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Abstract

Background. Disorders involving compulsivity, fear, and anxiety are linked to beliefs that the
world is less predictable. We lack a mechanistic explanation for how such beliefs arise. Here,
we test a hypothesis that in people with compulsivity, fear, and anxiety, learning a probabilistic
mapping between actions and environmental states is compromised.
Methods. In Study 1 (n = 174), we designed a novel online task that isolated state transition
learning from other facets of learning and planning. To determine whether this impairment
is due to learning that is too fast or too slow, we estimated state transition learning rates by fit-
ting computational models to two independent datasets, which tested learning in environments
in which state transitions were either stable (Study 2: n = 1413) or changing (Study 3: n = 192).
Results. Study 1 established that individuals with higher levels of compulsivity are more likely to
demonstrate an impairment in state transition learning. Preliminary evidence here linked this
impairment to a common factor comprising compulsivity and fear. Studies 2 and 3 showed that
compulsivity is associated with learning that is too fast when it should be slow (i.e. when state tran-
sition are stable) and too slow when it should be fast (i.e. when state transitions change).
Conclusions. Together, these findings indicate that compulsivity is associated with a dysregu-
lation of state transition learning, wherein the rate of learning is not well adapted to the task
environment. Thus, dysregulated state transition learning might provide a key target for thera-
peutic intervention in compulsivity.

Introduction

Although it is known that compulsivity, fear, and anxiety are associated with beliefs that
external threats and internal worries are less controllable (Cartwright-Hatton & Wells, 1997;
Grupe & Nitschke, 2013; Mathews, 1990), we lack a useful model to explain how such beliefs
might develop. Psychological theorists propose that such beliefs stem from a lack of self-
efficacy in controlling one’s environment (Bandura, 1978), but this does not explain the nature
of the dysfunction that produces a lack of self-efficacy. Here, we test a novel hypothesis that a
deficit in state transition learning – specifically, the ability to internalize probabilistic maps of
how actions lead to new states in the environment – is associated with fear, anxiety, and
compulsivity symptoms (Zorowitz, Momennejad, & Daw, 2020).

An effort to relate these symptoms to state transition learning extends nascent work on how
psychopathology is marked by difficulty in utilizing internal maps of one’s environment (so-called
‘cognitive maps’) for decision-making (Behrens et al., 2018; Tolman & Honzik, 1930). Early compu-
tational psychiatry work has shown that ‘model-based’ behavioral control, which uses a cognitivemap
of state transitions to plan one’s actions, is disrupted in individuals who show high compulsivity
(Gillan et al., 2020a, 2020b, 2016; Rouhani et al., 2019). This work, however, has not considered
that individuals may differ in how they learn state transitions. Consequently, model-based deficits
were attributed to a failure to use state transition knowledge, the learning of which was assumed to
be intact (Konovalov & Krajbich, 2020). Investigating state transition learning can thus determine
whether compulsivity-related model-based deficits are due to a more fundamental impairment in
learning how to transition between states. Doing so can additionally test for potential anxiety- or
fear-related deficits in transition learning, which may be independent from the degree to which
state transition knowledge is used for decision-making (e.g. Gillan et al., 2020b).

To address these issues, Study 1 tested whether difficulty in learning state transitions is
associated with the symptoms of compulsivity, fear, and anxiety. For this purpose, we designed
a task environment where it is difficult to learn state transitions, yet once learned it is trivial to
use them for decision-making (Fig. 1). Moreover, unlike previous investigations, we specifically
avoided administering rewards during the learning phase. This design enabled us to isolate
state transition learning from other facets of learning and planning.

To investigate the relationship between transition learning and psychopathology, we sampled
participants from the general population, and assessed them for a range of transdiagnostic
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symptoms, including those associatedwithdepression,mania,worry,
sympathetic hyperarousal, and compulsivity.Using this approach,we
show that individuals high in compulsivity demonstrate impaired
transition learning. In this regard, preliminary evidence implicated
a transdiagnostic factor spanning compulsivity and fear.

Our novel one-step revaluation task is capable of isolating state
transition learning from planning because it separates the learning
and decision phases. However, for the same reason, it is not suited
for modeling the computations underlying state transition learn-
ing. Thus, to more precisely characterize the computations
involved in state transition learning, we complemented Study 1
with two independent studies comprising tasks which measured
decision-making as state transition learning was ongoing. In
Study 2, we re-analyzed publicly available two-step task data
(Gillan, Kosinski, Whelan, Phelps, & Daw, 2016) to measure the
rate of learning with regards to stable state transitions. In Study
3, we used a novel multi-goal pursuit task (Sharp, Russek, Huys,
Dolan, & Eldar, 2021) to measure the rate of learning with regards
to continuously changing state transitions. In both studies, the best-
fitting model separately quantified the rate of state transition learn-
ing and the use of transition knowledge for making choices. Fitting
the model to each individual participant revealed that compulsivity
is associated with excessively fast transition learning with regards to
stable transitions (which demand slower learning) and excessively
slow transition learning with regards to changing state transitions
(which demand faster learning).

Thus, across three independent studies, we demonstrate that
compulsivity is associated with dysregulated state transition learn-
ing that fails to adapt to the statistics governing state transitions.

