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I INTRODUCTION 

In the past three years progress of celestial mechanics research was as rapid 
as in the previous decade. In fact now new theories of planetary and lunar motions 
which have nearly the same accuracy as those of the most precise observations have 
become available after a decade effort and new thories of some of natural satellite 
motions have been developed by several authors. Many papers on artificial satellite 
motions from several aspects were still published and more precise expressions for 
relativistic effects were derived. 

Several faint satellites which have very interesting dynamical characters were 
discovered and very detailed structures of Saturnian rings as well as very narrow 
rings of Jupiter, Saturn and Uranus were disclosed. Therefore, much more papers 
than before treating resonance problems for satellites, rings, asteroids and so on, 
their stabilities and dynamical evolutions were published in the past three years, 
as there are now more resonance problems to be studied in the solar system. Com­
mensurable relations exist not only among revolution periods but also among revolu­
tion and rotation periods. And, therefore, rotational motions of the moon and pla­
nets attract many authors to study their dynamical evolutions. 

As many high-speed computors have become accessible new types of periodic solu­
tions for three and four body problems were found, some of them being periodic even 
in the three dimensional space. In fact many papers on periodic solutions were pub­
lished. Some papers treat systems containing not only point masses but also one or 
more finite bodies and try to find their particular solutions. Mathematical theo­
ries to try to understand qualitative properties of solutions of the equations of 
motion in celestial mechanics made a steady progress and some important contribu­
tions on this subject were published. 

In spite of the rapid progress still there are so many problems which have not 
yet been fully solved in celestial mechanics and it is expected that planetary as 
well as lunar and satellite motion theories will be further improved. 

This report does not cover all the papers published or works done in 1979-1981. 
Unfortunately, the sections on periodic solutions and on mathematical theories had 
to be made very short and those on natural and artificial satellite theories had to 
be dropped because of 12 page limitation of the report of the commission. However, 
please refer the natural satellite theories to the report of Commission 20. 

II PLANETARY THEORY 

At the Bureau des Longitudes new planetary theories have been developed by two 
different approaches(25.042.073), namely, by the method of successive approximation 
and the iterative method. In both cases solutions are put in quasi-periodic func­
tions of time, namely, they are developed into trigonometric series, for which the 
arguments are linear combinations of the mean longitudes of the eight planets and 
the coefficients are numerically expressed by polynomials of time. 
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By the method of successive approximation perturbations are developed formally 
in powers of planetary masses by starting from Keplerian orbits and Lagrange plane­
tary equations. The first-order solutions were obtained and published in 1975. 
Second-order theories are derived for the major planets and the four inner planets, 
respectively, by Simon and Bretagnon(22.042.041 and 006) and Bretagnon(27.042.057). 
The aimed accuracies are 0."001 for the inner planets and 0."01 for the major pla­
nets after a century. However, comparisons with numerical integrations show that 
it is 0."01 for the inner planets. Third-order perturbations have been already de­
rived by Simon and Francou and their paper is in the process of publication. By 
the iterative method the successive solutions of Lagrange planetary equations are 
obtained by Fourier series manipulations. This method is applied to the major pla­
nets. Six iterations are necessary for some cases, particularly for Jupiter-Saturn 
interaction calculations. Althogh this method has a disadvantage in computing quasi-
resonant terms with satisfactory accuracy, the solutions converge at the level of 
0."001 for short-periodic terms and that of 0."01 to 0."1 for long-periodic terms. 
Comparisons with the numerical integrations by Oesterwinter and Cohen(1972) could 
determine the orbital constants. The comparison shows that except for very long-
period terms in the longitudes of Uranus and Neptune estimated errors in the theo­
ries are about 0."3 in the mean longitude and 0."1 in other elements after 1 000 
years( Bretagnon, A & A 101 p342 1981). For the inner planets, on the other hand, 
the comparisons for 25 years give the following accuracies: 0."005 for Mercury, 
0."003 for Venus and the earth and 0."005 for Mars. This represents an improvement 
of a factor 10 to 100 over the theories by Le Verrier and Newcomb. 

A method to construct planetary theory that does not allow for any periodic 
term with time-dependent amplitude is developed by Duriez(25.042.100). This method 
is applied to the four outer planets up to the second order of the masses and to 
the seventh degree of the eccentricities and the inclinations. Comparisons with 
numerical integrations and the theory by Bretagnon show that the secular mean vari­
ations of the angular orbital elements are derived with the accuracy of 0."1 per 
year. Brumberg(22.042.087) proposes a new method to treat perturbed two-body problem 
in rectangular coordinates. The method is based on reduction of the variational 
equations of the two-body problem with arbitrary elements of the Jordan system. 
Pavlov(26.042.028) derives an expression of the coordinates of a planet through the 
eccentric anomaly of a disturbing planet. Krasinsky, Pitjeva, Sveshnikov and 
Sveshnikova develop an analytical theory of the motion of the inner planets and 
compare them with Venus radar observations. Its brief description is given in 22. 
091.071. Pitjeva(27.092.001) improves the orbital elements of Mercury necessary 
for the analytical theory by using radar observations in 1964-1965. Kamel and his 
colleagues are developing a general planetary theory and study the motions of Ura­
nus and Neptune(25.041.105, 26.042.001 and Ap & Space So 78 p3 1981). 

Perturbations by Pluto in the other planet motions are evaluated by Piraux(26. 
091.017). New methods to expand the disturbing function for Pluto-Neptune inter­
actions are devised by Petrovskaya and Ivanova(22.042.122) and Yuasa and Hori(25. 
042.074). They claim that the convergency for this case is satisfactory by their 
method. Mayo(25.098.069) derives analytical expressions for the perturbations of 
planetary orbits due to a thick constant density asteroid belt. 

