is calculated through the simple moving average. We omit this from the exam-

ple for conciseness. The following values are calculated as a sum (Rule 21) of the current

data point multiplied by the parameter k (where k= 2/(1 + n), n being the size of the

window) (Rule 20) and, using recursion, the previous moving average multiplied by 1− k

(Rule 19).

[1,1]ema(X), Y = X ∗ (1− k) → emaInput(Y ) (19)

stock(X, V ), Y =X ∗ k→ emaInput(Y ) (20)

emaInput(X), Y = sum(X)→ ema(Y ) (21)

Centered moving average (CMA)

In the SMA operator, a window of n data points will yield a value at the right extremity

of that window; in the Centered Moving Average (CMA), instead, the data point of

reference for the moving average is the data point at the center of the window. For any

odd n window, this is obtained by calculating the SMA and then shifting it by n/2, as

shown by Figure 4a-b.

[0,n/2)sma(X,Y ) → cma(X,Y ) (22)
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4.3 Stock and flow

Performing mutual conversion between stock and flow is a helpful feature in multiple con-

texts. Transformation operators, in continuous time, can be computed through derivatives

and integrals, while in discrete time one usually considers the difference between two time

points. We focus on the discrete version, as the discrete (integer) timelines are the usual

implementation choice in time series databases (Dyreson 2018).

Stock to flow (discrete)

This operator calculates the flow as the difference between the stock at t and t− 1. To

do so in Temporal Vadalog, we shift the time series by [1, 1] and compute the difference

between the values from the original and shifted time series.

[1,1]stock(X,V ) → shiftedStock(X,V ) (23)

stock(X, V 1), shiftedStock(X, V 2), V = V 1− V 2→ stockToFlow(X, V ) (24)

Flow to stock (discrete)

This operator, on the other hand, calculates the stock as the cumulative sum of flows

from the beginning of the time series up to the current data point. To do so in Temporal

Vadalog, we extend the flow time series to the interval [0, T ], where T is the last interval,

and then we compute the sum over each data point.

[0,T )flow (X,V ) → rolledFlow(X,V ) (25)

rolledFlow(X, V 1), V = sum(V 1)→ stock(X, V ) (26)

4.4 Seasonal decomposition

Seasonal decomposition separates a time series into three different components: trend,

seasonality, and residual. Regular, repeating events such as holidays and seasonal shifts

impact variables similarly from one period (e.g. a year) to the next. For this reason,

extracting the seasonality from the time series allows having a better understanding of

the data. In this section, we compute seasonal decomposition with the additive model.

Trend

The trend component is calculated as the Centered Moving Average (CMA) of the time

series, as explained in Section 4.2, abbreviated in the following as a call to cma with T

the length of the period (e.g. 12 months).

stock(X, Stock),Value = cma(Stock ,T )→ trend(X,Value) (27)

Seasonal component

The seasonal component is extracted by calculating the per-period averages over the

difference between the time series and the trend component, which we call detrend . In
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the following example, we calculate the seasonal component over the period N (e.g. 10

years), with T representing the length of the period.

[T,T ]detrend(X,D),Sum = sum(D),Value = Sum/N → seasonal(X,Value) (28)

Residual

Finally, the residual is the time series when the seasonal component and the trend are

taken out.

detrend(X,D), seasonal(X, S),Value =D− S → residual(X,Value) (29)

This concludes our section on time series operations in Temporal Vadalog.

5 Experiments

For the experimental evaluation of our system, we conducted several performance tests.

Previously (Bellomarini et al. 2022), we presented the Company Ownership experiments,

a set of five scenarios about ownership changes in companies, whose historical informa-

tion was stored in Knowledge Graphs of increasing sizes. In this paper, we present new

results of the same scenarios, with the optimized reasoning capability of the current

Temporal Vadalog and more dynamic datasets (Section 5.1), as well as new results from

the experiments created with iTemporal (Bellomarini et al. 2022), an extensible genera-

tor of temporal benchmarks, in Section 5.4. We also show the results of new experiments:

We replicated the experiments from the MeTeoR paper (Wang et al. 2022), the Lehigh

University Benchmark ones in Section 5.2 and the Meteorological ones in Section 5.3. We

also evaluate the performance of reasoning over time series in Section 5.5.

Setup

We run the experiments in a memory-optimized virtual machine with 16 cores and 256GB

RAM on an Intel Xeon architecture. Each experiment was run 3 times, and the results

shown are the arithmetic mean of the elapsed time of each set of runs. The time out is

set at 4,000 s (∼1 hour and 7 minutes).

