ON THE wm7*- AND Xx-CONJUGATES OF & SPACES
H. W. ELLIS

1. Introduction. Marston Morse and William Transue (9, 10), motivated
by their theory of bilinear functions, introduced and studied vector function
spaces called M T-spaces for which each element of the dual is represented
by an integral with respect to a suitable (C) measure. In this paper the
definition of real M T-spaces is generalized to give spaces, called M T*-spaces,
for which part but not all of the dual is of integral type and this part is
called the MT*-conjugate of the space. In the theory of 2 spaces (6) a con-
jugate space is also defined. It will be called the A-conjugate below. An &
space is an M T*-space if and only if it contains &, the space of all continuous
functions with compact support. The purpose of this paper is to compare the
MT*- and M-conjugates of ®* spaces that are MT*-spaces .

When E is countable at infinity the MT*-conjugates and A-conjugates
coincide. Conditions ensuring that the MT*-conjugate contains the A-con-
jugate are given in Theorem 3.1, that the A-conjugate includes the MT*-
conjugate in Theorems 4.1 and 4.2. Examples are given of £ spaces, including
the space @' (4, p. 13), for each of which the A-conjugate strictly contains
the MT*-conjugate. Theorem 4.2 shows that, for a class of spaces E more
general than the spaces E that are countable at infinity, the \-conjugate
always contains the M T*-conjugate. Whether or not this is true for all E is
not known. This paper makes essential use of many of the results of references
(3, 4) and (8). The author wishes to express his thanks to Professor Morse
for making available pre-publication copies of (8) and (10).

2. MT*- and -spaces and their conjugates. Let E be an arbitrary

locally compact space and let R¥ denote the space of real valued functions
on E.

Definition 2.1. We call 4 a (real) M T*-space if: (i) 4 is a vector subspace
of RZ, (ii) 4 contains &, (iii) 4 contains |x| if it contains x and (iv) there is a
non-trivial, monotone semi-norm N4 defined on 4.

We note that a real M T*-space satisfies condition (i) in the definition of
real M T-spaces apart from the requirement that & be dense in 4 (9, p. 168).
If A’ denotes the topological dual of 4 then, as in (9, Corollary 10.1), for
every ® € A’, the restriction of ® to & defines a Radon measure ¢ on E
such that for every f € &,

@1) a(f) = [7as.
Received August 12, 1957. Written while the author was an Alfred P. Sloan Research
Fellow.
381

Downloaded from https://www.cambridge.org/core. 30 Oct 2025 at 18:02:35, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core

382 H. W. ELLIS

The set of elements ® in 4’ for which (2.1) holds for every f € 4 will be
called the MT*-conjugate of 4 and denoted by A* The mapping & — ¢
of A’ into the vector space of all Radon measures on E is an isomorphism
defining the M T*-measure conjugate %* of 4 (cf. 9, p.169). If ¢ € A*, every
f € A is integrable (¢) and to ®(f), ® € A*. The definition

H¢Hg{* = sup M,
x €A, N (x) >0 N*(x)
for all ¢ € A, gives [[¢[lgpx = |[®|[4.

A real MT-space is an M T*-space for which 4’ = A4*. Conversely, if 4 is
an MT*-space for which 4’ = A%, it is a real MT-space. Condition (ii) for
M T-spaces is then satisfied by hypothesis. If & is assumed to be non-dense
in 4 then (1, Lemme, p. 57) implies the existence of ® € A’, not the zero
element, vanishing in &. The corresponding ¢ is then the zero measure so
that for some f € 4, 0 = [fdp # ®(f) contradicting the fact that 4’ = 4*.
Examples 3.1 and 3.2 of (10) show that there are MT*-spaces in which &
is dense that are not real M T-spaces.

Definition 2.2 (11, p. 53). Let M, M be families of subsets of E closed under
the formation of countable unions and complements where M’ 1is a proper sub-
famaily of M and has the additional property that M € W', 4 € E, AC IMN
imply that A € WM. For an M-measurabdle real valued function f(P) on E, let
| f oy the ess sup of | f(P)|, be the infimum of the set of numbers « such that
E, = (P:| f(P)| < @) is in W', if this set is non-void. Otherwise let || f ||... Let
Lo = LW (E, M, M) denote the subspace of RE for which ||f||, is defined and
Jfinate.