Lestrade04 & A 100 pl43 1981) derives analytical formulas for relativistic cor­
rections in planetary orbits, which give not only secular perturbations but also 
periodic terms, one of them having 9km amplitude for Mercury. Anatonacopoulos and 
Tsoupakis(25.066.245) derive expressions of a second-order post-Newtonian approxi­
mation for ff-body system and improve the formula for the secular motion of the peri­
helion. Anatonacopoulos(25.066.246) derives the equations of motion for a test par­
ticle near one of the triangular points in the field of a heavy body up to second 
post-Newtonian approximation. Piragas, Zhdanov, Aleksandrov and Piragas(22.066.077) 
treat a test particle motion in the centrally symmetric gravitational field of gen­
eral relativity. They claim that the form of the equations and the main results 
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remain valid in the two-body problem of comparable mass in the post-Newtonian appro­
ximation. Hiscock and Lindblom(25.042.135) report that the post-Newtonian secular 
motions of the pericenters of the innermost satellites of Jupiter and Saturn are 
largest in the solar system, being many times larger than that of Mercury. Brumberg 
(26.042.035) derives relativistic ephemeris corrections in radar ranging measure­
ments and astrometric observations of inner planets for the case that the earth and 
one of the inner planets move along circular orbits on a same plane in the solar 
gravity field described by the generalized three parametric Schwarzschild metric. 

Comparisons between existing theories and numerical integrations are also made 
by several authors. Comparisons between Newcomb's theory and JPL-ephemerides for 
the earth-moon system are made by StumpffW & A 101 p52 1981) for 1700-2100. When 
Newcomb's theory is corrected the residuals are reduced to 0."05 for the 400 years 
by changing the adopted constants. Kinoshita and Nakai(25.097.048) report that the 
largest discrepancy between Clemence's theory of Mars and their numerical integra­
tions is 0."054 and reformulate the theory by the same way as Clemence and correct 
some errors. After that the largest difference is reduced to 0."025 in longitude. 
Numerical theories of Mars for 1961-1972 and those of the major planets in 1950-
2150 are developed by Izvekov(25.097.048 and 27.092.001) and Dolgachev, Domozhilova 
and Rybakov(25.091.009 and 26.091.028). Izvekov(27.091.002 and 27.093.018) claims 
that Venus motion is known with the accuracy of 10~° AU for 1961-1972. 

At US Naval Observatory planetary ephemerides using the IAU 1976 system of 
astronomical constants and the equator and the equinox of the FK5(J2000.0) are de­
veloped by Kaplan, Pulkkinen, Satoro, Van Flandern and Seidelmann with cooperation 
of Standish and Williams of JPL and Oesterwinter. They find that there are still 
some systematic differences between the observations and the ephemerides for some 
of the outer planets. One of the hypotheses being investigated is existing of an­
other planet beyond Pluto. Efforts are made to express coordinates of planets with 
Tchebyshev polynomials of time by Rocher(27.098.014), by Chapront and Rocher(27.042. 
092), by Khotimskaya(27.091.024) and by Doggett. 

Ill LUNAR THEORY 

The main incentive for developing a more accurate theory of the motion of the 
moon is the fact that lunar laser ranging observations have achieved now a few cen­
timeter accuracy and in order to interpret these observations any theory which is 
able to represent the motion of the center of the mass of the moon with the same 
accuracy must be in hands. Presently only numerical integrations can provide lunar 
positions with such a high internal consistency. The last two such integrations 
available are DE-111 of JPL and ECT-18 of CERGA and the University of Texas. Both 
have been used for the reduction of the lunar laser ranging data. Therefore, sev­
eral authors have been trying to improve the solutions of the main problem and the 
expressions due to the shapes of the moon and the earth. Although the solar per­
turbations are, of course, much larger than any others, many people have suspected 
that the planetary perturbations in Brown's theory have many errors and, therefore, 
the weak point in the existing theories is rather in this part. One of the exist­
ing theories which are used for calculating the lunar ephemeris was formulated by 
Eckert and Bellesheim by the same principle as Brown and is called ELE. Gutzwiller 
(25.094.076) compares ELE with two new theories, ALE by Deprit and SALE by Henrard. 
About 200 largest terms in each of the polar coordinates are used for comparisons. 
With a few exceptions the differences are below 0."001 for the longitude and lati­
tude and 0."000 01 for the parallax. ELE is further improved by Vondrak(25.094.062) 

Literal solutions of the main problem is derived by Schmidt(25.042.062 and 27. 
042.035) with use of a computor manipulation method by the same way as Hill and 
Brown. Lestrade(28.042.065) applies Laplace's idea to use the true anomaly as the 
independent variable to the lunar theory. A purely analytical approach to solve 
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the equation is made by expressing the solutions in formal power series of the three 
parameters, namely the ratio of the solar and lunar mean motions, the eccentricity 
and the inclination. The difficulty arises from the fact that the expansion con­
verges only very slowly and only modern high-speed computors can scope with the huge 
developments involved that have to be made at least to an order of 25 to 30 in the 
ratio and also a very high degree of the eccentricity and the inclination. The for­
mal convergence of such a theory is investigated by Bec-Bosenberger(26.094.019) and 
Kovalevsky(26.094.033) and it is shown that despite the possible presence of small 
divisors of order 3 it is possible to gain one order more in the accuracy of the 
solution with a finite number of iterations. Dong(27.042.088) proposes a method to 
derive an exact solution of Hill's equation and discusses its convergency and its 
connection to Floquet solutions. 

