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Climate, the Antarctic ice sheet and ground heat flux
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ABSTRACT. A simple steady-state energy and mass-balance model of the
Antarctic ice sheet is developed. Basically it is a set of two equations with two
unknowns of steady-state height i and potential basal temperature Tj,. Tj, determines
whether, and to what extent, there is liquid water at the base of the ice which in turn
affects the values of h and Tj,. Simultaneous changes of sea-level temperature and
precipitation (changes related to each other as might be expected from global climate
models) indicate a maximum in the field of possible steady-state ice volumes which
may not be far from the presently observed conditions. The possibility of cyclical
variation in ground heat flux associated with convection ol water and heat in the
continental crust is discussed. The mechanism might be capable of generating cvcles off
ice-sheet volume with relatively short periods similar to those of Milankovitch forcing.

INTRODUCTION

Theoretical treatments of continental ice sheets concen-
trate on the dynamiecs of the problem and are primarily
concerned with explaining the climatic variations ol ice
volume and extent (e.g. Weertman, 1964, 1976; Birch-
lield, 1977; Watts and Hayder, 1983). The more complex
ol them are fully fledged three-dimensional numerical
models which take into account both the dynamiecs and
thermodynamics of the medium, and to some extent also
such things as bedrock depression and the detail of the
ice-edge interaction with the surrounding ocean (e.g.
Birchfield and others, 1981; Pollard, 1982; Budd and
Jenssen, 1989: Huybrechts, 1990). Perhaps their major
success has been simulation of the ice-volume changes
which, at least during the Quaternary, contain cyclical
components on time-scales of 20, 40 and 100 ka. They
provide an explanation of these cycles in terms of
variations of solar input induced by orbital changes of
the Earth, i.e. in terms of Milankoviteh forcing.

In the present paper, a simple and semi-qualitative
steady-state mass and energy-balance model of the
Antarctic ice sheet is used to derive order-of-magnitude
sensitivities to such things as ground heat flux. It is used
also as a vehicle to illustrate the possible importance of
changes in ground heat flux induced by convection ol
water in the underlying crust.

THE STEADY-STATE MODEL

Imagine an idealized ice sheet which completely covers its
underlying continent. The continent is surrounded by
deep ocean, and has a horizontal radius i and a bedrock
surface roughness of vertical scale L. The rate a of
accumulation (precipitation minus evaporation) is con-
stant across its surface and is balanced by ablation
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(calving or melting) at the ice-sheet edge when the system
1s in steady state. Mass continuity requires that

27 / a(r')r'dr’ = 2mr - w(r) - Z(r) (1)

0

where v(r) is the vertically averaged deformation velocity
at raclius r, and Z(r) is the height of the ice at that radius.
Glen’s law relating strain rate to stress gives an expression
for deformation velocity as a [unction ol height and of the
gradient of height, namely
e JOBY]®
v(r) = —k [Z(T) —] Z(r) (2)

r

where k£ is a constant related to the fluidity of the
medium. Under the assumption that a(r) is constant
across the surface, Equation (1) can be integrated to yield
an expression {or the central height H as
1/8
da\ "’

H=[(—] R, (3)

The theoretical shape of such a steady-state ice sheet is
parabolic. It has an average height b which is not much
less than the central height H. For simplicity. in the
following we assume a [lat-topped ice sheet of height h,
with much the same functional relation of height to
accumulation rate as in Equaton (3), namely

h= Ay - [a(h)]"* (4)

where Aj is a constant which does not change provided
that the fluidity & of the ice does not change. Its
numerical value (chosen here to match present-day
values of height and accumulation rate) is 1.73 x 10" in
units of m/(kgm *s )%, The accumulation rate is
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specifically written as a function of height in Equation
(4), namely as a(h). The function is quoted in the caption
to Figure 1. and is such that a(h) is a constant ay for the
first kilometer (ay is equivalent to 60cmyear ') and
decreases exponentially with height above 1km. At
3.5 km for instance, the rate is equivalent to 15 ¢cm year '

The effective value of & will change il the basal
temperature T, exceeds the pressure-melting temperature
Ty and there is water at the bottom of the ice. For the
purpose of the present paper, imagine that Tj, 15 a
“potential” basal temperature, i.c. the basal temperature
that would pertain if by some means the ice were not
allowed to melt. Thus 7j, is the actual basal temperature if
Ti, < T, (when there is no water at the base and when
Equation (4) applies) but is a theoretical temperature
greater than Ty when there is water at the base. Imagine
further that it is possible for the water at the base of the
ice 1o have significant depth D above the deepest points of
the bedrock and that D is an increasing function of
Ty, — Ty. For instance, if the ground heat flux is enough o
start melting ice, then the greater is the heat flux, the
greater is Tj, — T, the greater is the volume of water at
the base, and the laster slides the ice. This naive picture is
used as a “construct” on which to develop a [unctional
relation between h and Tj, (and ultimately between h and
ground heat flux) for the case when there is water at the
base of the ice.