The space &, is an MT*-space with semi-norm ||-||,, if every continuous
function with compact support is Jt-measurable and in particular if I con-
tains all the relatively compact Borel sets on E. The elements of 4’ to which
correspond finitely additive measures that are not countably additive are not
in A*. If E = (0, 1), if M denotes the Borel sets on E and P’ the Borel sets
of the first category on E, &, is an M T*-space for which 4* reduces to the zero
element of 4’ (2, Corollary 1, p. 186).

If A is an M T*-space, N4 the semi-norm on 4, N4 will be called reflexive if

(2.2) sﬁ?(x) - sup< fxdd>l lellgx < 1,0 € 2{*)

The left side of (2.2) is never less than the right side. When N4 is reflexive
and the supremum in (2.2) can be replaced by sup [|x|d|¢|, for all ¢ € A*
with [|¢]lgpx < 1, N4 has a natural extension to all of R”. If 4 is an M T-space
N4 is always reflexive and has such an extension (9, § 11). For the example
above with 4* = 0, M4 is not reflexive.

Length functions and the corresponding function spaces were introduced
in terms of non topological spaces E and general measures in (6). In this
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paper we suppose given a positive Radon measure p on an arbitrary locally
compact space E. If A(f) is defined and 0 < A(f) < « for every u-measurable
function f(P) with 0 < f(P) < = almost everywhere, A is called a length
function if:

L1 M) = 0 whenever f is p-negligible,

(L2) M) < A(g) whenever f(P) < g(P) for all P € E,

L3)  A(+9 <A+ @,

(L 4) Akf) = EA(f) for all & > 0,

(L 5) f1i(P) < f2(P) ... for all P implies that A(supf,) = supA(fn)-

A length function A will be called continuous at infinity if, for every f,

(L 6) A(f) = supx Mfxx),

for all compact sets K € E, where xx denotes the characteristic function of
K. If [f(P)] is p-measurable, A(f) will mean A([f]). A function f (set B) will
be called \-negligible if N(f) = 0 (A (xz) = 0). & = (K, u) will denote the
vector subspace of R consisting of all y-measurable f € R with A(f) < .
@ will be an MT*-space if and only if it contains &. L*» = ILME, u) will
denote the normed space associated with €. Every space L* is a Banach space
(6, Theorem 3.1).

For every length function A a A-conjugate length function A* is defined by

23) M (@) = sup [ [(P)e(Pyin < =,

the supremum being taken for all f € @ with A(f) < 1. The space @* will
be called the A-conjugate of ¥ and L} A length function is reflexive if
M) = N*¥*(f) for every non-negative u-measurable f. Necessary and sufficient
conditions for the reflexivity of A are given in (7, (4.1)) (for a general measure
space). It can be shown that when A is reflexive and & is an MT*-space
for which the M T™-conjugate contains the A\-conjugate then X is also reflexive
as a semi-norm on ¥, |¢| € A* if ¢ € {§* and

v0) = sup (17 1ol e < 1,6 € )

permitting a natural extension of A to all of Ry, .

Let u denote a positive Radon measure on E. For 1 < p < o, N,(f) =
(ff ?du)1’? is defined and non-negative for every u-measurable f that is defined
and non-negative almost everywhere. 0, then defines a length function. (L 1)
follows from (3, Théoréme 1, p. 119), (L 2) from (3, Proposition 10, p. 109)
and (L 5) from (3, Théoréme 3, p. 110) all applied to f?, and (L 3) and (L 4)
from (3, Proposition 2, p. 127). The u-negligible and N,-negligible sets coin-
cide. If E is countable at infinity A will be continuous at infinity. If E is
arbitrary the length function 9N, will not be continuous at infinity if E con-
tains a locally negligible set that is not w-negligible. By (3, Théoréme 5,
p. 194) the spaces & and & with A = RN, coincide.
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For every u-measurable f(P), with 0 < f(P) < o almost everywhere,
write

No(f) = supx Ny (fxx),

where K runs through the compact subsets of E. It is easily verified that 3,
is a length function that is continuous at infinity and that the 9t,-negligible
sets are the locally negligible sets of E. We write ¥ and L? for the spaces
@, IL* with A\ = N,. From (4, Proposition 7, p. 13) it follows that ¥ is the
space of essentially integrable functions for u.

LeEMMA 2.1. If f € @, the set E(f) = (P:f(P) # 0) is the union of a count-
able sequence of compact sets and a locally negligible set E,.