Brown and Eckert give a numerical value to the ratio of the mean motions and 
solve the equations of motion. However, it is easier to give their approximate nu­
merical values to all the parameters and then to solve the equations, and in order 
to adjust the values by fitting the observations and to obtain the solutions corre­
sponding to their adjusted values partial derivatives of the solutions with respect 
to the parameters are computed. Solutions of this type are derived by Chapront-
Touze(27.094.005) at the Bureau des Longitudes and is called ELP. Henrard at Namur 
adopts a little different method to derive the solutions. At first he derives a 
solution of the main problem in an analytical way by giving very good numerical val­
ues to the parameters. And then he expands the solutions around the nominal values 
for the parameters and solves the main problem(25.094.075). Therefore, his parame­
ters, in powers of which the solutions are expanded, are the increments to the nomi­
nal values. His solution is called SALE. The two authors, Chapront-Touze and 
Henrard, (27.094.042) compare their results with each other. The conclusions are 
that ELP seems to be more precise while SALE seems to be more complete and precise 
as far as derivatives with respect to the orbital parameters are concerned. The 
differences are 0."000 94(200cm) in longitude, 0."00023(45cm) in latitude and 120cm 
in distance, and, therefore, are much larger than their anticipated errors, particu­
larly for the distance. Kinoshita compares the two theories with his numerical in­
tegrations for 13 revolution period and finds that the differences in the lunar dis­
tance are 100cm for SALE and 1.2cm for ELP. Even after 20 years the difference is 
as small as 1.5cm for ELP. 

Referring to the planetary perturbations Vondrak(25.094.006) reformulates the 
expressions by Brown's procedure and finds some mistakes in Brown's formulas. And 
he derives several small terms which were neglected by Brown and publishes a list of 
the planetary terms. Standaert(28.091.037) computes analytical expressions of the 
direct planetary perturbations by Lie method using Henrard's solution(SALE) and 
Bretagnon's planetary theories. The accuracy intended is 0."001 for terms of period 
up to 2 000 years. Chapront-Touze and Chapront(28.094.030) compute both direct and 
indirect planetary perturbations in the frame of ELP. Differences between their 
solutions and Brown's are as large as 0."005. Common parts of the two solutions by 
Standaert and Chapront-Touze and Chapront are compared with each other and it is 
found that the discrepancies of the values of the coefficients are smaller than 
0."000 2. 

The perturbations due to the second harmonics of the geopotential, the nutation 
and the secular variations of the obliquity are computed by Chapront-Touze and com­
pare satisfactorily with similar computations by Henrard. The perturbations due to 
the shape of the moon are also computed with the accuracy of 0."000 01 in longitude 
and latitude and 5 parts in 10 in distance(28.094.036). Relativistic effects and 
those due to the tides are also computed at the Bureau des Longitudes and Namur, 
respectively. ELP, more exactly ELP 2000 which is computed by the astronomical con­
stants at 2000, is compared with the numerical integrations by Williams(LE51) after 
including all the perturbations and it is found that the maximum discrepancies are 
20m in longitude and 12m in distance. However, even with such an accuracy it is 
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100 times better than that of the current ephemerides such as ILE used in almanacs. 
ELP will be introduced in the Connaissanae des Temps. 

IV ROTATIONAL MOTION 

New theories of the rotation also have been anticipated for the moon to match 
with the increased accuracy of the lunar laser ranging observations. In fact 
Eckhardt{Moon & Planet 25 p3 1981) revises his theory by using more precise models 
for the gravity potential, the revolution motion and the interior of the moon. 
Tables which are based on his theory and are truncated at 0."01, are published. 
Migus(28.094.041) and Moons(Thesis, 1981) also develop their theories. The largest 
differences among the three theories over several year interval are 0."25. Yoder 
(26.094.036) improves the rotation theory by adding the torque exerted by an oblate 
earth, the effect of which is 0."08 in latitude, and by adopting a non-rigid vis­
cous moon model. Cappallo, King, Counselman and Shapiro(Afc>on & Planet 24 p281 1981) 
integrate numerically the equations for the rotation of the moon with revised values 
for the parameters after determining the initial conditions by fitting the integra­
tions with lunar laser ranging observations at McDonald Observatory with 28cm rms 
residuals. The results are compared with the numerical theory by Williams(1975) 
and the theory by Eckhardt(1981), their rms differences in orientation being 0."03 
and 0."2, respectively, after removing constant biases. Markov(27.094.036) derives 
solutions by applying Poincare's periodic solution theory and by expressing them 
with osculating elements of Andoyer. Barkin(25.042.003) discusses the stabilty of 
the solution for the real rotation motion near the periodic solution according to 
Cassini's law. 

The rotation of Mercury and its stability are dicussed by Burns(25.092.009) by 
taking into account the solar tidal bulge and the solar torque on the permanent tide. 
For Venus its dynamical evolution is discussed by Beletskij, Levin and Pogorelov 
(26.093.143, 27.093.016 and A Zh 85 pl98 and p416 1981) by taking into account the 
torques by the sun and the earth and Lago and Cazenave(26.093.028) investigate the 
past evolution of the rotation by taking into account the solar tidal torque and 
mantle-core coupling and show that a thermally driven atmospheric tidal torque can 
drive the obliquity from a small value to 180° which corresponds to a stable posi­
tion. Variations of the rotation rate, the nutation and the precession for Mars 
are discussed by Borderies and Balmino(25.097.049), by Reasenberg and King(26.097. 
082), by Borderies, Balmino, CaStel and Moynot(27.097.061) and by Borderies(27.097. 
006). Ward(25.097.003) derives the oscillation motion of the obliquity of Mars by 
using expressions correct up to the fourth degree of the eccentricity and the incli­
nation and an improved value of the moment of inertia and by a linearized theory 
predicts that the maximum oscillation amplitude is 13.°6 and the center of the os­
cillation is 24.°4 in the long-term average. 

Zhang(27.107.024) obtains primitive periods of the nine planets and its aver­
aged value for asteroids by assuming that all planetesimals and particles were re­
volving around the sun in circular orbits. Beletskij(CeZ Meeh 23 p371 1981) studies 
how the rotation rate and the inclination of protoplanet had been changed during 
the first stage of protoplanet formation. Khentov's analysis(22.042.111) on sta­
bility conditions of the rotation of planets and satellites discloses why spin-
orbit synchronism has not been realized for most of the celestial bodies. Murdock 
(22.042.072) and Murdock and Robinson(CeZ Mech 24 p83 1981) study some mathematical 
aspects of spin-orbit resonances. 