Thus it is assumed that when basal water 1s present the
average height A of the ice is reduced below the value
given by Equation (4) in proportion to the water volume.
If one imagines “lakes™ of water beneath the ice in the
valleys between the roughness elements of the hedrock.
and imagines further that there is no connection allowing
water to flow between the lakes or between the lakes and
the surrounding ocean. then one is led to a modification of
Equation (4) as [ollows:

h = Ay(1 — D/L)[a(h)]'* (5)

where D (the “depth™ of the lakes) and L (the height of
the roughness elements) are measured with relerence to
the lowest points of the bedrock surface, and where h is
now the ice-sheet height above the surface of the water.
This rather arbitrary linear modificaton of Equation (4)
assumes that when there is sufficient water to cover the
roughness elements of the bedrock surface (i.e. when
D = L) the overall ice sheet will flow or slide sufficiently
fast to reduce the steady-state height to zero,

The primary objection to this physical picture is the
assumption that the water beneath the ice is not
connected to the ocean and can therefore build up into
lakes of significant depth. The objection is certainly valid,
but on the other hand there is evidence for the existence ol
such lakes, and some of them (the recently discovered
Lake Vostok, for instance) are very extensive. In any
event, the picture is simply a means of suggesting a
function governing the reduction in steady-state height
with increasing water volume, recognizing that the water
volume in turn will be determined by 7}, (see Equation
(6) below). The picture itself’ is not greatly important to
the argument other than that it emphasizes the problems
of quantitative analysis at this level of simplicity,

At a similar level of approximation, the actual value of
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steady-state water depth D is assumed to he some fraction
ol h determined by the diflerence between potential basal
temperature and the pressure-melting temperature. That

18y

D=h-(T, - Tu)/(T, — Th) (6)

where T} is the average temperature at the top of the ice.
In summary of this point, Equation (4] determines the
ice-sheet height when Ty, < Tj) and there is no water at the
base, and Equations (5) and (6
height when 7, > T}, and the base is wet.
In order to establish a second relation between b and

determine ice-sheet

Ty, consider the overall energy balance of the steady-state
ice sheet as a whole. The inputs of energy are ground heat
lux g. the rate of input ol potenual energy a(h)gh
corresponding to the accumulation of mass at the top of
the ice sheet (g is the acceleraton due to gravity ), and the
rate of input of heat into the ice a(h)e, T\ associated with
the accumulation of mass at temperature T). ¢, 1s the heat
capacity ol ice. T} is the boundary temperature at the top
ol the ice sheet, maintained by various ice/air energy
exchange processes at that height and governed by sea-
level temperature Ty via the atmospheric lapse rate A.
That is, Ty =Ty — Ah. The potential energy associated
with mass accumulation is converted to heat within the
ice sheet via the basal [riction or deformation of the
flowing ice. An approximate energy-balance equation
with the inputs on the lelthand side 15 as follows:

q+a(h)gh + a(h)e, Ty =
(T, — 1))/ h+ alh)ep[(Th +11) /2] (T)

There are two output terms on the righthand side. Tt is
assumed with regard to them. again simply for the sake of
convenience rather than reality, that the vertical profile of
temperature in the ice is linear. By this means the
potential basal temperature T, can be incorporated easily
in the equation via both of the energy output terms. The
first such term is the rate of upward conduction of heat to
the ice-sheet surface through ice of thermal conductivity
b. The second is the rate of heat loss of the system
associated with the ablation at the ice-sheet edge. The
ablation is assumed to occur at a temperature equal to the
average of the top and hasal temperatures.

The conduction term might be regarded as a proxy for
the net heat exchange away from the upper surface of the
ice via radiation and turbulence. If there were no upward
heat conduction, the net radiative and turbulent
exchange would be zero. I there is a vertical temper-
ature gradient in the ice (and the present picture assumes
a linear gradient from the bottom to the top of the ice),
then there must be a net flux of heat out of the top which
is “carried away” by the net radiative and turbulent
transfer. In such a case, the net balance at the surlace
includes the upward conduction of heat, but must stll be
zero overall. All ol which ignores the deposition of heat
associated with the mass accumulation at temperature 7T
(the third input term on the lefthand side of Equation
(7)). That deposition is separated out [rom the above
discussion of the net flux at the top of the ice because it
does not affect the maintenance of the boundary
temperature T7. In any event, there is a corresponding
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heat-loss term (associated with the loss of mass at the
edges ol the ice sheet: and in steady state the mass is lost at
the same rate as the accumulation) on the righthand side.
The mass is lost at some temperature between 1} and the
basal temperature T, and for the sake of argument that
temperature is simply taken as the average of T} and Ti,.

