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The topology of ice-sheet centres 
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H. H. Wills Physics Laboratory, University of Bristol, Bristol BSB 1 TL, England 

ABSTRACT. An ice sheet will, in general, p ossess points where the horizontal 
component of velocity is zero, and some of these will be ice centres, occurring 
close to summits. The paper examines the possible flow patterns near such points. 
The corresponding horizontal strain-rate pattern is studied by considering an ice 
sheet which initially has perfect circular symmetry about a vertical axis. Before 
perturbation there is an isotropic point for the horizontal surface strain rate at 
the centre. It may be shown, on purely topological grounds and without any 
reference to the mechanism of flow , that, when the symmetry is broken, this point, 
being degenerate and structurally unstable, breaks up into two structurally stable 
components. The breakup always occurs in essentially the same way. Around the 
two component points the trajectories of principal strain-rate directions always have 
the lemon pattern. The contours of equal principal strain rate a round them are 
usually hyperbolic; however, if the unperturbed flow pattern had a very pronounced 
spiral character, they would be elliptic. This behaviour is in contrast to that of the 
ice centre itself, which remains unsplit. 

1. INTRODUCTION 

The ideas of genericity and of structural stability, which 
originated as concepts within mathematics (Thom, 1975; 
Arnold , 1983, 1986; Guckenheimer and Holmes, 1983), 
have much to teach us in our attempts to model the nat­
ural world. In mathematics they have, of course, the 
rigour that is appropriate to that subject; in science it is 
natural that they should be applied in a somewhat looser 
way. In particular, they are of wide applicability in geo­
physics, where problems characteristically involve scalar, 
vector or tensor fields that have no special symmetry. An 
example in glaciology is the time-dependent behaviour 
of the edge of an irregular ice sheet (Nye, 1990). This 
paper studies the related problem of the behaviour of a 
flow centre in an irregular ice sheet. 

The point of view to be adopted is unconventional in 
glaciology, and needs to be stated explicitly. The conven­
tional way of treating ice sheets theoretically is first to set 
up a mathematical model , which is an idealization of the 
real ice sheet and which is chosen so as to be analytically 
or numerically tractable. The model will commonly con­
tain assumptions about the flow law for ice, the isotropy 
of the ice, its thermal properties, the form and nature 
of the bed, the various boundary conditions, and so on. 
Here, however, we proceed differently. 

Consider the surface of a real ice sheet at a particular 
time. A topographic map made at a certain scale repre­
sents a smoothed version of the real surface, and it is this 
smoothed surface that we deal with. Consider also the 
real two-dimensional horizontal velocity field of the ice at 
the ice-sheet surface, and let this now be smoothed at the 
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same map scale. These smoothing operations completely . 
define our model, and they represent the correspondence 
between model and reality. Thus, we are not dealing 
with an ice-sheet model in the us ual sense, but with a n 
ice sheet which is simply a smoothed version of a real 
one, such as the Antarctic or the Greenland ice sheet, in 
all its geographical complexity. 

With such a general approach, it might be thought 
that little of value could be said, but this is not the case. 
Certain conclusions follow purely from topological con­
siderations, which are absolute for generic smooth sur­
faces and functions. The word generic, as we use it in this 
paper, simply means typical. It refers to something that 
will occur when there are no special conditions. Like­
wise, non-generic means "of vanishingly small probabil­
ity". This is admittedly a loose definition; in mathemat­
ics, as one would expect, generic has a strictly defined 
meaning, but such rigour would not be appropriate here. 

The importance of the topological conclusions that 
follow from genericity derives precisely from the fact that 
they are independent of specific mechanisms of flow, and 
of specific models, in the usual sense of that term. Spec­
ific models, however good, are necessarily approximate; 
topological conclusions are absolute. 

2. STRUCTURAL STABILITY: MAXIMA, 

MINIMA AND SADDLES 

As an introductory example, let us consider how the sur­
face of an ice sheet can change with time. The smoothed 
surface that we have constructed will generically show 
three kinds of points where the surface is level: maxima 
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Fig. 1. Height contours of an ice sheet. A saddle S (index -1) and a maximum M (index +1) 
annihilate one another, the total singularity index remaining zero througlwut. 