THEOREM 2.1. If every locally null (u) subset of E is u-negligible, in particular
if E is countable at infinity, ¥ and ¥, 1 < p < o coincide. If E contains a
locally null subset that is mot u-negligible, ¥ strictly contains ¥, L? and L?,
1 < p < =, are equivalent.

Lemma 2.1 is the analogue of (3, Lemme 2, p. 194). It is implied by (4,
Corollaire, p .13) for p = 1. Theorem 2.1 for p = 1 is a consequence of
results in (4, § 2). In both cases the extension to all p, 1 < p < = is not
difficult.

When p = « and I denotes the u-measurable subsets of E, two length
functions are obtained from Definition 2.2 by taking: (1) A = N, = || . ||,
with I’ the u-negligible subsets of E; and (2) A = N, = || . ||, with M’ the
locally negligible subsets of E. 0. is continuous at infinity, N, is not if E
contains a locally negligible set that is not u-negligible. The & spaces
L (E, M, M) corresponding to (1) and (2) respectively will be denoted below
by € and £°. These spaces are MT*-spaces. Since N (f) < N, (f, L is
always contained in €. In contrast to the case with p < «, L® and L™ need
not coincide. For example, if E contains a locally negligible set D with
(D) = o, fo(P) = axp is in € for every finite ¢ and the equivalence
classes fa in L” are different for different positive values of a. Each f, is in
€ but all belong to the equivalence class of g(P) = 0. We note that the
dual of ! is €.

3. The A-conjugate of 4 = . In the sequel E will denote an arbitrary
locally compact space, u a positive Radon measure on E, K, K; compact
subsets of E, and X\ will be an arbitrary length function for which ¥ contains
f£. M(B) will be an abbreviation for A(xz). A function g is locally integrable
if it is w-measurable and if gxx is integrable (u) for every K. (Since E is
locally compact this is equivalent to the definition in (8)).

When & is an MT*-space it contains the characteristic function of every
relatively compact u-measurable subset of E. ¥ contains ® and since, given K,
there exists a continuous function f € & coinciding with xx in K, if B C K
is u-measurable A(B) < M(K) < A(f) < « and xz € L . It then follows from
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(2.3) that every g € ¥ is locally integrable. Thus g defines a Radon measure
g.u (8, § 1) with values

3.1) Jrae.w = fjean=etn.e € @,

for all f € K. If for every g € %, (3.1) extends to all f € &, the A-conjugate
of  is contained in the M T*-conjugate. Since the right side of (3.1) is finite
for all f € @ if g € 2%, (8, Theorem 1.1) shows that it is sufficient to show
that the left side is also always finite. There is no loss of generality in assuming
that g is positive (that is non-negative) so that g.u is a positive Radon
measure on E.

Lemma 3.1. If f € Ry is measurable (u) and g > 0 is locally integrable and
if X = UK, then

* *
(3.2) f fexxdp = f fxxd(g.p) < @,
and both are finite if f € & and g € D*,

Proof. The equality (3.2) is a corollary of (8, Lemma 5.1). When f € &
and g € %, [*foxxdp < [fgdu < .

Lemma 3.2. If f € @ is a positive lower semi-continuous funciion and g € ¥
then (3.1) holds.

Proof. There is no loss of generality in supposing that g is non-negative.
Then, using (3.1),

Jrae.w = sip [ra.wy = s [hedn< [edn < .
hER heR
o< s o<n s

Note. Lemmas 3.1 and 3.2 are also a consequence of (4, (Propositions 2
and 3, p. 9, and Theorem 1, p. 43)). See also (8, Note, p. 478).

LemMA 3.3. If g € Ry is locally integrable every u-negligible set is g . u-
negligible.

Proof. Suppose that B is p-null. If g € R.%, fng du = 0 by (3, Théoréme 1,
p. 119). Given e > 0, there exists an open set U O B with u(U) < %e and a
I.s.c. function & > xpg with u(k) < %e. Then env. sup. (xv, #) is Ls.c., > xvg

and
* * *
f ngdﬂ<f hdﬂ‘l‘f xvdp < e

If g is locally integrable, the measure g . p is defined > 0 and, by (3, Corol-
laire 4, p .158), and Lemma 3.1,
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(g 1*(B) < (g 1)*(U) = sup g u(K) = sup [ xxdls 1)

= SuprKg dp < fog dp < e
KCU
Since e is arbitrary B is g . p-null.