Datasets

Our datasets comprise real-world , realistic and synthetic data. Our Company owner-

ship experiments have been run over a real-world dataset (RW1721) extracted from the

Italian Companies KG (Bellomarini et al. 2020), in a slice comprising the (continuous)

ownership edges from 2017-21. The realistic datasets (MN7-MN28) represent company

ownership graphs from 700 thousand to 2.8 million nodes generated in the likeness of a

real-world dynamic structure, with their ownership changes over 5 intervals and a high

change rate, to test performance. The datasets for the Lehigh University Benchmark

are as described in the MeTeoR paper (Wang et al. 2022); the Meteorological exper-

iments employ 3 datasets extracted from the Maurer et al. (2002) dataset at 5/50/500
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stations. For the iTemporal experiments, the synthetic datasets (S1-S10M) are gener-

ated with a random distribution over a given domain and include from 1K to 10M facts.

The Time Series experiments were run over the NASDAQ Composite Index (NASDAQ

OMX Group 2023), a daily time series from February 1971 to March 2023 comprising

13596 records. From this dataset, we extracted the last 1% (NQ1), 10% (NQ10), and

50% (NQ50) so to have 4 total data sizes. Details about the datasets employed in the

experiments can be found in the supplementary material.

5.1 Company ownership experiments

Similarly to Example 1.1, we ran experiments on company ownership changes over time.

Scenarios

The experiment scenarios contain different elements: 1) Temporal : diamond operator,

recursion, and constraints on variables; 2) Negation: recursion and stratified negation;

3) Aggregation, temporal aggregations; 4) Diamond : diamond operator and recursion;

5) Box : box operator and recursion. We ran each scenario on MN7-28 and RW1721;

Box and Diamond were also run on MeTeoR 1.0.15 for comparison, as they do not

include features not supported by MeTeoR.8 All scenarios were run with the always

merge strategy; Box was tested also in the minimal and earliest merge.

Discussion

The performance of Temporal , Negation and Aggregation are shown in Figure 5a. They

all show good scalability, with the elapsed time increasing linearly over the dataset sizes.

Temporal , the most complex scenario, is the most expensive as well but with just over 182

secs for the biggest datasets, while Aggregation and Negation perform two times faster

at 24-99 secs. Figure 5b shows the results for Box and Diamond in both Vadalog and

MeTeoR.9 Vadalog performs in a similar linear-increase fashion to the other scenarios,

about 100 times faster than MeTeoR, which exceeds the 4,000 secs threshold in the MN20-

28 datasets in both scenarios. Merge strategy-wise, we see that the always merge (am) Box

is the most expensive, running at 180 secs for MN28, while earliest merge (em) Box is on

average 8% faster, and similar to those of Diamond at around 41-170 secs. The nature of

the datasets, having many adjacent facts, explains it: by merging strategically, fewer facts

are sent down the pipeline, and fewer operations are needed while merging all the facts at

one time may be superfluous. Figure 5c shows the performance on the real-world dataset.

MeTeoR results are not shown as they all exceed the timeout. In Vadalog, Negation and

Temporal are the fastest at 102 secs, while Aggregation is the most expensive at 183 secs.

In MN7-28, Aggregation performed well compared to Temporal and Negation, but in

RW1721, it is the worst due to having 12 times more intervals, decreasing performance.

As for the merge strategies , RW1721 shows similar performance to MN7-28, with Box em

8 Due to an incompatibility between data and the seminaive evaluation in MeTeoR, which let the
execution run indefinitely, we had to run the MeTeoR experiments in naive mode.

9 Due to the difference in performance, the plot for MeTeoR is shown separately within the figure.
Appendix, Figures 4-5 show a larger rendition of these curves.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5. (a) Temporal , Aggregation and Negation on MN7-MN28 over time; (b) Box and
Diamond in Temporal Vadalog and MeTeoR; (c) RW dataset in all scenarios; (d) LUBM

Non-Recursive experiment; (e) LUBM Recursive experiment; (f) Meteorological experiments;
(g) iTemporal Box and Diamond; (h) iTemporal Union and Intersection; (i) Time Series.

the best performer at 131 secs and Box am the worst at 145 secs. The full result tables

and larger versions of all graphs can be found in the supplementary material.

5.2 Lehigh university benchmark experiments (LUBM)

The LUBM benchmark for DatalogMTL (Wang et al. 2022) in a modified form Walega

et al. (2023) measures the efficiency of forward-propagating rules in MeTeoR in the inter-

val [0, 300] for four different dataset sizes (5, 10, 15, and 20 million facts) and two different

programs (one recursive and one non-recursive program).

Discussion

We used the published program and dataset from Walega et al. (2023) and repeated the

experiments for MeTeoR (seminaive mode) and our system. The results are presented

in Figures 5d-e and show an overhead for MeTeoR of a factor of at least 3 for the

non-recursive program and of a factor of at least 30 for the recursive ones (R). The
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main factor for better performance in Vadalog is the join, which in recursive programs

especially shows the benefit of indexing already-seen atoms.