Methods and materials

Study 1: isolating state transition learning disruptions

Participants
We used the Gorilla Experiment Builder (www.gorilla.sc) to
develop and host our experiment (Anwyl-Irvine, Massonnié,
Flitton, Kirkham, & Evershed, 2020). Participants were recruited

online through Prolific recruiting service (https://www.prolific.
co/). The only inclusion criteria for the study were that partici-
pants spoke fluent English and were over 18 years old. The
study (final sample = 174) comprised 119 male participants
(68%). We recruited 219 participants based on a power analysis
that provided 80% power to detect a small-medium effect size
(r⩽ 0.2), given similar effect sizes across a relevant prior literature
examining links between psychopathology and assays of model-
based learning (Alvares, Balleine, & Guastella, 2014; Gillan
et al., 2016; Voon et al., 2015). Forty-five participants (20%) did
not meet the criterion of accurately identifying the common
image (to which an action led 80% of the time) in a practice
round, and were thus excluded from further analysis.
Participants gave written informed consent before taking part in
the study, which was approved by the university’s ethics review
board.

Psychopathology assay
Before participants completed the online task, they filled out five
questionnaires covering a range of transdiagnostic types of psy-
chopathology. Worry was measured via the 16-item Penn State
Worry Questionnaire (PSWQ; Meyer, Miller, Metzger, &
Borkovec, 1990). Anxious arousal was measured with the
10-questions mini version of the Mood and Anxiety Symptom
Questionnaire – Anxious Arousal subscale (MASQ; Casillas &
Clark, 2000). Obsessive compulsiveness was measured with the
Obsessive Compulsive Inventory – Revised (OCI-R; Foa et al.,
2002). Depressive symptoms were measured with the Becks
Depression Inventory – II (BDI; Beck, Steer, & Brown, 1996).
Mania symptoms were measured with the Altman Self-Rating
Mania Scale (ASRM; Altman, Hedeker, Peterson, & Davis,
1997; see online Supplementary Fig. S1 for full distributions of
questionnaires).

Although IQ, age, and gender are known to covary with com-
pulsivity and related forms of psychopathology, we chose not to
measure them in the data we collected for two reasons. First,
because we investigate a learning impairment, controlling for

Fig. 1. Study 1: one-step revaluation task learning phase. Participants played a one-step revaluation task where two actions could each lead to three possible
states. Depicted here is the learning phase wherein participants were instructed to take an action (pressing either 1 or 0), and observe to which of three possible
states (each denoted by an emotionally-neutral image) their action led. Each action led to each of the three images with different probabilities. The red arrows
above symbolize transitions from action 1, and blue arrows from action 0. The thick arrow indicates the common transition, occurring 5/10 times (per action), the
middle-thickness dashed arrow indicates the uncommon transition, occurring 3/10 times, and the thinnest dashed arrows the rarest transitions, occurring 2/10
times. Participants chose each action 10 times, and saw an ‘irrelevant’ image of either neutral or emotional valence presented before the outcome state. The
instructions clarified these additional images were irrelevant and should be ignored. Irrelevant images were displayed for 500 msec. Analyses revealed a lack
of a role of these irrelevant images on the relationship between psychopathology and state transition learning.

2096 Paul B. Sharp et al.

https://doi.org/10.1017/S0033291721003846 Published online by Cambridge University Press

https://www.gorilla.sc
https://www.prolific.co/
https://www.prolific.co/
https://www.prolific.co/
https://doi.org/10.1017/S0033291721003846


IQ, age, or gender might remove meaningful variance and dimin-
ish our ability to detect relations with psychopathology. Second,
and most importantly, we do not question whether compulsivity
is associated with known deficits in model-based control, as this
association has already been demonstrated to exceed the effects
of IQ, age, and gender (Gillan et al., 2016). Our main goal was
to determine how state transition learning is related to compulsiv-
ity and whether it explains compulsivity-related deficits in the
utilization of state transition knowledge for model-based control.

One-step revaluation task
Participants played a one-step revaluation task where two actions
could each lead to three possible states. In a learning phase
(Fig. 1), subjects were forced via instruction to take an action
(pressing either 1 or 0), and observe to which of three possible
states their action led. Each action led to each of the three images
with different probabilities. Participants were told that the better
they learned the states that commonly followed each action, the
more money they would win, though unbeknownst to subjects
the payment schedule for each round was fixed at £7.
Participants chose each action 10 times, with the two actions ran-
domly interleaved. Additionally, before the presentation of the
outcome state, an irrelevant image of either neutral or emotional
valence was presented on screen.

After participants completed the learning phase, participants
faced a test phase in which they were presented with each of
the relevant outcome-state images from the learning phase.
Upon seeing the image, participants had to choose the action
that delivered them to that image most often in the learning
phase (e.g. choosing action 1 when shown the image of the bar-
rels). No feedback was presented after a choice was made so
that performance would solely reflect what was learned about
transitions in the learning phase. Note that both actions always
led to rare states with the same, low probability (20%), and thus
there was no optimal action to take in the test phase for such
queries (Fig. 1, transitions to cups image). We included the
‘rare state’ because we learned in piloting that this was necessary
to remove a ceiling effect.

The experiment started with an easy practice round, where each
action led to its ‘common’ image 16 out of 20 times (e.g. action 1
leading to the image of the barrels in Fig. 1), and twice to each of
the other two images. Participants then played five blocks (hence-
forth, ‘experimental conditions’) each of which comprised a learn-
ing phase (Fig. 1; 20 forced choice trials) and a test phase (three
queries). Four blocks differed in whether the irrelevant emotional
stimuli were presented during learning along common or uncom-
mon transitions and were of either positive or negative valence.
The remaining block included only neutral stimuli.