I sea-level temperature, atmospheric lapse rate and
the ground heat flux are specified as boundary conditions,
and if the accumulation rate a(h) is specified as a function
of height (as in the caption to Figure | for example),
Equations (5) and (7) can be solved for the potential
basal temperature Tj, and the average height h. The
relevant equations are Equations (4) and (7) [or the case
where T}, < T} and there is no water at the base of the ice.
Note that the equations as formulated cannot be applied

when the ice-sheet height is less than the vertical scale of

the roughness elements of the bedrock.

STEADY-STATE BEHAVIOUR

Figure 1 gives b and Tj, as a function of basal heat flux ¢
for the set of “standard™ boundary conditions mentioned
in the caption. It makes the point that when the base is
dry (7}, is less than Tj) the ice-sheet height and volume
are independent of ¢, since h is determined only by
Equation (4). When there is water at the base, increasing
g increases the volume of the water and decreases the
steady-state height. At the value of g labelled as “stan-
dard” in Figure 1 (0.063Wm * is the normally quoted
figure [or the average ground heat flux of continents in
general, although Drewry (1979) reports a slightly higher
value from specific measurements in Antarctica) the input
ol potential energy [rom the falling snow is almost exactly
equal to ¢. It is worth noting the somewhat counter-
intuitive result that 7}, decreases as h increases. This is
because both the precipitation (and hence the potential
energy input) and the upper- boundary temperature
decrease with height. It seems that the basal temperature
ol an ice sheet will always be within a few degrees of the
pressure-melting temperature, and water is more likely to
be found under thinner rather than thicker ice sheets.
The sensitivity of h and Tj, to change in the boundary

w )
/ 13 ”
/ standard” g
Fa
| | L 4//1 I |
2 4 6 B 10 12

q (W m?®x10%

Fig. 1. Steady-state ice-sheel height h (solid lines) and
potential basal temperature Ty, (dashed lines) as a_function
of ground heal flux q for various values of sea-level
temperature Ty. The boundary conditions are the relevant
“standard” values as in the second row of Table 1. The
verlical profile of accumulation rate is a constanl ag for the
Jirst 1000 m, and decreases above 1000 m according to
a(h) = apexp/—0.693(h—1000) /.

conditions depends on the position of the ice sheet in the
“space” ol those conditions. Table | gives sensitivities (i.e.
partial derivatives) calculated at a position defined by the
“standard™ values in row 2 of the table. The model is least
sensitive to the scale ol the surface roughness of the
underlying continent. It is highly sensitive to sea-level
temperature T3, which is something of a problem since
this parameter is perhaps the most arbitrary of the various
selections of boundary condition. Ty is intended to
represent the sea-level temperature that would exist at
the surface of the continent if the ice sheet were removed.
and as a first approximation was chosen here to be much
the same as the observed mean annual temperature of the
North Pole, whose elevation is close to zero.

Various models suggest that a likely scenario of

Table 1. Partial derivatives of ice-sheet steady-state h and ‘T3, with respect to each of the external parameters x at
the “standard” values of the parameters as shown in the second row. Values were calculated numerically simply by
making small alteralions to the parameters one al a time. Units of h in meters, of Ty, in "C.. The rows of partial
derivatives multiplied by the standard parameler value are an attempt to put the changes on a comparable footing. i.e.
of doubling the absolute values of the parameters. * Doubling™ temperalure means very Lillle in this conlext, and the

relevant entries ave labelled **nja™

i q o A ] h
Standard 0.063 17.6 x 10°° 6.0 x 107 20.0 499
& Wm kgm “s ' Cog 'C m
O/ dx -1.9 x 10* 6.3 x 10 3.9 x 10° 116 0.36
(Oh/Ox) - x -1200 1120 2340 nj/a 180
T, /O 41 7.9 x 10* 600 0.22 0.004
(13, /0x) - x 2.5 1.4 -3.6 nja 0.2
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Fig. 2. TVariation of steady-state height h with sim-
ultaneous variation of sea-level lemperature and accumul-
ation rate as indicaled on the x axis.

