
J. Fluid Mech. (2011), vol. 668, pp. 236–266. c© Cambridge University Press 2011

doi:10.1017/S0022112010004726

Algebraic/transcendental disturbance growth
behind a row of roughness elements

M. E. GOLDSTEIN1†,ADRIAN SESCU2, PETER W. DUCK3

AND MEELAN CHOUDHARI4
1National Aeronautics and Space Administration, Glenn Research Center, Cleveland, OH 44135, USA

2Department of Mechanical Industrial and Manufacturing Engineering, University of Toledo,
Toledo, OH 43606, USA

3School of Mathematics, University of Manchester, Manchester M13 9PL, UK
4National Aeronautics and Space Administration, Langley Research Center,

Hampton, VA 23681, USA

(Received 25 February 2010; revised 3 September 2010; accepted 8 September 2010)

This paper is a continuation of the work begun in Goldstein et al. (J. Fluid Mech.,
vol. 644, 2010, p. 123), who constructed an asymptotic high-Reynolds-number solution
for the flow over a spanwise periodic array of relatively small roughness elements
with (spanwise) separation and plan form dimensions of the order of the local
boundary-layer thickness. While that paper concentrated on the linear problem, here
the focus is on the case where the flow is nonlinear in the immediate vicinity of
the roughness with emphasis on the intermediate wake region corresponding to
streamwise distances that are large in comparison with the roughness dimension,
but small in comparison with the distance between the roughness array and the
leading edge. An analytical O(h2) asymptotic solution is obtained for the limiting
case of a small roughness height parameter h. These weakly nonlinear results show
that the spanwise variable component of the wall-pressure perturbation decays as
x−5/3 ln x when x → ∞ (where x denotes the streamwise distance scaled on the
roughness dimension), but the corresponding component of the streamwise velocity
perturbation (i.e. the wake velocity) exhibits an O(x1/3 ln x) algebraic/transcendental
growth in the main boundary layer. Numerical solutions for h = O(1) demonstrate
that the wake velocity perturbation for the fully nonlinear case grows in the same
manner as the weakly nonlinear prediction – which is considerably different from the
strictly linear result obtained in Goldstein et al. (2010).

Key words: boundary-layer receptivity, boundary-layer stability, boundary-layer
structure

1. Introduction
It is suspected that roughness-induced streaks play an important role in the bypass

transition due to distributed, three-dimensional surface roughness in boundary-layer
flows that are linearly stable or, at most, weakly unstable. In fact, it is well known
that certain types of streak-like perturbations may undergo a transient algebraic
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Figure 1. Boundary-layer flow structure, (a) side view, (b) cross-sectional view.

growth prior to an eventual exponential decay in linearly stable shear flows (Case
1960; Ellingson & Palm 1975; Landahl 1980). It is also known that streaks can have
a stabilizing effect on the small amplitude Tollmien–Schlichting waves that comprise
the initial stage of transition in many applications with low levels of external forcing.
Moreover it is now realized that the stable laminar streaks generated by surface
roughness elements can be used to control transition in these applications (Fransson
et al. 2004, 2006). It therefore seems important to understand the physical mechanisms
related to the potential disturbance growth in the wake flow behind surface roughness
elements.

It is generally believed that algebraic or non-modal growth arises from the ‘lift-
up’ effect associated with the spanwise varying displacement of a two-dimensional
shear flow (Landahl 1980). This phenomenon is typically found to take place over
streamwise length scales that are comparable to the downstream distance from the
leading edge (e.g. Andersson, Berggren & Henningson 1999), but the present paper
shows that transcendental (algebraic/logarithmic) growth can also occur on a much
shorter streamwise length scale, which is still large compared to the roughness elements
themselves, but small compared to the distance from the leading edge.

The analysis, which continues the work begun in Goldstein et al. (2010, hereafter
referred to as GSDC), is based on an asymptotic high-Reynolds-number solution
for the flow over a spanwise periodic array of relatively small roughness elements
whose (spanwise) separation and plan form dimensions are of the order of the local
boundary-layer thickness δ∗ (figure 1). An analogous two-dimensional problem was
studied in considerable detail by Smith (1973) (see also Smith 1976a, b; Smith et al.
1981; Rothmayer & Smith 1998). The GSDC result shows that the local flow in
the vicinity of the roughness has a double layer structure with the same scaling
as was used in Choudhari & Duck (1996). However, the solution becomes invalid
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in the far-wake region, where non-parallel effects come into play over downstream
distances comparable to the distance from the leading edge. While GSDC present an
asymptotic framework for a broad range of roughness heights and include preliminary
results for the case where the near-field perturbations are nonlinear functions of the
roughness height, the main focus of that paper was on the limiting case of small
height parameters.