Image stimuli were taken from the OASIS image dataset
(Kurdi, Lozano, & Banaji, 2017). All task-relevant images were
selected to have neutral emotional content (i.e. valence between
3.5 and 4.5 on a seven-point scale, and arousal was below 3.5).
Irrelevant emotional images were selected with high arousal
(>5) and valence (<3 for negative, >5 for positive).

Of note, the original intention of the task was to test whether
the interaction between task-irrelevant affective images and pre-
existing worry impacted state transition learning. Specifically,
we hypothesized that chronic worry would produce an attentional
bias to negative distracting images, and this would facilitate
greater memory for such transitions. As such, we predicted
those with chronic worry would perform better at test when nega-
tive distractors were paired with common transitions, and worse

when negative images were paired rare transitions. However, con-
trary to this prediction, no effects were found for the pairing of
negative images with common (mode = −0.39, CI −0.96 to
0.27) or rare transitions (mode = 11, CI −0.51 to 0.70; see online
Supplementary Fig. S2).

Modeling whether state transition learning was impaired in the
novel revaluation task
To quantify learning, we analyzed participants’ choices from test
queries for which there was an optimal action (acorns and barrels
in Fig. 1). A Bayesian logistic regression model was used to predict
whether the participant correctly learned the state transition
matrix that characterized each block, as evidenced by their choices
in the test phase. Specifically, the logistic regression predicts
whether each participant choice was correct as a function of: a
grand-mean intercept, a random-effect participant baseline, a
random-effect experimental condition, and three fixed-effects
for each transdiagnostic psychopathology factor. The intercept
was drawn from a normal prior where the prior was centered
on the grand mean (mean = 0.6, S.D. = 1). Each random-effect
was drawn from a group-level prior whose mean was 0. We esti-
mated hierarchically the group-level variances on each random
effect. We kept all priors on variances across fixed- and
random-effects to an upper bound of 3. The hyperpriors for the
variance of the participant baseline were Uniform(0,3) whereas
each fixed-effect for each transdiagnostic psychopathology factor
was drawn from Normal(0,3). The participant-specific baseline
and experimental condition effects were instantiated in STAN
as unordered categorical variables.

To derive the transdiagnostic factors, we used the Factor
Analyzer Python package (https://pypi.org/project/factor-analyzer/)
with a promax rotation, which allows factors to be partially
correlated, along with default parameters.

For hypothesis testing, we defined a Region Of Practical
Equivalence (ROPE; Kruschke, 2018) representing the range of
insignificant effect sizes, and compared it to the 95% most credible
parameter values (i.e. the 95% Highest Density Intervals; HDI).
The ROPE was defined as 10% of the standard deviation in the esti-
mate of the baseline effect, signifying a small effect (0 ± 0.01).

Posterior probability distributions of effects were estimated
using a Hamiltonian Monte Carlo (HMC) sampling procedure
using a python implementation of STAN statistical software
(Stan Development Team, 2020). We changed the adapt_delta
parameter to 0.9 and max tree depth to 18, to reduce divergences
and improve sampling efficiency.

After fitting each model, we re-scaled all categorical parameter
estimates by enforcing a sum-to-zero constraint (i.e. the sum of
coefficients for the different levels of the categorical variable
equals 0). This procedure improves the interpretability of categor-
ical variable coefficients and regression intercept by ensuring each
coefficient represents the deviation for the corresponding categor-
ical level from baseline, which is captured by the intercept
(Kruschke & Liddell, 2018). In all models, all estimated para-
meters had good indicators of reliable sampling from the poster-
ior, including r-hat below 1.1 and effective sample size above 1000
for all parameters.

Study 2: quantifying disruptions in state transition learning
when transitions are stable

To investigate how disrupted state transition learning in compul-
sivity manifests in model-based control when state transitions are
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stable, we fit computational models of state transition learning to
a publicly available two-step task data (n = 1413; Gillan et al.,
2016). Briefly, the two-step task is a trial-and-error learning
task that requires participants first choose an action that leads
them to a second state, from which they can choose another
action in order to attain reward. Participants are instructed in
training about the probability of common and rare transitions,
which do not change over the course of the task, but participants
are not told which of the two transitions for a given action is most
likely and thus they must learn that through experience. We
empirically tested here whether such learning is less effective in
some individuals than in others, such that accounting for these
individual differences would improve our ability to model partici-
pants’ choices.

Previous models of this task learn state transitions by a simple
counting heuristic (Otto, Raio, Chiang, Phelps, & Daw, 2013). We
refer to this as the ‘Typical model’. Specifically, each trial, one of
two possible transition matrices, is inferred as the true transition
matrix that determines the probability first-stage actions transi-
tion second-stage states (e.g. either action 1 leads to state 1 70%
of time, or to state 2 70% of the time). Here the columns are
the possible two actions and the rows are possible states each
action can transition to:

T1true = 0.7 0.3
0.3 0.7

[ ]
orT2true = 0.3 0.7

0.7 0.3

[ ]
(1)

The transition matrix is inferred by using a running counter of
how many times each action transitioned to each second stage
state. For instance, if a subject’s initial choice was action 1, and
they transitioned to state 1, it would be encoded in the following
‘counting’ matrix:

Tcounting = 1 0
0 0

[ ]
(2)

At any point, T1trueis inferred if Tcounting(1,1) + Tcounting (2,2)
>Tcounting (1, 2) + Tcounting (2, 1), where the indices in the paren-
thesis reflect (row,column) in Tcounting. If the inequality is the con-
verse, T2trueis inferred. If both sides of the inequality are equal, the
average of T1true and T2true is inferred.