Bursa(27.042.041 and 043) derives components of the resulting moment of exter­
nal gravitational forces caused by a general body and discusses Liouville's equation 
describing the rotational motion of deformable celestial bodies. It is not intended 
to include here the rotational motion of the earth. 
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V DYNAMICAL EVOLUTION AND STABILITY 

a) General Theory and Planets 
Many papers for explaining the present distributions of satellites, asteroids, 

rings and comets and their dynamical evolutions appeared. For satellites tidal dis­
sipations and planetary encounters may be the most important factors and for comets 
capture processes by planetary encounters are mostly discussed. Narrow rings which 
were discovered for the three planets attract much attentions and there are alter­
native theories for their origins. 

Duriez(22.042.010) proves that a secular term of the third order of masses 
appears in each expression of the semi-major axis of the planets. Barricelli and 
Aashamar(27.107.023) test by computor simulations whether successive captures fol­
lowed by planetary fusion could lead to the formation of major planets comparable 
to Jupiter and Saturn. Yoder(25.041.013) analyzes orbit-orbit and spin-orbit gravi-
taional resonances using the model of a rigid pendulum subject to a periodic and a 
constant torques and derives a probability for capture into libration. HHmeen-
Antilla and Lukkari(26.042.038) show that the decrease of the orbital inclination 
of a planetesimal stops when its rms distance from the equatorial plane is twice 
its radius. Zhou(26.042.015) discusses the two cases of the three-bddy^problem, 
namely sun-Jupiter-Saturn and sun-Neptune-Pluto cases, and computes the regions of 
the variations of their orbital inclinations. Carussi and Pozzi(22.042.082 and 083) 
develop a new method for close encounter computations and investigate close encoun­
ters between Jupiter and 3 000 fictitious minor bodies. 

b) Moon and Satellites 
Szebehely and Evans(27.094.006) study a possibility of the lunar capture by 

assuming that the mass of the sun had been decreased in an early stage and conclude 
that 38% mass decrease is necessary. Mignard(25.094.067 and 28.094.018) derives a 
simple equation for studying the tidal evolution of the lunar orbit, discusses qual­
itative properties of the solutions, integrates it numerically and shows how the 
inclination and the eccentricity had changed during the close approach to the earth. 
Lambeck and Pullan(27.094.060) rediscuss the time scale of the lunar evolution as 
a function of the shape of the moon. Grjebine and Marchal(27.094.030 and 031) argue 
in favor of a fission hypothesis of the origin of the moon and suggest that the moon 
stayed for a long interval of time in a geostationary orbit. 

Many people believe that Phobos and Deimos, the Martian satellites, were carbo­
naceous asteroids captured by Mars. Hunten(25.097.007) suggest that the capture 
took place due to the drag of an extended proto-atmosphere and Van Flandern(26.097. 
180) adds that collisional and tidal forces could evolve the captured satellites to 
their present orbits in a sufficiently short time. Lambeck(26.097.031) investigates 
tidal evolution of the satellites and shows that the tides raised by the planet on 
them have significant consequences. Cazenave, Dobrovolskie and Lago(27.097.005 and 
Iaarus 44 p218 1981) show that the Martian satellites could have been captured in 
Mars's orbital plane and later evolved to their present planes as the tidal effects 
moved the orbits. Mignard(MNRAS 194 p365 1981) discusses the tidal evolution of 
the Martian satellites for a frequency dependent model of the tidal lag for the pla­
net and the satellites and computes the solutions by starting from the presently 
observed secular accelerations. 

Many people are convinced that the tidal dissipation is an important factor 
for the evolution of Galilean satellites of Jupiter. Peale, Cassen and Reynolds 
(25.099.003) try to explain the volcanic activities on the surface of Io by the 
fact that the dissipation of th,e tidal energy in it is likely to have melted a 
major fraction of the mass. Yoder(25.097.047) makes a similar argument and dis­
cusses how the tidal dissipation in Io and Jupiter controls the resonant configu­
ration among the three inner satellites. Cassen, Reynolds and Peale(Geophys Res L 
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6 p731 and 7 p987 1980 and Iaavus 41 p232 1980) argue that it is possible for the 
tidal dissipation in the crust on Europa to have preserved a liquid water and re­
port that the tidal dissipation could not have been important for Ganymede for more 
than 108 years and it was never important for Callisto for the formation of the sur­
face. Greenberg(Tcarws 46 p415 1981) treats the tidal evolution of the Galilean 
satellites in a linearized nine dimensional system of equations, studies small vari­
ations around its equilibrium solutions and derives a conclusion in favor of his deep 
resonance origin hypothesis. Greenberg(in Satellites of Jupiter 1981) shows that 
the orbital motions of the Galilean satellites exert dramatic control over their 
physical properties through the tidal heating and in turn the tidal dissipation in 
the satellites and Jupiter has governed the evolution of the orbits and the Laplace 
resonance relation. WieselC4J" 86 p611 1981) discusses the problem of the creation 
and subsequent evolution of the great resonance of the three Galilean satellites by 
using a periodic solution and shows by numerical integrations that the resonant 
state can be directly entered under the influence of the tidal forces without prior 
formation of individual 2:1 resonance pairs. 