In contrast, the present paper focuses on the case where the flow is nonlinear in
the vicinity of the roughness, with emphasis on the intermediate region that lies far
downstream from the roughness (compared to the roughness dimensions), but much
closer than the downstream distance x∗

0 between the roughness and the leading edge.
The flow in this region is still governed by a linear set of equations that has an exact
similarity solution when the spanwise variable component of the wall pressure decays
as x−α , where x denotes the streamwise distance behind the roughness elements
scaled on the dimension of the roughness. But (as noted at the beginning of the
discussion in GSDC) this same set of equations has also an asymptotic solution
when the wall pressure decay has the more general algebraic/transcendental form
x−α(ln x)β , with α > 0, β � 0. GSDC’s exact analytical solution for the strictly linear
problem (where the scaled roughness height h � 1) exhibited purely algebraic decay
with the decay rate exponent α being equal to 8/3, while their numerical solutions
for the fully nonlinear case seemed to be consistent with an x−5/3 algebraic decay (i.e.
α = 5/3, β = 0). The present paper shows that the spanwise variable wall pressure
actually behaves transcendentally and decays at the slightly slower x−5/3 ln x rate (i.e.
α = 5/3, β =1). This is accomplished by carrying the small h asymptotic solution to
second order (i.e. to O(h2)) and comparing the result with full h = O(1) numerical
solutions.

The strictly linear solution obtained in GSDC shows that the peak value of the
streamwise component of the spanwise variable wake velocity defect decays as 1/x

in the downstream wall layer, but the present result shows that it actually increases
as ln x when x → ∞ in the fully nonlinear case. This does not, however, destroy
the linearity of the downstream flow because the peak velocity defect moves upward
into the main boundary layer as x1/3 when x → ∞, which means that the local
Blasius velocity (about which the equations are linearized) also increases as x1/3 and,
therefore, always remains larger than the wake velocity defect.

This increase in spanwise variable streamwise velocity perturbation, which is caused
by the interaction between the various spanwise Fourier modes in the nonlinear case,
produces an effect that is similar to the well-known (Landahl 1980) ‘lift-up’ effect,
which is generated by a purely linear mechanism and is probably responsible for
the transient growth that occurs in the strictly linear case considered in GSDC. The
present mechanism does not occur in the linear case because these modal interactions
do not occur in that situation. It is worth noting that the O(h) and O(h2) streamwise
velocity components decay at the same rate in the analogous two-dimensional problem
studied by Smith (1973) and Smith et al. (1981) where the spanwise modal interactions
cannot occur – which reinforces the notion that the velocity defect amplification is
associated with the interaction between the spanwise modes in the present case. The
numerical computations show that the dominant contribution to the nonlinear wall
pressure comes from the interaction between the fundamental spanwise harmonic
and spanwise mean of the perturbation velocity component. So most of the nonlinear
growth in the streamwise velocity is caused by a ‘linear’ interaction between the
fundamental spanwise mode and the roughness induced two-dimensional (spanwise
mean) flow distortion. This is not too different from what happens in the linear
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case where most of the algebraic growth results from the interaction between the
fundamental harmonic and the two-dimensional boundary-layer flow resulting from
the slow growth of the boundary layer over the viscous length scale.

The streamwise velocity perturbation eventually moves up into the main boundary
layer or main deck, where the Blasius velocity is more uniform and the spanwise
variable streamwise velocity now increases at a much more rapid x1/3 ln x rate. The
spanwise variable wake velocity, therefore, exhibits algebraic/transcendental growth
in the fully nonlinear case, while the GSDC result shows that it decays as x−2/3 in
the strictly linear case.