Here, we tested an alternative model that incrementally learns
state transitions as a consequence of state transition prediction
errors (Gläscher, Daw, Dayan, & O’Doherty, 2010). We refer to
this model as the incremental state transition learning (ISTL)
model (online Supplementary Fig. S3). This model quantifies
each individual’s rate of state transition learning, which when
excessively low or high can result in inaccurate estimates of true
state transition probabilities. For instance, if one transitions
from action 1 to state 2 at time t, the estimated probability of
that transition, P(s = 2|a = 1)t, is updated by the state prediction
error [1–P(s = 2|a = 1)t] according to a learning rate, γ, which
defines how much weight to give to the most recent prediction
error:

P(s = 2|a = 1)t+1 = P(s = 2|a = 1)t + g(1− P(s = 2|a = 1)t )

(3)

At the same time, the complementary transition probability,
from action 1 to state 1, is also updated so that the probabilities

sum to 1:

P(s = 1|a = 1)t+1 = 1− P(s = 2|a = 1)t+1 (4)
By contrast, estimated state transitions for the action that was

not taken decay toward the initial prior of 0.5:

P(s = 2|a = not taken)t+1 = P(s = 2|a
= not taken)t + g(0.5− P(s = 2|a = not taken)t) (5)

and similarly for s = 1.
Action values for chosen actions were updated exactly as in

Gillan et al. (2016), with a decay rate on action values that equals
the complement of the learning rate, 1-α. Action values for
unchosen actions were also updated as in Gillan et al. (2016)
except that they had their own decay rate, D.

We tested participants’ choices against several additional models
as detailed in online Supplementary Fig. S3. None of these models
was able to explain choices as well as the ISTL model, and thus we
focus here on a comparison between the Typical and ISTL models.

Models were fit hierarchically via iterative importance sampling
(Bishop, 2006), which has been shown to ensure high parameter
and model recoverability (Eldar & Niv, 2015; Eldar, Roth, Dayan,
& Dolan, 2018). The priors for this model-fitting procedure largely
do not affect the results, because the procedure iteratively updates
priors via likelihood-weighted resampling in order to converge on
the distributions of parameters that maximize model evidence. As
such, all parameters had ‘naïve’ priors. To ensure models and para-
meters were appropriately designed, we simulated data using the
ISTL and the Typical models, and successfully recovered both the
true parameter values (all correlations between true and fitted values
above 0.5; online Supplementary Fig. S4) and the model that
generated each simulated dataset (online Supplementary Note 1).

A model-agnostic behavioral signature of model-based
behavior

To quantify individual differences in model-based control in
empirical and simulated data without relying on a specific
model, we used a behavioral signature established in prior work
(Daw, Gershman, Seymour, Dayan, & Dolan, 2011). This
model-agnostic signature comprises the proportion of engaging
the switch or stay behavior that is predicted by model-based con-
trol following rare state transitions. Model-based control predicts
one should switch more often from one’s prior action if a state to
which a rate transition led was rewarded, because one is more
likely to reach the rewarded state via the action one did not
take last trial. For the same reason, model-based control predicts
one should stay with one’s prior action more often if a rare-
transitioned state was not rewarded. Model-basedness is thus
computed via the following equation, where ‘#’ denotes a tally:

Model basedness

= # Stay after rare unrewarded+ # Switch after rare rewarded
Total # Rare transitions

(6)

Relating compulsivity to state transition learning

We characterized state transition learning in each of the 1413 par-
ticipants from Gillan et al. (2016) by estimating the state transi-
tion learning rate (γ) in the ISTL model that best fitted
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participants’ choices. We then regressed compulsivity scores on
the state transition learning rate as well as covariates of age, sex,
and IQ in line with Gillan et al. (2016). We then tested whether
the use of transition knowledge for planning (βMB) mediated
the aforementioned relation between γ and compulsivity. Due
to a nonlinear relation between βMB and γ, we log-transformed
each to more fully account for shared variance (online
Supplementary Fig. S5).

Study 3: quantifying disruptions in state transition learning
when transitions change

To determine whether the finding of a compulsivity-related
impairment in state transition learning was specific to environ-
ments with stable state transitions, we analyzed behavioral data
from an additional learning task wherein state transitions changed
throughout the task. This task was a component of a larger study
(n = 192; Sharp et al., 2021) designed primarily to measure how
individuals switch between punishment avoidance and reward
pursuit goals when learning from reinforcement. Importantly,
we assayed participants in this study for compulsivity using the
same measure as utilized from Study 1, the OCI-R (Foa et al.,
2002). Here, we describe relevant details required to understand
how the task probed state transition learning. Full details of
Study 3’s task and hypotheses can be found in Sharp et al.
(2021; Fig. 1).

To win points, participants had to learn from experience the
probabilities that each of two actions (pressing ‘j’ or ‘g’) would
transition them to each of two ‘states’ (presented as colored cir-
cles). Importantly, the four transition probabilities slowly drifted
across the task according to independent random walks. After
choosing an action, participants could reach any combination of
states – none, one, or both. Thus, it was possible to reach two
states simultaneously, or reach neither state. Participants were
presented with an instructed goal each trial: either to seek the
‘reward’ state (i.e. the gold circle) as getting to this state would
reward the participant with 1 point, or to avoid the ‘punishment’
state (i.e. black circle) as reaching this state would cost the partici-
pant 1 point. Reaching a state not referred to in the instructions
had no consequence in terms of winning or losing points.
However, observing whether the chosen action led to a presently
irrelevant state could, via state transition learning, guide choices
in subsequent trials wherein instructions made this state relevant.
This aspect of the task allows an evaluation of state transition
learning that is separate from value learning.