(summits), saddles and minima (hollows), although the 
latter will occur rarely. At a slightly later time, as the 
ice sheet evolves, all these points will be found to have 
moved a little, but they will all retain their identities: 
they are said to be structurally stable. Generically, there 
are only two ways in which they can destroy themselves: 
(1) by moving to the edge of the ice sheet and disappear­
ing, or (2) by a maximum or minimum colliding with a 
saddle to leave no level place (Fig. 1). If the left hand 
diagram of Figure 1 represents a maximum and a saddle, 
the transition to the right hand diagram could be accom­
plished by progressively tilting the whole surface until 
eventually it all slopes downwards to the right. 

Singularity index 
It is helpful to view this last event by using the concept 
of the singularity index. To determine the index of a 
singularity such as the saddle S in Figure 1, draw a cir­
cuit around it (the circle) and note how the contour lines 
change direction as one proceeds once around the circuit. 
If the circuit is traversed clockwise, it will be seen that 
the contour direction (shown by the arrows) rotates by 
one revolution in the opposite sense; and this is so what­
ever the shape of the circuit, provided it encloses Sand 
no other singularity. The singularity index is defined 
in this case as -1. A corresponding clockwise circuit 
around M in Figure 1 (which may represent a maximum 
or a minimum) shows that the contour direction changes 
by one revolution clockwise: the index is accordingly de­
fined as +1. If, on the other hand, we travel clockwise 
on a circuit that encloses both S and M, the contour dir­
ection shows no resultant rotation; the index is O. This 
illustrates the rule that the index for a circuit is the sum 
of the indices of the individual singularities that it en­
closes. 

If we now keep a circuit fixed and make a small change 
in the contour pattern, the index for the circuit cannot 
change discontinuously (because its change results from 
adding many small continuous changes), unless a singu­
larity should happen to pass across the circuit. Thus, 
provided this does not happen, the index for the circuit 
is conserved. For example, in Figure 1, S and M come to­
gether to leave no singularity; this is consistent with the 
result we get by noting the index of a circuit enclosing 
S and M (namely zero), and also noting the index of the 
same circuit after the annihilation event (namely zero 
again). It is clear from such considerations that, when 
singularities interact, their total index is conserved. This 

is the essential topological reason why maxima and min­
ima on an ice sheet can only be destroyed by collision 
with saddles (or by passing over the boundary). 

3. DIRECTIONS OF ICE FLOW 

Consider now, at a given instant, the smoothed two­
dimensional distribution of horizontal veloci ty at the sur­
face of the ice sheet, represented by the two-dimensional 
vector field u(r), where r = (x, y) denotes position. As 
in any such field there arc, in general, points where 
u(r) = O. An ice centre is a point where u(r) = 0 and 
where the two principal horizontal strain rates el and e2 

are both positive. (It is non-generic for either of them 
to be zero precisely at a point where u(r) is also zero. 
That would be a structurally unstable situation; for ex­
ample, a change in the scale of smoothing would destroy 
the coincidence.) 

Although an ice centre will normally occur near a 
summit, it is non-generic that it should coincide with a 
summit exactLy; this would entail conditions so special 
that they would not be found in Nature. Similarly, it is 
non-generic that the rotation rate at an ice centre should 
be exactly zero, although it may very well be quite small. 
Most detailed ice-sheet models are based on a flow rule 
of the type 

u(r) = s(r)grad cf;(r) (1) 

where cj>(r) is the height of the surface, and s(r) is some 
scalar function of position (which would include, for ex­
ample, a dependence on bed roughness, as well as on 
powers of Igrad cf;(r) I and of ice thickness) . This is the 
most general rule that ensures that u( r) is perpendic­
ular to the surface contours (Nye, 1952; Hutter, 1983, p. 
459), as is commonly observed to be approximately the 
case. In such a model, an ice centre would necessarily 
occur exactly at a summit (grad cf; = 0). It follows from 
rule (1) that, since curlgrad= 0, 

curl u = grad s(r) x grad cf;(r) . 

Thus, with this rule, not only would there be no velocity 
at the summit, but no rotation either. However, there 
would be rotation wherever grad s(r) is not parallel or 
anti-parallel to gradcf;(r). It is useful to note these con­
sequences of rule (1) but, since the rule is only approxi­
mate and our aim is to avoid all approximation, we shall 
not, in fact, apply any such constraint in what follows. 
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d 
Fig. 2. Flowline' patterns at an ice centre for varying amounts of rotation. TILe ratio of the 
principal strains ez/cj is taken as 4. The straight fiowlines come together' as w increases. (a) 
w = 0, (b) w = ej, (c) w = 1.Sel, the critical value, (d) w = 2.22cj. 