climate change arising from enhanced greenhouse
warming would be an increase of sea-level temperature
together with an increase of precipitation. Figure 2 is a
graph ol h as a function of simultaneonsly varying T, and a
as indicated by the dual z-axis scales in the figure. The
scales assume that accumulation rate increases about 3%
for every degree of increased sea-level temperature. There
is a broad maximum in the curve. At lower temperatures
and accumulation rates, h increases with a according to
Equation (4) since there is no basal water. At higher
temperatures and accumulation rates, the effect of T}
dominates via its control of basal temperature and basal
water, and h decreases as Ty increases. If one accepts the
various approximations and assumptions of the model,
the present “position™ of the Antarctic ice sheet may not
be too far from the maximum of the curve. Put another
way, if the Earth’s climate were to change according to a
typical enhanced-greenhouse scenario, one would nat
(according to this model] expect a large change in the
volume of the Antarctic ice. The conclusion assumes
among other things that the dynamic response to any
imposed change of boundary conditon is a reasonably
smooth move towards the new steady state: that the
intermediate changes on the way to the new steady state
are not greater than the difference between initial and
final steady states.

GROUND HEAT FLUX AND DYNAMICAL
BEHAVIOUR

It is known that the vertical heat flux through the Earth’s
crust can change on the time-scale of millions of years. It
is believed that in certain circumstances it can change by
almost an order of magnitude on shorter time-scales
hecause of conyection of water (and consequently of heat)
within the uppermost few kilometers of crust. The concept
ol crustal water convection has been built into models of the
deep ocean floor (Cathles, 1990: Rosenberg and others,
1993) and into models of the behaviour of thermally active
regions ol the continents (Donaldson, 1962,

Ifone accepts that the Antarctic ice sheet has (or has had
in the past) water at its base, it is not too much of an
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extension to assume that the underlying continental erust is
eflectively water-saturated. (One might argue that the
process ol saturation would be aided by fracturing
associated with ice-sheet loading.) Having gone that far, it
Is of'interest to examine the possible consequences of changes
in ground heat flux associated with water convection.
Imagine the underlying crust has a lower-boundary
temperature ol 1300°C at a depth of about 35km.
Upward heat transfer is by conduction, and if the
conductivity is constant and the system is in steady state
there will be a linear temperature gradient d7'/dz
throughout the entire depth. Imagine there is a water-
saturated layer in the uppermost 3km where the
temperature is less than about 350°C. (At higher
temperatures the crust is sufficiently “fluid™ to close off
the pores and channels which allow the convection of
water.) For the water to convect, the Rayleigh number
R, (R, is an increasing function of the vertical tem-
perature gradient) must exceed a certain critical value
Ry1. Once convection takes place. the effective conduc-
tvity of the layer increases. There is a corresponding
ncrease in ¢, which in turn drains heat from the upper
layer and lowers its temperature gradient. Ultimately the
gradient becomes low enough to reduce R, below a
critical value R, (not necessarily equal to R, because of
hysteresis), and the layer conductivity returns to its non-
convective value. There is therefore a possible eyclical
variation of ¢, with a cycle time determined by the heat
capacity of the upper layer and the difference between the
temperature gradients which determine the onset and
offset of convection. The convective heat flux may be an
order of magnitude greater than that of conduction.
Figure 3 gives the time-dependent variation of h and ¢

h (km)
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Fig. 3. Time varviation of ground heat flux q (solid curve)
JSrom a time-dependent numerical one-dimensional crustal
model of 100 layers each 350 m thick ( see text). The crust
has a specific heat of 800 J kg ' °C" and a conductivity of
L3Wm "°C . The switch to an effective conductivity len
times this value for the upper ten layers occurs when the
average lemperature gradient of those layers exceeds
0.030°Cm ", and returns to the lower value when the
gradient is less than 0.026°Cm . The initial condition is
a linear temperature gradient from the top (at 0°C) lo the
bottom (at 1300°C). The time step is 100years. The
oulput g is used to drive an ice-sheet ~model” which
continually relaxes toward the potential steady-state value
of h corresponding to the instantaneous value of q. The
relaxation time constant is 20 ka. The dashed curve is the
caleulated variation of h.
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obtained by combining the ice-sheet equations above with
a numerical solution of the time-dependent heat-conduc-
tion equation applied to a continental crust behaving in
the manner just described. The details of the calculations
are given in the caption. The steady-state ice-sheet
equations were converted to an effective time-dependent
model by the simple expedient of assuming that, when ¢
changes at any time step, the ice sheet will exponentially
relax towards the new steady state corresponding to the

new ¢ with a time-constant (in this example) of

20000 years.

The figure is a qualitative illustration of a possible
consequence of what might be one mechanism for
introducing cyelical behaviour on climatic time-scales
into extensive continental ice sheets. In this illustration
the parameters of the crust, and in particular the
effective values of critical temperature gradient, have
been deliberately and arbitrarily chosen to yield a
cycle time of about 100 000 years, which is a dominant
cycle associated with polar ice sheets over the
Quaternary.
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