Given that state transitions could not be inferred from explicit
instruction in this task, but rather had to be learned via experi-
ence, in line with prior work (Dayan, 1993; Russek et al., 2017)
we modeled state transition learning as an associative, incremental
learning process. Note, this learning process is identical to how
state transition learning was modeled in Study 2:

P(state = reward|press = g) = P(state = reward|press = j)

+ g(1− P(state = reward|press = g))

(7)

In this example, the model updates its estimate of the probabil-
ity that pressing ‘j’ leads to the ‘reward’ state after having just
experienced that state transition. All state transitions probabilities
are updated in this way every time a state transition is observed.

To choose an action, an agent computes the expected value of
each action by multiplying the state transition probability with the
values of the possible outcome states, as defined by the trial-
specific, instructed goal. Here, the agent is facing an avoid punish-
ment trial, for which reaching a black punishment state results in
a loss of 1 point (i.e. a value of −1) and reaching a reward gold
state delivers no points and is thus irrelevant. Actions values for
pressing ‘g’ are thus:

̂QMBreward (press = g)
QMBpunish (press = g)

[ ]
Model-Based

Action-Values

=

̂P(state = reward|press = g)
P(state = punish|press = g)

[ ]State Transition Estimates

· 0̂

−1

[ ]
Instructed

Goal

(8)

Note the model-based action-value for reward (QMBreward )
equals 0 above, as determined by the 0 in the ‘Instructed Goal’
vector.

In the best-fitting model for Study 3, three strategies influence
decision-making in addition to a model-based strategy. A goal-
perseveration strategy uses model-based state transition estimates
to always both avoid a punishment state (QGPpunish) and seek the
reward state (QGPreward). Thus, goal-perseveration values are com-

puted by setting the goal vector in Eq. 9 to
1
−1

[ ]
. A model-free

strategy computes action-values (QMF ) solely based on points
gained or lost previously in response to each action, thus neglecting
state transitions and the presently instructed goal. Finally, an action
perseveration strategy consists of a bias (QAP) to stay with the same
action taken at the last trial irrespective of any task feature.

The action-values computed by each strategy are integrated via
a weighted sum. Thus, each action value is multiplied by weights
(e.g. βMBpunish and βMBreward) that reflect the degree to which the
model utilizes the corresponding strategy. For the MB and GP
strategies, these utilization weights can differ in strength for
reward seeking and punishment avoidance. For the action ‘press
= g’ (which we omit from the right side of the equation for con-
cision) the weighted sum is computed as:

QIntegrated (press = g) = bMBrewardQMBpunish

+ bMBpunishQMBpunish

+ bGPrewardQGPreward

+ bGPpunishQGPpunish + bMFQMF

+ bAPQAP (9)

The integrated action value (QIntegrated (press = g)) is then
inputted into a softmax function to generate the policy:

P(press = g) = eQIntegrated(press= g)

eQIntegrated (press= g) + eQIntegrated (press= j)
(10)

P(press = j) = 1− P(press = g) (11)
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Since model-based utilization in this task differed across
reward pursuit and punishment avoidance goals, we included
both βMBreward and βMBpunish in subsequent regression analyses
to determine how each were related to compulsivity.
Importantly, an extensive model comparison showed that the
model delineated above outcompeted alternative models that
used only a subset of these decision strategies as well as several
variations within them (Sharp et al., 2021 for full details).

Results

In the one-step revaluation task, a subject was deemed to have
successfully learned state transitions for a given block of
learning if they chose both actions that had the highest
probability of transitioning them to the two states presented at
test. Examination of the data showed participants learned the
correct state transitions in the majority of cases. On average,
participants performed correctly on 3.22 out of 5 conditions
(N = 174, S.E.M. = 0.11), significantly greater than chance level
(chance = 1.25, t173 = 17.9, p < 0.001).

Compulsivity is associated with poor state transition learning

Rank correlations between psychopathology dimensions and state
transition learning showed that OCD symptoms, as measured by
the OCI-R, were significantly related to worse transition learning
(r =−0.154, p = 0.04; Fig. 2a). Given that this analysis could not
account for co-morbidities between symptoms, we next sought to
employ a transdiagnostic analysis that could reveal the contribution
of additional symptoms to weakened state transition learning.

To account for psychopathological co-morbidities (Sharp,
Miller, & Heller, 2015), and thus potentially improve our ability
to capture underlying neurocomputational dysfunctions (Norbom
et al., 2019), we conducted an exploratory factor analysis
(Fig. 2b) on the set of questionnaire items we administered. A
three-factor structure was implied by visual inspection of the
scree plot. Parallel analysis supported a strategy of not reducing
this number of factors, which aligns with prior work using similar
questionnaires (Gillan et al., 2016). The three components of inter-
est can largely be interpreted as (1) negative distress, (2) worry, and
(3) obsessive-compulsive and fear (OC-Fear; see Fig. 2b). This
result agrees with recent work that also found a factor comprising
OC and fear/panic symptoms (Wise & Dolan, 2020), as well as with
a wealth of psychometric literature that used exploratory factor ana-
lytic approaches and demonstrated an overlap between OCD and
fear/panic symptomatology (Stasik, 2014; Stasik, Naragon-Gainey,
Chmielewski, & Watson, 2012).

Out of the three transdiagnostic factors, only the OC-Fear
factor significantly correlated with worse state transition learning
(r =−0.17, p = 0.03; Fig. 2a). We additionally examined how all
three factors relate to state transition learning within a single hier-
archical Bayesian logistic regression model. The results again
showed that only the OC-Fear factor (95% HDI −0.58 to −0.05,
mode =−0.33) significantly related to poor state transition learn-
ing (Fig. 2c).