THEOREM 3.1. Let g € @*. Then (i) g is in the A-conjugate D* and is in
the MT*-conjugate if and only if [fd(g.u) = O for every f € @ for which fg
vanishes in E and (ii) if the M T*-conjugate does not contain the N\-conjugate, E
contains a locally negligible set B with N(B) < o, with N(U) = = for every
open set U D B and * contains g with gxg = 0 and with (g. p)*(B) = «.

Proof. (i) Suppose that g € &* is positive. If f € ®, [fgdu < ® and, for
fixed f, the set where fg % 0 is the union of X, the union of a sequence of
compact sets, and a p-negligible set E'. If Ey = (Pifg(P) = 0), E = E)\JE'UX
and E, is measurable (u). Suppose that f is non-negative. Using Lemma 3.1,

Jrwan= [sexatn = [ixxite ) < [rate.

and, using Lemma 3.3, we have
[rae.m < [ xwi@w + i w + [T xae.
= [ xmdte ) + [redn.

Equality then holds if
*
[ xmite ) = 0

Conversely, if g € @* and if g is in the M7T*-conjugate, then, whenever
f € and fg vanishes in E, ffd(g w) =g(f) = ffg dp = 0. When one or
both of f, g is not positive the extension is trivial.

(ii) Suppose that @%* contains g with g not in the MT*-conjugate A*.
Since g+ and g, the positive and negative parts of g are also in ©* and g+
and g~ in 4* would imply that g was in A*, there is no loss of generality in
assuming that g is positive. There then exists a positive f € & with fg(P) = 0
in E but with [*fd(g.x) > 0 and, since [fgdu = 0 (8, Lemma 2.1) implies
that [*fd(g.n) = =,

Let E, = (Pf(P) > 1/n). The p-measurability of f implies that E, is
u-measurable. Since xg, < 7 f(P), N(E,) < n\(f) for each n. Furthermore

fxE,,gdu<nffgdp=0, n=12...,

sup fXE,.an(g . u) = sup J‘ Xzanxg dp = 0,
KCE KCE

so that each E, is locally negligible.
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Let f,(P) = min. (n,f(P)). Then f, increases to f and by (3, Théoréme 3,
p. 110),

sups [ hxed(e . w) = [ Falg.n) = =,

Thus, for all sufficiently large #,

f*fn xe,d(g . u) >0,

* *
f xXEd(g . 1) > n_lf faxz,d(g.n) >0,

and (8, Lemma 2.1) implies that
*
(33) [ 3oty = o.

Finally, for all # for which (3.3) holds, A(U) = « for every open set U
containing E, since otherwise Lemma 3.2 implies that

J it < [xoite.n) = [xordn < 20N @) < =,

giving a contradiction.

As a corollary we list some of the conditions that imply that the MT*-
conjugate A* of 4 =  contains the A-conjugate £*:

(1) E is countable at infinity.

(2) For every g € *, g. u is bounded.

(8) For every g € ®* and every u-measurable B, (g.u)*(B) = « implies

that AM(B) = .
(4) For every locally integrable g, (g. u)*(B) = o, A(B) < =, imply that
M(g) = =.

(5) If B is u-measurable and if A(U) = « for every open set U containing
B then A\(B) = o,

(6) M(E) < = or A(K) is bounded for all K in E.

If 4=, 1<p< », and B is u-measurable then N,(B) = u*!/7(B)
which implies (5). To prove (6) suppose that A(E) = M < o or that
MK) < M < o« for every K C E. The existence of B with (g. u)*(B) = «
implies that (g.u)*(E) = « and (3, Corollaire 4, p. 158) implies that E
contains compact subsets with arbitrarily large (g.pu)-measure. Then

M (g) > sups [ e du/MK) > supx g . w(K)/M = =,
so that (4) applies. The spaces €, ¥ satisfy (6).

THEOREM 3.2. There exist M T*-spaces &, with N reflexive and continuous at
infinity, for which the \-comjugate strictly comtains the MT*-conjugate. In
particular the spaces ¥, 1 < p < o, are of this type for suitable p, E.
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Proof. Let E, D, T,(y) and u be defined as in the example of a locally
compact space E that is not countable at infinity given in (3, Exercice 4,
p. 116) and let ¢ = xz_p. Then N, (g) = L and g € L™ = @* X\ = R,. Asin
(8, Exercice 4) xp € ¥ but is not integrable (g . u) so that g does not belong
to the MT*-conjugate of ¢!