Peale, Cassen and Reynolds(28.100.018) argue how eccentricities of Saturnian 
satellites were decreased by the tidal dissipation and estimate the rigidities and 
the dissipation function. Peale(22.100.512) discusses that finding Hyperion rotat­
ing in the 3:2 spin-orbit resonance like Mercury would imply a primordial origin 
for the Titan-Hyperion resonance. Bevilacqua, Mench, Milani, Nobili and Farinella 
(27.100.048) study the resonant case of Titan-Hyperion by numerical integrations, 
find invariant curves corresponding to low and high eccentricity resonance lockings 
and show that the observed libration of Hyperion's pericenter lies inside the stable 
high eccentricity region. Blitzer and Anderson(CeZ- Meah 29 p65 1981) investigate 
a theory of satellite orbit-orbit resonance which is applicable to Titan-Hyperion 
and Mimas-Tethys pairs. Dermott and Murray (.Iaavus 1981) discuss the properties of 
the tadpole and horseshoe orbits of the restricted problem of three bodies using 
analytical and numerical methods, determine the circumstances in which the horseshoe 
paths rather than the others are expected, and apply their results to the recently 
discovered co-orbital satellites of Saturn which are shown to be librating in horse­
shoe orbits. Dermott(25.091.006) computes the present rate of the energy dissipa­
tion for Jupiter and Saturn under the assumption that the orbital resonances of 
their satellites are the results of the orbital evolution due to the tidal dissipa­
tion and mentions that approximately the same value is needed for the dissipation 
factor for all the major planets for such evolutions in spite of the great differ­
ence of the energy dissipation rate by the factor greater than 10 . 

Harrington and Van Flandern(25.101.025) show how Pluto and the satellites of 
Neptune have been originated from a single encounter of Neptune with a massive body. 
Dormand and Woolfson(28.101.002) argue that Pluto was ejected from Neptune system 
by an encounter with Triton. Mignard(4 & A 96 pLl 1981) favors the idea that Charon 
was separated from Pluto by a fission process when it was ejected from the Neptune 
system as Charon is likely tidally locked and the total angular momentum of the sys­
tem is similar to the one required for a rotational break-up of a fluid body. 

Several mathematical papers on the evolution also appeared. Szebehely and 
McKenzie(22.052.034) compare the results obtained by three methods for stability on 
satellite motions and derive the simplest formula for the most conservative condi­
tion. Dovrak and Marchal(22.042.048) make a simple qualitative analysis of the per­
turbations on a satellite to derive a lower bound for the duration of escape or cap­
ture of a satellite and conclude that it rules out any escape for at least 21 centu­
ries for any satellite. Cline(25.042.084) makes a two-body patched conic analysis 
for a planetary capture of satellites, in which a gravity assist by a satellite aids 
in capture. Tanikawa(25.099.058) considers a slow capture process, in which parti­
cles approaching the planet lose their energies gradually and fall down into stable 
orbits around it. 

https://doi.org/10.1017/S0251107X00004454 Published online by Cambridge University Press

https://doi.org/10.1017/S0251107X00004454


28 COMMISSION 7 

c) Rings 
Arguments how Uranian rings were formed are made in several papers. Steigmann 

(22.101.002 and 25.101.002) suggests that the radii of the a and y rings of Uranus 
and perhaps e 1 and 2 are governed by the resonance with Miranda and Ariel, however, 
S and 6 rings might be associated with an undiscovered satellite with mass equal to 
0.4 Miranda's mass. Goldreich and Tremaine(25.101.001 and 26.101.024) suggest that 
inter-particle collision, radiation drag and differential precession tend to disrupt 
the rings of Uranus and propose that the rings are confined by gravitational torques 
from a series of small satellites that orbit within the ring. They suggest that the 
apse alignment is maintained by the self-gravity. Dermott, Gold and Sinclair(26.101. 
001) suggest that orbital resonances are involved for the formation of extremely nar­
row widths and sharply defined edges of Uranian rings and suppose that each ring 
contains a small satellite which maintains particles in horseshoe orbits around the 
triangular points. Dermott, Gold and Sinclair(27.099.006) also make a similar argu­
ment for narrow rings of Jupiter and Saturn and attempt to account for the origin 
and the location of the rings. 

Dermott and Murray(28.101.035) criticize the argument that the apse alignment 
of the eccentric e ring is maintained by the self-gravity alone, consider that it 
is the close packing of the particles near the pericenters which prevents differen­
tial precession and describe how differential precession, particle collisions and 
self-gravitation together can transform a narrow eccentric ring of uniform width 
into a ring with a large, positive eccentric gradient. Dermott(Nature 290 p454 19 
81) explains the braided appearance of the F-ring of Saturn by an excited wave pat­
tern of equally spaced loops which co-rotate with one of the shepherding satellites 
of the ring which has one first-order resonance with the ring. Zhou and Zheng(28. 
042.005) make numerical simulations for a system of colliding bodies to explain a 
formation of rings. 

Cuzzi, Burns, Durisen and Hamil(Nature 281 p202 1979 and 26.100.034) discuss 
the vertical structure and thickness of Saturnian rings and describe how solar and 
satellite perturbations do no significantly affect the vertical thickness but do 
affect the tilt of the mean ring plane. Uenon(Nature 293 p33 1981) describes a very 
simple model of Saturnian rings based on the assumption that the size distribution 
of particles in the rings is uniform with no preferred value. 

d) Asteroids 
Yoder(26.098.073) points out that the tightly bound population of Trojan aste­

roids has secularly evolved from less to more tightly bound orbit configuration 
through some mechanisms including the changes of the Jovian mass or semi-major axis 
during planetary formation and collisional interactions with external bodies. Bien 
(22.042.011, 27.042.004 and 27.098.074) derives a solution for Trojans as an example 
of planar elliptic three-body problem and follows orbits of 18 Trojans with small 
inclinations and also those with high inclinations. Garfinkel(22.042.075 and 28. 
042.040) constructs a formal long-periodic solution for Trojan asteroids in the re­
stricted three-body problem and discusses its properties. Erdi(22.042.061, 26.098. 
004 and Cel Meah 24 p377 1981) considers the motion of Trojan asteroids using a 
three-variable expansion method for the elliptical three-body problem, derives an 
asymptotic solution, conditions for the libration of the perihelion and the periods 
of variations of the eccentricity and finds that for 20 of 30 cases the perihelion 
longitudes circulate and for the others they librate. Then flrdi and Presler(28.042. 
171) test the theory with numerical integrations and find that the periodicity of 
the eccentricity is about 3 600 years. 