The impact of transition learning on model-based decision
making

To test more specifically how state transition learning is disrupted
in the context of model-based control, we modeled choice data
(n = 1413; Gillan et al., 2016) from the two-step task using the

ISTL model. We first used this model to determine if past signa-
tures of reduced model-based control could be accounted for by a
disruption in incremental state-transition learning. For this pur-
pose, we simulated data by having the model ‘play’ the task
with different transition learning rates, and fixing other para-
meters to fitted group means. In so doing, we show that having
a suboptimal high state transition learning rate reproduces the
empirical effect reported in Daw et al. (2011), which was deemed
to reflect decreased model-based planning (Fig. 3a).

To determine whether participants learned state transitions
incrementally or via counting, and whether they differed from
one another in their transition learning rates, we conducted an
extensive comparison between different computational models
in terms of how well each model explained participants’ choices
(online Supplementary Fig. S3). We found that participants’
choices were best explained by the ISTL model, which features
an individually fit incremental learning rate for state transitions
(log Bayes factor = 274.78 compared to the Typical model used
to analyze two-step task data). Model recovery tests demonstrated
our analysis successfully recovered the true model from simulated
data, validating our model selection procedure (online
Supplementary Note 1).

To determine whether differences among participants in model-
based control reflected differences in state transition learning rate
(γ) and in the use of transition knowledge for making choices
(βMB, ‘model-based beta’), we fitted the values of these two para-
meters of the computational model to each participants’ choices,
and we regressed onto them a model-agnostic behavioral signature
of model-based control. This signature (‘model-basedness’) tallies
optimal switch behavior that should occur after participants
experience rare transitions. We found that the model-based β,
βMB (β = 0.01, S.E. = 0.003, p = 001) and the state transition learning
rate, γ (β =−0.09, S.E. = 0.006, p < 0.001) each predicted unique
variance in model-based behavior.

Given that the recoverability of γ was expectedly low when βMB

was itself very small, we computed the same regression on a sub-
sample of participants (n = 409) with a relatively high βMB (βMB >
2.5). We determined this threshold for βMB by using increments
of 0.5 and selecting the threshold that maximized parameter
recoverability of state transition learning rate while also ensuring
there was no significant difference in the mean level of compulsiv-
ity across the reduced and full samples (mean difference =−0.06,
S.D. = 0.93, t408 = 1.80, p = 0.07). Enhanced recoverability when
excluding low-βMB participants manifested in a substantial
increase in the correlation between estimated and true γ in simu-
lated data (r = 0.61 compared to r = 0.22; difference between cor-
relations: Z408 = 6.46, p≤ 0.001). The regression results for this
subset of participants agreed with the results for the full sample
(βMB: β = 0.043, S.E. = 0.009, p < 0.001 and γ: β =−0.054, S.E. =
0.008, p < 0.001; Fig. 3b). Finally, we further confirmed the ability
of the model to explain model-basedness in the empirical data
using a posterior predictive check wherein we replicated the
empirical effects noted above in synthetic data (n = 400) generated
from the ISTL model and individual-level best-fitting parameters
(βMB: β = 0.34, S.E. = 0.006, p < 0.001 and γ: β =−0.068, S.E. =
0.007, p≤ 0.001; Fig. 3c).

In a stable environment, high-compulsivity participants
update state-transition estimates too fast

To determine whether compulsivity is related to state transition
learning (γ), we regressed the former onto the latter, controlling
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for age, gender, and IQ. This showed that state transition learning
and compulsivity were positively related (β = 0.15, S.E. = 0.05, p =
0.003). Next, replicating the core finding in Gillan et al. (2016), we
showed that utilization of transition knowledge (βMB) was

inversely related to compulsivity (β =−0.12, S.E. = 0.03, p <
0.001). Whereas βMB decreased with compulsivity, γ increased
with compulsivity. Thus, that both were related to compulsivity
cannot be explained by an identifiability tradeoff between them,