5.3 Meteorological experiments

We adapted the rules of the experiments on meteorological data (Maurer et al. 2002)

in Wang et al. (2022). The programs W1 and W2 are run over a filtered version of

this dataset: W1 regarding high temperatures, and W2 regarding heavy winds. For this

reason, we have to consider that while the original dataset is the same, W1 works with

approximately 10 times the facts of W2. MeTeoR runs in seminaive mode.

Discussion

The results are shown in Figure 5f. Both W1 and W2 perform well in Vadalog, with

Vadalog being 28 times faster than MeTeoR for W1 at the W50 size (MeTeoR exceeds

the time out for W500), and around 4 times faster for W2.

5.4 iTemporal experiments

Considering the previous experiments, we observe a substantial speedup of the Temporal

Vadalog System with respect to MeTeoR (seminaive mode). To confirm these mea-

surements, we used iTemporal (Bellomarini et al. 2022), a generator for DatalogMTL,

to generate specific experiments with different data sizes targeting the main temporal

operations (i.e., the application of temporal operators, joins, and unions).

Discussion

In Figures 5g-h we present the results, which show that our system outperforms MeTeoR

with a factor of 3 to 4 (depending on the benchmark) for 10M facts and reinforces the

observations of the previous benchmarks (e.g. it scales linearly).

5.5 Time series experiments

We executed the computation of the exponential moving average (EMA) on Vadalog and

the Time Series Database InfluxDB (Version 2.6.1) over the NASDAQ Composite Index

(NASDAQ OMX Group 2023). InfluxDB is a NoSQL time series database with a distinct

data model optimized for time series operations. (InfluxDB 2023) For a fair comparison

with the streaming-based approach of Vadalog, we compare the total time of loading and

querying the data (end-to-end process).

Discussion

Results are shown in Figure 5i. Our system outperforms InfluxDB by 2.5x for the largest

dataset, considering the end-to-end measurement. We note that the experiment’s aim is

not to compare against the performance of InfluxDB, but to show that our system can

achieve reasonable reasoning times in an end-to-end manner.
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6 Related Work

The 1980s see the first proposals for a temporal version of Datalog with Datalog1S
(Chomicki 1990; Chomicki and Imielinski 1988, 1989), using successor functions, and

Datalog extensions with temporal logic operators from Linear Temporal Logic with

Templog (Abadi and Manna 1989), both with further work from Baudinet (1992, 1993,

1995) and Computation Tree Logic with Datalog LITE (Gottlob et al. 2002). Further

work on constraint databases include: Brodsky et al. (1997); Maher and Srivastava

(1996); Revesz (2002). Interest in the application of logic programming over the dense

timeline focused on Metric Temporal Logic (Alur and Henzinger 1993; Koymans 1990)

in the work of Brzoska (1995, 1998). More recently, MTL has been considered as a for-

malism that can provide an expressive temporal extension to Datalog with DatalogMTL

in the work of Brandt et al. (2017, 2018), who also presented a practical implementa-

tion through SQL rewriting, although non-recursive. Theory for continuous semantics

DatalogMTL (Tena Cucala et al. 2021; Walega et al. 2019; Walega et al. 2020a; Walega

et al. 2020b) as well as for pointwise (Kikot et al. 2018) has been studied extensively

in recent years, and most recently with MeTeoR (Wang et al. 2022; Walega 2023), a

reasoner employing a combination of materialization and automata-based reasoning, and

that we have referred for our comparative experiments.

Another comparable system, the Dyna language solver, proposed by Vieira et al. (2017)

employs fixed point evaluation but computation may fail to terminate, while Vadalog

employs the isomorphic chase with termination strategies, hence a program will always

terminate; the Dyna solver uses forward or backward chaining depending on the strat-

egy chosen by its reinforcement learning optimizer, whereas Vadalog uses a pull-based

approach for evaluation, more efficient in resource usage for query answering.

The non-temporal version of the Vadalog System (Bellomarini et al. 2022) has been

proposed as a system to reason over KGs (Bellomarini et al. 2020) with rules expressed in

Warded Datalog± (Bellomarini et al. 2018). Other reasoners of similar expressive power

include PDQ (Benedikt et al. 2015), Llunatic (Geerts et al. 2013), Graal (Baget et al.

2015), DLV (Leone et al. 2006), and RDFox (Nenov et al. 2015).

7 Conclusion

In this paper, we introduced a new framework and architecture for reasoning with

DatalogMTL, highlighting its efficiency and ability to handle complex tasks, like the

reasoning over time series, through multiple performance evaluations. We exceeded the

capabilities of existing DatalogMTL reasoning tools. Moving forward, we aim to enhance

the reasoner and explore other fragments of DatalogMTL.
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