Our point of view is that there is nothing to prevent a 
rotation at an ice centre, and they-efore it will occur in 
Nature, even if only to a small degree. A possible phys­
ical mechanism is provided by the nature of the ice-sheet 
bed: this will necessarily favour either clockwise or an­
ticlockwise motion; it will never favour both equally, for 
that would be non-generic. Of course, this is only one of 
a large number of possible physical mechanisms. 

Taking an ice centre as origin 0 and x, y axes parallel 
to the principal horizontal strain rates el and Cz at 0, 
the velocity components u(x, y) and v(x, V), at a given 
instant, are given to lowest order by 
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u = elx - Wy } 

v = wx + czy 

where w is the instantaneous rate of rotation at O. To 
find the possible patterns of instantaneous fiowlines, we 
write u = x, v = y, thus 

x = ejX - Wy } 
y = wx + ezy . 

(2) 

If the velocity distribution were steady with time, these 
equations would give the actual particle motions. How­
ever, generically, the velocity distribution changes with 
time, and so the equations merely describe the instant­
aneous motion of the particles. We now follow a stan­
dard procedure from dynamical systems analysis (Pip­
pard, 1985, p. 22). First eliminate y to give 

x - Tx +.1x = 0 (3) 
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where T is the trace, el + e2, and ~ the determinant, 
ele2 + w2, of the matrix of coefficients in Equations (2). 
Since Equation (3) is the equation for damped harmonic 
motion, and T is positive, the solution grows exponen­
tially: 

if ~ < ~T2, i.e. 4w2 < (el - e2)2, the solution grows 
in a non-oscillatory way (nodal instability); 
if ~ > ~TZ, i.e. 4w2 > (el - e2)2, it grows in an 
oscillatory way (focal instability). 

The resulting flow line patterns are drawn in Figure 
2a, b, c and d for e2/ el = 4. When Iwl is below the criti­
cal value given by 4w2 = (el -e2)2, there arc two straight 
flowlines, generically not at right-angles, one of them be­
ing a common tangent at 0 to all the other flow lines. 
When Iwl is above the critical value, the flowlines cease 
to possess a common tangent. We expect the rotation 
rate to be small at an ice centre, as already discussed, 
and therefore a pattern between those of Figure 2a and 
b is to be expected. As time progresses and the ice sheet 
evolves, an ice centre will move, but because it is struc­
turally stable the general features of its local flow line 
pattern will be preserved. 

If rule (1) were obeyed, the ice centre would be ex­
actly at a summit and there would be no instantaneous 
rotation at this point. It is readily shown that in this case 
the contour lines for the surface would be concentric el­
lipses of the same shape as the representation quadric for 
strain rate, namely 

These are the ellipses shown in Figure 2a. The instant­
aneous flowlines would be the onc-parameter (A) set of 
curves 

(4) 

which are drawn in Figure 2a for ed el = 4. They would 
fan out from the direction of lesser principal strain rate. 

A similar treatment can be given for the flowlines 

a 
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around a zero-velocity point with eJ and e2 having op­
posite signs, as would be expected near a surface saddle. 
If rule (1) applied, u would be exactly zero at a surface 
saddle, and so would w. Therefore, we expect a u = 0 
point near a surface saddle and that w will be small at 
this point. Since Iwl is likely to be small compared with 
lell and le21, we expect the determinant ~ to be negat­
ive, and therefore, in dynamical systems terminology, a 
saddle-point instability. However, if, exceptionally, Iwl 
were large enough (w2 > -ele2), four other possibilities 
would appear as follows (see Pippard, 1985, p. 22 for 
terminology): 

el + e2 > 0, 2 J ( )2 w > 4" el - e2 , fi 

el + e2 > 0, 2 1 ( )2 -eJe2 < w < 4" el - e2 , m 

el + e2 < 0, ? 1 ( )2 -cle2 < w- < 4" Cl - e2 , ns 

Cl + e2 < 0, 2 1 ( )2 w > 4" el - e2 , fs 

where "fi" means focal instability, "ni" n1eans nodal in­
stability, "ns" means nodal stability and "fs" means focal 
stability. 