Froeschle and Scholl(25.098.004) make numerical integrations over 105 years of 
fictitious asteroids in the region of 3.6 to 3.9AU and show that a partial depletion 
of an initially uniform distribution is possible by close encounters with Jupiter. 
However, Franklin(26.098.071) reports that the truncation outward from 3.4AU of as­
teroids cannot be strictly the results of perturbations of major planets even over 
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109 years and sets the limit of 0.081 for Jupiter's eccentricity for the stable mo­
tions of outer asteroids. 

Dermott and Murray(Mature 290 p664 1981) apply statistical techniques to aster­
oid orbital data and find that the eccentricity and the inclination increase" away 
from the gaps. They argue that the process responsible for the formation of the 
gaps has removed those objects near the resonances as there is no significant tend­
ency for low-magnitude objects near the gaps which rejects the collisonal hypothesis 
of the origin. Froeschle and Scholl(25.098.061) report that the resonances gener­
ally tend to enhance eccentricities and inclinations. Heppenheimer(22.107.014 and 
28.042.142) derives conditions for growth of planetesimals in the presence of third-
body perturbations and proposes that the gaps are primordial and correspond to region 
where asteroids failed to form by creation. Gulak(27.091.001) considers that com-
mensurability is a result of dynamical relaxations of spatially restricted mechani­
cal systems with an attracting non-point center. Zhuravlev(27.098.022) concludes 
by numerical integrations that an observed asymmetry of the gaps relative to the 
exact commensurability is due to a resonant interaction of asteroids with Jupiter. 

Arazov and Gaibov(26.097.005) construct an intermediate orbit for resonant ast­
eroids on the basis of a solution of the internal variant of the generalized three 
fixed center problem and apply it to 2:1 case. Franklin, Lecar, Lin and Papaloizou 
(27.098.135) study numerically and analytically the conditions for the truncation 
at the 2:1 resonance of a disk of infrequently colliding particles surrounding the 
primary of a binary system and conclude that the truncation and the gaps were pro­
duced only if the eccentricity is less than some critical value around 0.08. Dirkis 
(22.098.009) studies the motion of asteroids near 2:1 resonance by numerical inte­
grations over 2 000 years. Simonenko, Sherbaum and Kruchinenko(26.098.072 and 26. 
042.046) study the orbital evolution for asteroids near 3:1 resonance by a model 
calculation for 500 years and derive the condition for libration. Karminskij(26. 
098.050) studies the real asteroids with 3:1 mean motions. 

Danielsson(22.098.042) computes for 1 200 years Toro's orbit which is in reso­
nance with the earth and Venus. Scholl(26.098.074) integrates numerically Chiron's 
orbit from 6 000BC to 18 000AD and supports the conjecture that the dynamical evo­
lution of Chiron is similar to those of short-periodic comets. Heppenheimer(27.107. 
003) treats a mechanism for the origin of the eccentricites of asteroids and that 
of Mars by secular resonance associated with the dissipation of a primitive solar 
nebula. Williams and Faulkner(Icarus 46 p390 1981) derive positions of secular 
resonance surfaces as a function of proper semi-major axis, eccentricity and incli­
nation. Kozai(27.098.003) lists the names of the numbered asteroids for which the 
eccentricities and the inclinations are changed very much by the secular perturba­
tions. Gradie, Chapman and Williams(27.098.038) and Kozai(27.098.037) restudy the 
families of asteroids. Simovljevitch(26.042.034) introduces the concept of regular 
proximity of two asteroids and Lazovic lays out a simple method to determine appro­
ximate true anomalies of proximity of two elliptic orbits for small minimum distance 
case(22.042.113). 

e) Comets 
Yabushita(25.102.004) studies the effect of planetary perturbations on long-

periodic comets and shows how the distribution of the binding energies of comets 
varies with time. Nakamura(Xea:ras 45 p529 1981) computes the orbital evolution of 
long-periodic comets to short-periodic ones for 16 representative initial orbits 
and finds that survival rates of the initial orbits with high inclinations and small 
perihelion distances are only two or three times smaller than those of the main 
source orbits. Tomanov(28.102.004) by considering interaction of parabolic comets 
with Jupiter shows that short-periodic comets must have only direct motions and the 
deficiency of comets with the semi-major axes of 20 to 30AU is explained by the 
small probability of capture. Rickman and Froeschle(26.102.031, 27.102.027 and 008) 
introduce a fast method to study the orbital evolution of active comets in the inner 
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planetary region and conclude that for each active Mars-crossing comet there are 50 
distinct comets on similar orbits. Froeschle and Rickman(Icarus 46 p400 1981) derive 
statistical distributions of Jovian perturbations on short-periodic comets by making 
numerical integrations with sample of 60 000 comets with low inclinations, perihe­
lion distances between 0 and 7AU and aphelion between 4 and 13AU. 

Carussi and ValsecchiG4 & A 94 p226 1981) make a numerical research on dynamics 
of close approaches of short-periodic comets with Jupiter and confirms that in seve­
ral cases objects can be captured by the planet as temporary satellites. Carussi, 
Kresak and ValsecchiCd & A 99 p262 1981) make a numerical computation of a chain of 
80 objects placed along an arc of the pre-encounter orbit of P/Oterma and show that 
close encounters produce a broad variety of jovicentric and heliocentric orbits in­
cluding temporary captures by Jupiter over 100 years. Rickman and MalmortG4 & A 102 
pl65 1981) discuss a possibility of temporary capture of P/Gehrels 3 by Jupiter. 
Vsekhsvyatskij and GulievG4 1h 58 p630 1981) estimate that there are comets which 
were escaped from the system of Uranus. 

VI SOLUTIONS AND THEIR PROPERTIES OF DYNAMICAL SYSTEMS 

a) Periodic Solutions of Three-Body Problem 
Many new families of periodic solutions of the three-body problem are found the­

oretically and numerically by extending the known solutions usually from bifurcation 
orbits which are also derived. The extension is made from planar restricted problem 
to three-dimensional and to the general problems. 