To give an example for 1 < p < « let E, D be as before but for § fixed,
0<é<1, P,; the point (1 — n,1i/n?), define B(P,;) = n~2% and define
B(P) = 0 for the points (0, y) in E. Let u’ denote the measure determined
by the masses B(P). Define g(P) = n®! for P=P,; :=0,1,...,n%
n=12...;), g(P) =0 elsewhere in E. Actual computation shows that
every compact subset of E has finite u/-measure and that, for A = 37,
M (g) = Ne(g) < o so that g € Y*. Suppose that B is a subset of (0, y)
dense (in the usual topology on R) on some interval (¢, ), — 1 <a < b <1
and let Uz, = \J T(y) for all 7z > n, y € B. Computation shows that
(g.u)*(Ugn) = o for every n. As in the Bourbaki example every open set
containing D contains some set Uy , and therefore (g . u)*(D) = o although
D is locally negligible (g . u’). Since the dual of ¥ coincides with the \-con-
jugate, 1 < p < o, the A-conjugate strictly contains the M T*-conjugate. The
length functions 9%, are continuous at infinity and reflexive.

Remark. The right side of (2.1) is M1 (f, ¢). Replacing N1 by N, in the defini-
tion of the MT*-conjugate gives a conjugate which always contains the
A-conjugate when 4 = 2\

4. The MT*-conjugate of 4 = . In this section ® denotes an arbitrary
element of the M T*-conjugate of 4 = ¥, ¢ the Radon measure corresponding
to ® determined by the restriction of & to K.

LemMmA 4.1. If ® € A* and A = (u) there exists a locally u-integrable
Sfunction g for which the measure g . u coincides with .

Proof. There is no loss of generality in assuming ® > 0. By hypothesis
every f € A is integrable (¢) with

(1) o) = [1ds.
For each compact set K every u-measurable subset e is in 4 and ®(x,) =
Jxedp = d(0). 1f u(e) =0,

lp(e)| = [2(e)| < [2|N*(x0) = [2[N(e).

Since A(e) = 0 whenever u(e) = 0, every set that is locally u-negligible is
locally ¢-negligible. The Lebesgue-Nikodym theorem (4, Théoréme 2, p. 47)
then implies that ¢ is a measure of base u, that is, that there exists a locally
integrable point function g with ¢ = g. u (4, p. 42).

THEOREM 4.1. Let ® € A* and let g in RE be locally integrable with g . p = ¢.
Then (i) g € * of and only if u(gxs) = 0 for every ¢-negligible set B that is
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the union of a sequence {B;} with each function xp, in ¥, and (ii). If g ¢ %,
E contains a set D, negligible (g . u) and locally negligible (u) with N(D) < o
and p*(D) = =,

Proof. (i) There is no loss of generality in considering only positive f and
® in the proof of (i) and (ii). If f € ¥, ® € A*, then f € {1 (¢) and E = E,
U E'"U X, where Ey = (P:f(P) = 0), E’ is ¢-negligible and X is the union
of a countable sequence of compact sets. Since E, E, and X are measurable
() sois E'. Since [fxxd(g.p) < [fd(g.p) = [fdé < =, (3.2) holds finitely.
Since

fex,

vanishes,
fngEndﬂ = 0.
Thus

@) [rae=[rae.w = [fexein < [ o an

< f*ngE’odﬂ + f*ngE'dM + ffngdu = f*fng'du + ff d¢-‘

If E/ = (P € E":f(P) > 1/i), E = \U"E/, each E; is u-measurable and
ME/) < IN(f) < = so that each xgz, € . If the hypothesis of (i) is satis-
fied, [x g g du = 0 which implies that [xz.fg du = 0. Then [fg du = [fdé = &(f)
for every f € @ and g € ©*. Conversely, if g € ©*, [fgdu < o for every
f € @ and, by (8, Theorem 1.1),

(4.5) [rean= [rae. = ap)
for all f € . If B, is ¢-negligible with x5, € & (4.4) and (4.5) imply that

fng; du =0

whence fng dp =0 if B =\U,"B,.