Fig. 2. Study 1: transition learning and psychopathology. (a) Correlations between psychopathology dimensions, transdiagnostic factors, and choice behavior. The
left plot comprises correlations between psychopathology dimensions (denoted by their associated questionnaire’s abbreviation), transdiagnostic factors derived
from exploratory factor analysis, and how well participants learned state transitions. We outline in green the two significant associations involving transition learn-
ing in the task, and plot the raw data comprising these correlations in the middle and right plots ( p < 0.05). (b) Exploratory factor analysis of psychopathology
dimensions. Left is the scree plot showing that variance explained plateaus after the first three factors. The eigenvalues for the three components were 16.70,
5.50, and 4.70 for the Negative Distress, Worry, and OC-Fear factors, respectively. The bottom bar plots show the composition of each of these factors in terms
of the factor loading of each individual question from all five questionnaires used. Each questionnaire is denoted by a different color. Note, the dataset met
both the Bartlett’s test of sphericity ( p≤ 0.001) and Kaiser-Meyer-Olkin test of sampling adequacy (KMO = 0.83). (c) Posterior density plots estimating the effects
of the three latent psychopathology factors on transition learning. The black bar denotes the ROPE and the yellow bar the 95% HDI. Only the OC-Fear components
has the ROPE entirely outside its HDI. The width of the ROPE was defined as 10% of the standard deviation of the posterior distribution (i.e.±0.01).
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Fig. 3. Study 2: state transition learning rate and model-based behavior in the two-step task. (a) A high state transition learning rate can produce behavior resem-
bling compromised model-based control. The plots show the proportion of times a participant (real or simulated) engaged the same action they deployed in the
preceding trial (‘Stay probability’) conditioned on whether or not one’s prior action was followed by a common or rare state transition and whether reward was
administered. The behavioral signature of model-basedness is shown in the top right plot (Simulated Data: MB Typical). The deviation of Daw et al.’s real data (top
left panel) from this signature was deemed to reflect reduced utilization of intact transition matrix knowledge when making decisions, relative to a competing
model-free system. The bottom row depicts simulations of the ISTL algorithm which gradually learns the transition matrix from experienced state prediction errors.
The bottom left plot shows that the same qualitative pattern found in Daw et al.’s empirical data (top left) can emerge due to a fast transition learning rate, even in
the absence of a putative model-free system. (b) Model-basedness as a function of transition learning rate and model-based β in empirical data. Model-basedness
quantifies the degree to which participants complied with the behavioral signature of model-based choice as shown in panel A (e.g. switching after a rare transition
was rewarded; see Methods). The top subplot reflects how model-basedness inversely covaries with state transition learning rate whereas the bottom subplot
shows the positive relationship between model-basedness and model-based β. Both were generated using a subsample of participants with high (>2.5) model-
based control. (c) Model-basedness as a function of transition learning rate and model-based β in simulated data. As a post-predictive check, we simulated
the data using the winning ISTL model and best-fitting parameters, which generated the same effects as the empirical data in (c). (d) Regression weights of com-
putational parameters in explaining model-basedness.
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since this (anticorrelated) tradeoff would have made both para-
meters share the same relationship with compulsivity.

In a given task, a state transition learning rate that is too high
or too low may result in misestimations of the true state transition
probabilities. Thus, we next asked whether the higher state tran-
sition learning rates associated with compulsivity were suboptimal
or well-suited to the experimental task. To test this, we simulated
agents with varying state transition learning rates, while setting
βMB to a high value (within the empirical range) and all other
parameters to group-fitted means. Each agent played the task 1
000 000 times and the average reward for each state transition
learning rate was computed. The results showed that the higher
learning rates associated with compulsivity were suboptimal, in
the sense that they made the simulated agent win less reward
(Fig. 4a).

Subsequently, we sought to determine whether the two para-
meters, state transition learning rate (γ) and model-based beta
(βMB), independently contribute to explaining compulsivity, or
whether, as proposed by Seow et al. (2021), variations in γ can
account for known compulsivity-related deficits in βMB.
Consistent with the latter possibility, we found that γ anticorre-
lated with βMB (β = −0.98, S.E. = 0.04, p < 0.001). Thus, as all
three variables were correlated with one another, we tested for
mediation by regressing compulsivity on both βMB and γ in the
same model. This demonstrated that βMB (β = −0.10, S.E. = 0.03,
p = 0.001) fully mediated the relationship between γ and compul-
sivity (β = 0.05, S.E. = 0.06, p = 0.40). To further validate this result,
we additionally performed the mediation analysis on a subsample
of participants (n = 409) that included only participants with a
βMB estimate of 2.5 or greater, for which the true learning rate
is more accurately recovered. We again found that γ was asso-
ciated with compulsivity (β = 0.14, S.E. = 0.06, p = 0.02) and this
relationship was fully mediated by βMB (βMB: β =−0.23, S.E. =
0.09, p = 0.006; γ: β = 0.0004, S.E. = 0.08, p = 0.99).

In a changing environment, high-compulsivity participants
update state-transition estimates too slowly

To determine whether a compulsivity-related disruption in state
transition learning is due to learning too quickly or due to a fail-
ure in adapting the rate of state transition learning to the pace at
which state transitions change, we next examined learning about
continuously changing state transitions. To do so, we re-analyzed
data from a recently completed study in our lab (Sharp et al.,
2021) in which participants were required to learn changing
state transitions in order to pursue trial-specific goals [see
Methods, Study 3 for brief task and model descriptions; Sharp
et al. (2021) for in-depth details of task and model comparison].
Unlike in Study 2, here we found that compulsivity was associated
with lower state-transition learning rates (i.e. γ; β = −1.69, S.E. =
0.8, p = 0.035).

To determine whether such slow state-transition learning was
detrimental to task performance, as in Study 2, we simulated task
performance and computed the average reward that could be
earned with various state transition learning rates. This showed
that the lower state transition learning rates associated with com-
pulsivity were suboptimal (Fig. 4b). Thus, in a changing environ-
ment, which warrants faster learning than a stable environment,
individuals with compulsivity update their estimates of state tran-
sitions at too slow a rate.

In this study, neither βMB parameter was significantly asso-
ciated with compulsivity. However, it is important to stress that

Study 3’s task involved explicit instruction on a trial-by-trial
basis to prompt model-based flexibility, which has been shown
to significantly increase model-based control, and reduce
between-subject variance in this regard (da Silva & Hare, 2020).
Thus, βMB values found here may not be comparable with those
found in prior studies.

Discussion

We showed in Study 1 that compulsivity was associated with
impaired learning of state transitions in a novel revaluation task
that was designed to isolate the effects of transition learning.