Families of periodic solutions for the sun-Jupiter case are followed by this 
way. Kazantzis(22.042.102) first investigates basic families of plane symmetric 
orbits for restricted problems and studies their horizontal and vertical stabilities 
and Kazantzis and Zagouras(25.042.106) investigate numerically the bifurcation orbits. 
Then Kazantzis (25.042.051 and 053, 26.042.040 and 27.042.071) finds new families of 
three-dimensional periodic orbits with simple and double symmetries of restricted 
and general problems starting from vertical critical orbits. Zagouras and Kazantzis 
(25.042.052) derive three-dimensional periodic oscillations about collinear equili­
brium points. Robin and Markellos(27.042.046) derive three-dimensional satellite 
periodic orbits by a similar way. Kasperczuk(26.042.063) and Bien(27.042.034) treat 
periodic solutions for the sun-Jupiter case. 

Michalodimitrakis(25.042.058 and Ap & Space Sc 78 p27 1981) investigates doubly 
symmetric vertical critical periodic orbits of Copenhagen problem and finds new fami­
lies of three-dimensional orbits for the general problem. Ichtiaroglou, Katopodis 
and Michalodimitrakis(22.042.078,28.042.049 and 066) extend periodic orbits of Copen­
hagen problem, to restricted planar and then to general problems. Michalodimitrakis 
(25.042.061, 26.042.039 and 27.042.003) and Itchtiaroglou(27.042.002 and 017 and 28. 
042.032) derive mono- and bi-parametric families of symmetric three-dimensional peri­
odic orbits and Markellos(22.042.004 and 27.042.038) computes three-dimensional peri­
odic orbits which contain asymmetric ones for restricted and general problems. Also 
Katopodis(25.042.015) extends periodic solutions in the three-dimension from restrict­
ed to general problems. Ichtiaroglou(27.042.002) proves the existence of families of 
vertical critical periodic orbits of the general planar problem. Robin(CeZ Mech 23 
p97 1981) discusses bifurcation of plane with three-dimensional periodic orbits in 
the elliptic restricted problem and Markellos(Ce£ Mech 25 pl95 1981) treats the same 
problem for the general problem. Belbruno(Cel Mech 25 pl95 1981) studies a new fam­
ily of three-dimensional periodic orbits for the restricted problem which continue 
off from a consecutive collision orbit. Brjuno(22.042.057 and 058) derives peri­
odic solutions for the restricted problem with consecutive collisions. Markellos and 
Taylor(22.042.085) derive asymmetric periodic and asymptotic orbits for the restricted 
problem. Marchal(25.042.085) investigates periodic solutions with very long periods 
for the general problem. 
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Henrard(27.042.030) and Message(27.042.027) prove the existence of Poincare's 
periodic orbits of second species and sort, respectively, in the general problem. 
Ishwar(25.042.001) treats periodic solutions of second genus in the plane restricted 
problem. A conjecture of Poincare on the density of periodic orbits of the restrict­
ed problem is studied by Gomez and Llibre(CeZ Meoh 24 p335 1981). Periodic orbits 
of Hill's problem in its more general cases are treated by Breakwell and Brown(26. 
042.038), Michalodimitrakis(27.042.018), Ichtiaroglou(28.042.064 and A & A 98 p401 
1981) and Latyshev(28.042.045). Henon is studying the evolution of the periodic 
orbits in the restricted problem when the ratio of the masses tends to zero. Sharma 
(4p St Space So 76 p255 1981) derives periodic orbits for the case that the more mas­
sive primary is an oblate spheroid for the restricted problem. 

c) Equilibrium Points of Three-Body Problem 
Stabilities of equilibrium points of the three-body problem and periodic orbits 

around them are also discussed in several papers. Duboshin(25.042.060) investigates 
solutions of Lagrange and Euler in the general problem in absolute coordinates. The 
stability of the triangular points for the elliptic restricted problem is discussed 
by Ivanov, Karimov and Sokol'skij(28.042.016), Meire(28.042.021 and Cel Meoh 23 p89 
1981) and motion near the points is discussed by Cheng(25.042.014). The stability 
of the point for the circular restricted problem is treated by Sokol'skij(25.042.054). 
Ivanov(26.042.024) discusses the stability in non-restricted problem and McKenzie 
and Szebehely(Ce2 Meoh 23 p223 1981) investigate non-linear stability around the 
point. Mittleman(27.042.070) treats motions about this point for the restricted 
problem. Bhatnagar and Hallan(22.042.059 and 26.042.006) investigate effects of the 
perturbations in Coriolis and centrifugal forces on the stability in the restricted 
problem. Szebehely and McKenzie(CeZ Meoh 23 pl31 1981) study deformation of a line 
element in the phase space at the point. Van Velsen(Ce£ Meoh 23 p383 1981) studies 
isoenergetic families of quasi-periodic solutions near the point and Broucke(25.042. 
040) discusses isosceles triangular configurations in the planar general problem. 

Puel(26.042.007), Broucke and Walker(27.042.029), Broucke, Anderson. Blitzer, 
Davoust and Lass (Cel Meoh 24 p63 1981) and Richardson (28.042.036 and 038) study rect-
linear problems of the three-body system, periodic orbits about the collinear equi­
librium points, rectlinear isosceles orbits and related topics. 

d) Triple Collisions in the Three-Body Problem and Systems Including Finite Bodies 
Losco(22.042.030), Waldvogel(25.042.027), Irigoyen(26.042.030 and 031 and 28. 

042.001), Marchal and Losco(27.042.040),Simo(27.042.023) and Eschbach(27.042.039) 
investigate triple collisions in the three-body problem by deriving new systems of 
equations, studying triple collision manifolds and finding orbits near the collision 
including triparabolic escape orbits. 