4. PATTERNS OF STRAIN RATE 

The pattern of horizontal strain-rate directions near an 
ice centre behaves quite differently from the pattern of 
flowlines. To explain this, it is convenient to begin with 
an ice sheet that is circularly symmetric in plan view in 
all its features (topography, accumulation rate, temper­
ature, etc.). Of course, this is quite non-generic, but wc 
shall in a moment perturb the ice sheet in a general way. 
Before perturbation, the ice spreads out radially from 
the centre in all directions and the horizontal strain rate 
eij (i,j = x, y) at the centre is isotropic: 

(
J( 0) e = (eij) = 0 J( , 

say, the constant J( being positive. (At an isotropic point 

Fig. 3. Tmjectories of principal strain mte for a circularly symmetric ice sheet, (a) without, and 
(b) with TotcLtion. 
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Fig. 4. The pattern of principaL strain-mte trajectories around, cm isotropic point wn, in generaL, 
be of three different kinds. The Lemon and monstar patterns have index + ~, whiLe the stCLr pattern 
has index -~. On the other hand, the star and monstar have three stmight tr·ajectories, while the 
lemon has only one. The nomenclature is due to Berry and Hannay (1977). 

for strain rate, in general, e has this form, but J{ need 
not be positive.) 

Away from the centre the strain will not be isotropic, 
and in the simplest case the trajectories of principal 
strain rate would be radial lines and circles (Fig. 3a). 
However, circular symmetry would still be retained if 
the trajectories had a spiral character, as in Figure 3b. 
It can be shown that this implies that the flow lines are 
spirals also. In addition, there is a rotation rate that 
varies with radial distance. (These effects involve terms 
two orders higher than were considered in section 3, that 
is, cubic terms in Equations (2).) 

The singularity index of the patterns of orthogonal 
strain-rate directions in Figure 3a and b is + 1. How­
ever, the singularity index for the trajectory pattern of 
an isotropic point, in general, is ±~, as can be seen by in­
spection of the patterns in Figure 4 (Nye, 1983, 198Ga). 
(The reason for the~, as compared with 1 for the con­
tour patterns, is that rotation of the strain-rate tensor 
at a point by 7r brings it into self-coincidence, whereas 
a contour, which has a high side and a low side, has to 
be rotated by 27r to be brought into self-coincidence.) 
Therefore, we can expect that, on perturbation, our + 1 
isotropic point will split into two, each of index +1. In 
other words, the + 1 isotropic point is structurally un­
stable. (A similar splitting occurs with the isotropic 
points for curvature situated at each end of the axis of 
revolution of a spheroid; when the rotational symmetry 
is broken, each of these splits into two. In crystal optics 
the transition from a uniaxial crystal to a biaxial crystal 
is somewhat similar. However, these analogies are not 
perfect, as we shall see.) After perturbation, the local 
flowline pattern will be like those of Figure 2; unlike the 
central isotropic point, the flow centre is not split. 

In principle, the two isotropic points for strain rate 
could be lemon or monstar (Fig. 4), but not star, because 
this has index -!. Isotropic points are also characterized 
by the contour property. Around each isotropic point 
one can draw contours of equal principal strain rate (lines 
along which a principal strain rate el or e2 takes a fixed 
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value) . There are two possibilities: the contours for both 
el and e2 are either two families of ellipses or two famil­
ies of hyperbolas. Thus, in principle, not only could our 
two isotropic points be lemon or monstar, but in addit­
ion they could be elliptic or hyperbolic . We now show 
that they are, in fact, always lemon and nearly always 
hyperbolic_ 

To represent the unperturbed eij within a small neigh­
bourhood of the central degenerate isotropic point, taken 
as the origin, write the quadratic expansion 

e _ (J{ + ax2 + by2 + cxy 
- dx2 + py2 + f xy 

dx2 + py2 + f xy ) 
K + gx2 + hy2 + kxy 

(the strain-rate distribution is considered smooth for 
the same reason as the surface topography). Linear 
terms have been omitted, because the pattern is centro­
symmetric and therefore the tensor must be invariant 
under the transformation (x, y) ---> (-x, -V). Circular 
symmetry of the kind shown in Figure 3a requires, fur­
ther, that (a) the directions of principal strain rate are 
radial and circumferential, and (b) the two strain-rate 
invariants are functions of r and not () (T, () being polar 
coordinates). A short analysis shows that these condit­
ions reduce e to the form 

e_(K+ax
2

+by2 (a-b)xy ) 
- (a-b)xy K+bx2 +ay2 

(ai'b). 