(i) If g ¢ ¥@* (i) implies that there exists a ¢-negligible set B = \U,*B;,
where A\(B;) < «,7 =1,2,...,and such that u*(gxz) > 0. Then (8, Lemma
2.1) implies that wp*(gxz) = ». Writing B(n) = \U,"B,, since B(n) T B,
w*(gxmyny) is positive and therefore infinite for all sufficiently large #, say
n > no. We show that for a fixed n > no, D = (P € B(n) : g(P) > 0) satis-
fies all the conditions (ii). We note that A(D) < A(B(z)) < « and that
w*(gxp) = v*(gxsw) = «. Consider g,(P) = min (m, g(P)). It is locally
integrable and defines a Radon measure g, .ux with 0 < g, .u < g.p and
gn-r(D) < g.uD) <g.uB) =0. Now

* *
© = f gxpdp = Supmf Zm XDAM,

Downloaded from https://www.cambridge.org/core. 30 Oct 2025 at 18:02:35, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core

390 H. W. ELLIS

and (8, Lemma 2.1) implies that u*(g.xp) = 0 or « for each m and therefore
is infinite for all sufficiently large m so that

* 1
f xpdp > m f ZnXpdp = .

Finally, if D, = (P € D :g(P) > 1/i), D = \U,"D; and, for an arbitrary
compact set K,

fXDanﬂ = Sup; fXDmKd# < sup; i ngDmKdP'

< SupiifXDd(g-ﬂ) = 0.

Thus D is locally u-negligible.

A variety of conditions, sufficient to ensure that the N-conjugate contains
the MT*-conjugate, follow from Theorem 4.1. We mention only: (i) E is
countable at infinity, (ii) u is bounded and (iii) u*(B) = « implies that
M(B) = «. Condition (iii) shows thatif 4 = &,1 < p < =, the A-conjugate
always contains the MT*-conjugate so that these conjugates then coincide.
Actually, each of (i)-(iii) implies that every locally integrable g € R¥ is in
* whereas ©* will contain 4* if to each ® € A* corresponds one g € ®*
with g. u = ¢. If g is locally integrable with g. u = ¢, every g’ that is locally
equivalent to g is also locally integrable and g’ . u = ¢. Consider (8, Example
5.2) where g = xz, f = xz and the length functions A = €,, 1 < p < .
Then g ¢ * but g is locally equivalent to the zero element of 2*. More
generally, let E, D, and u be defined as in Theorem 3.2 and let \ denote an
arbitrary length function. Then D is locally negligible with u*(D) = « but
every locally negligible subset of E — D is u-negligible. Replacing g by gxp
gives a g’ locally equivalent to g with [*g'xs du = [*gxsnpde = 0 for every
locally negligible set B with A\(B) < . Since

@ 0*B) < [ ¢'xn du

by (4.4) this contradicts Theorem 4.1 (ii) if g’ is not in .
Edwards (5, p. 143) defines the u-measure of a u-measurable set B to be
u(B) = supfoBanp, where K runs through the compact subsets of E.

THEOREM 4.2. If E contains E* with p*(4) < « for every locally negligible
set contained in E — E* and if E* is the union of a countable collection of sets
of finite u-measure, then for every MT*-space & on E, the N-conjugate contains
the M T*-conjugate.

Proof. First suppose that u(E*) < «. By the argument of (5, Theorem 7
(4)), E¥ = Q1 U Q. where Q; is the union of a countable collection of com-
pact sets and Q; is locally null. If 4 C E* with u(4) =0, p*(4) = =,
(@i M A) =0.Set g’ = gxx, where X = CE*\U Q. If K C CE or K C Q;,
g(P) = ¢ (P) for P € K. Suppose that u(K M CE*) > 0and u(K N E*) > 0.
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Then K = N \U"K,, where N is p-negligible and each K, is compact and con-
tained in one of E*, CE* (3, pp. 181-2). Since u(K, N Qy) = 0,2 = 1,2,...,
g = ¢’ almost everywhere in each K and g’ is locally equivalent to g. For
each such 4 C E¥*,

uw*(g'xa) = v*(gxeua) =0

contradicting Theorem 4.2 (ii) if ¢’ ¢ *. If E* = U"E, with p(E,) < o,
n=12, ..., each E, = Q1,\J Qs as above and the preceding argument
holds when applied to \U,Q1,, \J,Q2, in place of Q; and Q. respectively.
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