Duboshin(22.042.036 and 28.042.018), Troitskaya(27.042.013), Kondurar' and 
Gamarnik(27.042.059), Vidyakin(27.042.016)andlpatov (28.042.075) study translatory-
rotational motions of three or two rigid bodies in the three-body problem. Ehl1-
Sharburi(22.042.110), Jezewski and Donaldson(25.042.016), Sidlichovsky(28.042.020 
and 037) and Vidyakin(28.042.047) study translatory-rotational motions of two rigid 
triaxial or axisymmetric bodies. Stellmacher(26.042.154 and Cel Meoh 23 pl45 1981) 
studies periodic orbits around an oblate spheroid. Barkin(25.042.056), Barkin and 
El-Sharburi(25.042.006) and Abul'naga and Barkin(26.042.002) investigate motions 
of a rigid body in the attraction of a sphere. 

e) Several Aspects of Three-Body Problem 
Stability for satellite case is investigated by Williams(25.042.082), Markellos 

and Szebehely(CeZ Meoh 23 p269 1981), Markellos and Roy(Ce£ Meoh 24 pl83 1981) and 
Marchal and Bozis. Chen, Sun and Luo(22.042.092) and Sun and Luo(28.042.004) analyze 
the range of the orbital inclinations with respect to the invariable plane for the 
general problem. Nezhinskij(27.042.080) and Hulkower(27.042.024) study central con­
figurations. Kammeyer(28.042.041) studies linearized mapping associated with the 
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planar problem near a periodic orbit. Chen(22.042.001) discusses the topology of 
the manifold of the general problem and Nahon(25.042.067) studies collision orbits. 

Luk'yanov(22.042.050), Ziglin(22.042.121), Aksenov(25.042.045 and 055), Delmas 
(25.042.053), Matas(25.042.010), Timoshkova(25.042.007), Delva and Dvorak(26.042.012), 
Vrcelj(26.042.010), Innanen(27.042.005), Radzievski(27.042.058), Veres(27.042.008) , 
Sokolovand Kholshevnikov(27.042.006 and 069), Waldvogel(27.042.036) , Hitzel and 
Levinson(28.042.007), Veres(28.042.046), Wisdom(28.042.002), Zhuravlev(28.042.014), 
Degraeve and Pascal(CeZ- Meah 24 p53 1981), Gonczi and Froeschle(Ce£ Mech 25 p271 19 
81), LangebarteC4p & Space So 75 p437 1981), Pascal(CeJ Meah 24 p53 1981) and many 
other people investigate several aspects of the three-body problem. 

f) Four and Many Body Problems 
The four body problem is investigated by Simo(22.042.062) for relative equili­

brium solution, by Hadjidemetriou(27.042.028) for the motion of a small body under 
the actions of the sun, Jupiter and Saturn, by Nash and Monaghan(28.042.006) for 
statistical study of disruptions, by Hadjidemetriou and MichalodimitrakisG4 & A 93 
p204 1981) for periodic planetary type orbits, by MichalodimitrakisC4p & Space So 
75 p289 1981) for circular restricted problem, by Zhuravlev and Anikovsky(Ce£ Meah 
24 p237 1981) for expansion of the disturbing function and by Boigey(Thesis, 1981) 
for geometrical demonstration of the elimination of the nodes. 

ff-body problem is investigated by Luk'yanov(22.042.109 and 25.042.046) for sym­
metric solutions, by Michalodimitrakis(22.042.070 and 077) for the three-dimensional 
periodic solutions, by Arenstorf(22.042.035) for periodic solutions in rotating co­
ordinates, by Lukkari(22.042.069) and Zheng and Zhou(28.042.005) for numerical simu­
lations of colliding particles, by Marchal{Acta Astronautiaa 6 pl23 and pll59 and 7 
p555 1979) for close approaches and fundamental stability, by Devaney(25.042.083) 
for specific homothetic collinear solution, by Hadjidemetriou(25.042.064) for plane­
tary type periodic orbits, by Babadzanjanz(26.042.004) for continuation of solutions, 
by Stellmacher(26.042.044) for the problem of N equal masses at each vertex of a 
regular polygon, by Saari(27.042.021) for central configurations with collision or­
bits, by Walker, Emslie and Roy(28.042.058) and Walker and Roy(CeZ- Meah 24 p227 1981) 
for stability criteria, by Meyer(CeZ- Meah 23 p69 1981) for periodic orbits near in­
finity, by Smith(MWMiS 195 p35 1981) for the mean relaxation time of isolated equal 
mass points, by Carlberg and HartwickCV 86 pl410 1981) for a dissipationless col­
lapse and by Marchal for possibility of regularizing singularities. 

g) Other Dynamical Systems 
Contopoulos and Michaelides(28.042.059) explain why the characteristics of tri­

ple periodic orbits do not bifurcate from the central characteristic. Michaelides( 
28.151.056) and Contopoulos and Zikides(28.042.033) find that a family of periodic 
orbits in a 1:1 resonance dynamical system has an infinity of transformations from 
stability to instability and vice versa. Contopoulos{Let Nuo Cimento 30 p498 1981) 
finds systems which do not have universal bifurcation ratio of the conservative sys­
tems. Contopoulos(26.042.061 and Cel Mech 24 p355 1981) finds that near 4:1 or more 
generally 2n:l resonance the central characteristic is broken into two independent 
families. Contopoulos, Giogilli and Galgani(26.042.064) find the evidence that there 
are only two quasi-isolating integrals in a system of three degrees of freedom. Then 
Contopoulos and Zikides(28.042.033) study periodic orbits and ergodic components of 
resonant dynamical system. KazantzisC4p & Space Sc 78 p27 1981) make numerical inte­
grations of symmetric and asymmetric solutions for a dynamical system. Sun and 
Froeschle(/4ota Astronomiaa Siniaa 22 pl59 1981) study dependence of Kolmogorov ent­
ropy of mappings on coordinate systems.Magnenat(26.042.013) examines asymptotic or­
bits and instability zone in dynamical systems. Losco(CeZ Meah 25 pl59 1981) studies 
the stability problem with analogy with triple collision. 

Y Kozai 
President of Commission 
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