(5) 
If, however, we admit a rotation, as in the generic case 

of Figure 3b, there are additional terms involving c: 

where 

e = (·PO TO) 
TO qo 

Po = J{ + ax2 + by2 + cxy 

qo = J{ + bx2 + ay2 - cxy 

1 2 2 ( TO = --c(x - y ) + a- b)xy. 
2 

(6) 
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Working with this more general form, we now perturb 
it by a small amount in lowest order to make the origin 
non-isotropic, thus: 

where 
PI = 1( + E) + ax2 + by2 + cxy 

ql = 1( - El + bx2 + ay2 - cxy 

1 
Tl = E2 - -c(x2 - y2) + (a - b)xy 

2 

(7) 

where El and E2 are small constants. "Small" means that 
the separation of the new isotropic points is small com­
pared with a characteristic radial dimension of the orig­
inal strain-rate distribution. (A more general perturb­
ation in q), by E3, say, rather than by -E 1, would have 
no effect other than to change the mean normal strain 
rate at the origin.) It is necessary to impose one further 
condition: because the strain-rate tensor is the gradient 
of a single-valued velocity function, its components must 
satisfy what in elasticity would be called the equations 
of compatibility. In two dimensions, as here, they reduce 
to the single condition: 

(8) 

Applied to Equation (7) this gives a = 3b, so that the 
tensor now has the form 

where 

P2 = 1( + E) + b(3x2 + y2) + cxy 

q2 = 1( - El + b(x2 + 3y2) - cxy 

1 
1'2 = E2 - '2C(x2 - y2) + 2bxy. 

(9) 

The conditions for an isotropic point, exx = eyy , 

exy = 0, reveal that there are now two such points sym­
metrically placed and, without loss of generality, we can 
make them occur on the x, y axes (different from those 
of section 3 because E2 =1= 0) by setting 

(10) 

Taking a suitable sign for E), they now oCCUl' at x = 
±( -Et/b) 4 = ±E say, and y = O. Shifting the origin to 
x = +E, y = 0, and retaining only the linear terms in the 
expansion about this point, we obtain 

e = (1(' + 6EbX + ECY 
-ECX + 2EbY 

-ECX + 2EbY ) 
1(' + 2EbX - ECY 

where 1(' is a constant, X = x - E, Y = y. To charac­
terize the isotropic point, we use the discriminants given 
in the Appendix. Thus, to check the singularity index, 
we evaluate the discriminant Dr to find 
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Since this is always positive, the index is +~, as was 
anticipated. 

To decide whether there are one or three straight 
trajectories passing through the point (straight mean­
ing zero curvature at the point itself), that is, whether 
the pattern is lemon or monstar, we evaluate the line 
discriminant DL (see Appendix). Thus 

Since DL is always negative, the line number is 1 and the 
pattern is lemon rather than monstar. 

For the contour discriminant Dc (see Appendix) that 
decides whether the contours of constant principal strain 
rate are elliptic or hyperbolic, we find 

sgn Dc = -sgn(12b2 
- c2

) • 

Thus, if c2 < 12b2 , the contours are hyperbolic and, if 
c2 > 12b2 , they are elliptic. Recalling that C is the para­
meter that controls whether the pattern is spiral or not, 
we see that, unless the spiral quality is pronounced, the 
contours are hyperbolic; the elliptic case would be rare. 
It may be surprising that the contours at the isotropic 
points can be hyperbolas when the unperturbed contours 
were simply concentric circles; the details of the trans­
ition are illustrated in Nye (Hl91). 

Although the tensor in Equation (9) with condition 
(10) contains four parameters, namely 1(, El, b, c, the 
pattern of principal strain-rate directions it describes is, 
in fact, entirely controlled by a single parameter, apart 
from an overall scaling. To see this, first subtract off the 
isotropic strain rate 1( and divide the remaining strain 
rate by El, neither of which operations affects the pattern. 
Then apply the isotropic scaling 

to give, in place of Equation (9), the strain-rate tensor 

( 
1 - 3X2 - y2 - 2c'XY -c'(l - X 2 + y2) - 2XY) 

-c'(1- X 2 + y2) - 2XY -1 - X 2 - 3y2 + 2c'XY) 

where c' = c/2b. In this form the only free parameter 
is c', and the isotropic points occur at X = ±1, Y = O. 
Figure 5a, b, c and d shows the patterns of principal 
strain-rate directions for c' = 0, 0.5, 1, 10. Notice that 
it is only for c' = 0 (i.e. c = 0) that the two lemons 
share a common trajectory. Such sharing would not be 
typical in Nature. Generically, the lines from the two 
points miss one another, and the whole pattern has a 
spiral character, however slight this may be in practice. 
The change-over from hyperbolic to elliptic takes place 
at c' = J3. 