Fig. 4. Compulsivity-associated state transition learning rates are suboptimal. (a)
Compulsivity is associated with sub-optimally fast state transition learning in a stable
environment (Study 2). We simulated agents that played the exact same task as
described in Gillan et al. (2016) and plot the min-max normalized average reward.
We instantiated agents with a model-based β weight that maximized reward earned
but was still within the tail of the empirical range, using a selection procedure for
extreme values in skewed distributions (Rousseeuw & Hubert, 2011). We set all
other parameters to their group-fitted medians for distributions that were highly
skewed (z-score >4, which was the lowest among statistically significant z-scores),
and group-fitted means otherwise. Agents played the game 100 000 times with differ-
ent state transition learning rates [sampling from (0,1) in increments of 0.1; main
plot], and 1 000 000 times within a region of interest around the optimal and empir-
ical learning rates (denoted by red box) for increased precision. The low- and high-
compulsivity groups included participants scoring <–1 and >1 on the standardized
scale of compulsivity factor derived in Gillan et al. (2016). Medians from each
group (due to their skew) are plotted on the inset plots. (b) Compulsivity is asso-
ciated with sub-optimally slow state transition learning in a changing environment
(Study 3). Plots were generated using the procedure described in panel A, here
applied to the Study 3 model.
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Additionally, Study 1 found preliminary evidence that state tran-
sition learning deficits are associated with a transdiagnostic factor
which is influenced in part by symptoms of fear. We next demon-
strated across two independent studies that compulsivity is related
to state transition learning impairments, in both one- and two-
step decision tasks, and in the presence of stable or changing
state transitions. In Study 2, we showed that when state transitions
are stable, compulsivity is associated with a sub-optimally high
state transition learning rate, whereas Study 3 demonstrated that
when state transitions change, compulsivity is associated with a
sub-optimally low state transition learning rate.

These findings extend recent evidence that compulsivity is
associated with greater uncertainty regarding state transitions
(Fradkin, Adams, Parr, Roiser, & Huppert, 2020a, 2020b; Seow
et al., 2021). For example, previous work implicated disruptions
in uncertainty-related learning of shifting cue-outcome contin-
gency (Fradkin, Ludwig, Eldar, & Huppert, 2020b). Here, our
finding that compulsivity-related disruptions in the rate of
state-transition learning depended on whether state transitions
changed over the course of the task suggests that individuals
with compulsivity have trouble estimating higher-order statistics,
such as state transition volatility (e.g. Behrens, Woolrich, Walton,
& Rushworth, 2007). Future work could seek to manipulate the
rate of change of state transitions, within task, in order to deter-
mine if the aforementioned hypothesis can parsimoniously
explain the present results as well as related findings in prior
work (e.g. Fradkin et al., 2020a).

One caveat to Study 1’s results is that they do not account for
multiple comparisons across the different measures provided by
the one-step revaluation task. However, the possibility of a false-
positive is mitigated by the results of Study 2 and Study 3, which
offer two ‘conceptual replications’ of Study 1’s core finding – that
compulsivity is associated with disrupted state transition learning.
A conceptual replication tests the same hypothesis using different
task designs to determine whether the core hypothesis is robust
under task variation (Watts, Duncan, & Quan, 2018). It has been
argued that a conceptual replication is one of the most effective
ways to rule out false-positive findings (Crüwell et al., 2019).

By contrast, findings related to fear symptoms as captured by
an anxious arousal measure were only implicated by Study 1 and
thus should be considered preliminary. Nevertheless, we note that
our finding of an OC-Fear factor aligns with recent psychometric
literature and online computational psychiatry studies in large
samples (Levin-Aspenson, Watson, Ellickson-Larew, Stanton, &
Stasik-O’Brien, 2021; Stasik, 2014; Wise & Dolan, 2020) showing,
across several factor analytic approaches, that fear and OCD
symptoms converge. This is unsurprising given that, in many
instances, fear of an aversive outcome (e.g. contamination) may
partly be the cause of compulsions. That said, future work should
determine if fear-related impairments in transition learning are
entirely driven by compulsivity, especially given that compulsivity
scores loaded more strongly onto our OC-Fear factor. In any case,
this finding does not contradict a previously observed lack of
association between anxiety and model-based control (Gillan
et al., 2020b; Heller, Ezie, Otto, & Timpano, 2018), given the for-
mer studies did not specifically assay fear symptoms as distinct
from classical anxiety symptoms (e.g. worry). Indeed, worry in
Study 1 was not associated with state transition learning deficits.

The factor analysis employed in Study 1 was limited by the
sample size afforded by study resources, which entailed a low
item:participant ratio. Additionally, we could not mitigate this
problem by performing the factor analysis on subscales (Gillan

et al., 2020a, 2020b), as only one of five questionnaires was com-
prised of subscales. Thus, validation of the specific factor structure
found and its relation to state transition learning would require
direct replication on a larger sample size.

Finally, it is important to ask why the mediational hypothesis
(Seow et al., 2021), that reduced utilization of model-based con-
trol mediates a relation between poor transition learning and
compulsivity, was only found in Study 2. First, Study 3 included
a one-step task wherein utilization of model-based control is
potentially less effortful to leverage than in the two-step task.
Second, and more importantly, Study 3’s task included trial-by-
trial instruction that repeatedly signaled to participants the need
for model-based control. Prior work has shown that such instruc-
tion greatly improves model-based control (da Silva & Hare,
2020).

Future work should determine how other aspects of the utiliza-
tion and consolidation of cognitive maps, such as episodic
retrieval (Talmi, Lohnas, & Daw, 2019) and offline replay of tra-
jectories (Eldar, Lièvre, Dayan, & Dolan, 2020), are affected in
compulsivity. Finally, developmental work is crucial to under-
stand whether a state transition learning deficit emerges before
compulsive symptomatology, or whether it is an effect of this
pathology.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291721003846
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