We have not been specific about the nature of the 
small perturbation that acted on the original degener­
ate isotropic point at the centre of a circular ice sheet; 
this is precisely because it does not matter, so long as 
the perturbation is such as to break the original circular 
symmetry, leaving either none at all, or, at most, two-fold 
symmetry (an example of what happens when four-fold 
symmetry is preserved by the perturbation is shown in 
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Fig. 5. Patterns of principaL strain-rate directions (Fig. 3b) after perturbation. The 'vaLues of C' 

aTe (a) 0, (b) 0.5, (c) 1, (d) 10. The trajectories were integrated by CL Low-ordeT Runge- Kutta 
method with an inter'oaL proportionaL to the difference of the two principaL vaL·ues. 

figure 13 of Nye (1986a)). The parameter E, which is 
called a control parameter, could represent time, so that 
we should then be watching the evolution of the ice sheet. 
More interestingly, it could represent the scale of resol­
ution on which we choose to observe, that is, the map 
scale. Viewed from a distance, the patterns in Figure 
5a, b, c and d are those of the unperturbed strain rate. 
Thus, generically, a pattern which appears, on a certain 
map scale, to be as in Figure 3b will inevitably be found, 
on higher resolution, to be broken up in the way shown 
by Figure 5b, c and d. (Likewise, a pattern which, on a 
certain scale, shows no isotropic points may be found, as 
the resolution is increased, to contain one or more close 

226 

pairs of iSCJtropic points of opposite index.) As another 
example of the interpretation of E, suppose we are consid­
ering a circularly symmetric ice sheet modelled numer­
ically, and suppose E is some constant which breaks the 
symmetry of the model when it is changed (it might be 
a constant governing the temperature distribution, for 
example). Then the central degenerate isotropic point 
will break up in the way we have calculated. 

CONCLUSIONS 

We have shown, on purely topological grounds without 
reference to the mechanism of flow, that when the perfect 
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symmetry of a circular ice sheet is perturbed in a general 
way the isotropic point for strain rate at its centre, be­
ing structurally unstable, breaks up into two structurally 
stable components. Around them, the strain-rate trajec­
tories always have the lemon pattern, and the contours of 
equal principal strain rate are usually hyperbolic. This 
splitting is in contrast to the behaviour of the ice centre 
itself, which remains single and intact. 

As the ice sheet becomes progressively less circular, 
we expect the two isotropic points to separate further, 
and, since their indices cannot change discontinuously, 
they will remain +~. Meanwhile, new isotropic points 
will be born together as twins of opposite index, or will 
enter the ice sheet at its boundary. Thus, the original 
isotropic points will continue to exist until either they 
interact with one of the new ones or escape across the 
boundary. Although anyone isotropic point retains its 
index (between interactions), nevertheless its line and 
contour character can change. 

Of course, the distribution of the horizontal compon­
ent of velocity in an ice sheet is only one example of 
a two-dimensional flow field which exhibits phenomena 
similar to those described here; many other examples 
could be envisaged . We also remark, without proof (to 
be published), that there is a perfect analogy between 
the breakup of the central isotropic point and the be­
haviour of the focus of a slightly imperfect lens used with 
circularly polarized light. The strain-rate ellipse is anal­
ogous to the polarization ellipse. However, the analogy 
with the breakup of a circularly symmetric degenerate 
umbilic point of a surface is not exact because of the 
presence of the parameter c. 
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APPENDIX 

The field of any symmetric tensor in the neighbourhood 
of an isotropic point can be written up to linear terms 
as 

( 
J( + ax + f3y 

131 X + 'IIY 
131 X + 'IIY ) 

J( + 'IX + 5y . 

The isotropic point is classified by the following 
discriminants (Thorndike and others, 1978, p. 148D): 

Singularity index: 

+ ~ (lemon or monstar) , 
-~(star). 

Contours of constant principal values: 

Dc = 4(al' - 13f)(f35 - I'f) 

2 > 0 
- (a5 + 13'1- 2131'11) < 0 

Line number: 

elliptic, 

hyperbolic. 

DL = 4[31'1 (a -'1-'11) - (5 - 13 - f3d 2
] 

x [3131(5 - 13 - (31) - (a -'I-'I1?] 

- [(8 - 13 - f3l)(a - I' - '11) - 9f3l1d2 

> 0 3(star or monstar), 

< 0 1(lemon) . 

If, in addition, the components are the second derivatives 
(Hessian) of a potential, so that 13 = 131 and 'I = 1'1 (as 
is the case, for example, for the curvature tensor of a 
surface), the above discriminants reduce to those given 
by Berry and Hannay (1977). 
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