The GSDC analysis can be extended to show that this intermediate scale solution
eventually breaks down and the flow evolves on the much longer scale over which
the unperturbed boundary layer develops. The solution in this far-wake region,
which brings in the non-parallel mean flow effects and is governed by the boundary
region equations of Kemp (1951), is nearly identical to the result given in GSDC,
but the more rapid transcendental growth over the intermediate region causes the
spanwise varying component of streamwise velocity perturbation in the far wake
to be larger than the GSDC result by a factor of ln(x∗

0/δ
∗)1/3 when the flow in

the vicinity of the roughness is fully nonlinear. The wake velocity defect initially
follows the algebraic/transcendental growth that it developed in the intermediate
region, but non-parallel flow effects cause it to saturate and eventually decay. In other
words, it exhibits transient growth on this longer streamwise length scale. This is in
stark contrast to the strictly linear result discussed in GSDC, where the wake velocity
defect decays on the intermediate length scale and begins to grow only at downstream
distances of the order of the boundary-layer growth scale.

The problem is formulated in § 2 and the local asymptotic high-Reynolds-number
solution in the vicinity of the roughness, which has the same scaling as in
Choudhari & Duck (1996), is outlined in § 3. Section 4 is concerned with the far
downstream (on the roughness scale δ∗) region where the flow becomes linear. The
O(h2) asymptotic small roughness height solution is derived in § 5 and compared with
the h = O(1) numerical solution in § 6. Conclusions are presented in § 7.

2. Problem formulation and asymptotic scaling equation
As in GSDC, we consider an incompressible flat-plate boundary layer that is

perturbed by a spanwise periodic linear array of roughness elements and suppose
that the spanwise wavelength of the roughness array, say 2πl δ∗, is comparable to
the local value of the boundary-layer similarity length scale δ∗ ≡ x∗

0/
√

R = x∗
0δ at

the roughness location x∗ = x∗
0 , where R ≡ x∗

0U∞/ν∗ is the Reynolds number based
on x∗

0 and the free-stream velocity U∞ with ν∗ being the kinematic viscosity and
δ ≡ R−1/2 � 1 being the scaled boundary-layer thickness. The roughness elements
are assumed to have more or less circular cross-section with the same streamwise
and spanwise scaling and to be small enough to produce only local separation. We
therefore write

y = yr = εhF̃ (x, z), (2.1)

u(x, yr, z) = v(x, yr, z) = w(x, yr, z) = 0, (2.2)

where all lengths are also normalized with respect to the boundary-layer thickness
at x∗ = x∗

0 unless otherwise noted, yr is the roughness height, ε ≡ R−1/6 = δ1/3 � 1,
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x ≡ (x∗ − x∗
0 )/δ

∗ and, as usual, the fluid velocity

v = {u, v, w} (2.3)

is normalized by U∞ and the pressure p by ρU 2
∞, where ρ is the fluid density.

3. Asymptotic structure of inner solution and governing equations
3.1. Main boundary-layer region

GSDC divide the boundary-layer flow into an inner region in the vicinity of the
roughness elements and an outer region that lies further downstream. The focus of
the present paper is on the former region where the asymptotic scaling is essentially
the same as that used in Choudhari & Duck (1996). The solution in the main
boundary layer, where y = O(1), therefore expands as

{u, v, w, p} = {UB, ε3VB, 0, 0} + ε2{u0, v0, w0, p0} + · · · , (3.1)

where

UB(y) = F ′(y) → λy + O(y4) as y → 0 (3.2)

is the Blasius velocity with the Blasius function F being determined from the Blasius
equation in the usual way and λ= 0.33206. GSDC show that the O(ε2) solution
{u0, v0, w0, p0}, is determined by

UB(y)
∂2u0

∂x2
= [U ′

B(y)/UB(y)]
∂p0

∂y
− ∂2p0

∂x2
, (3.3)

UB(y)
∂w0

∂x
= −∂p0

∂z
, (3.4)

∇2p0 − 2
U ′

B(y)

UB(y)

∂p0

∂y
= 0, (3.5)

subject to the boundary condition

p0(x, 0, z) = P (x, z), (3.6)

where the O(ε2) wall pressure P (x, z) will be specified more precisely below.
Since the roughness is assumed to be periodic in the spanwise direction and the

flow in this region is linear, the spanwise and streamwise velocities possess the Fourier
expansions

w0(x, y, z) = − 1

UB(y)

n=∞∑
n=−∞

∫ ∞

−∞

nP̃ n(k)

lk
πn(y, k) ei((n z/l)+kx) dk, (3.7)

u0(x, y, z) = − 1

UB(y)

n=∞∑
n=−∞

∫ ∞

−∞
P̃ n(k)

[
U ′

B(y)

k2UB(y)

dπn(y, k)

dy
+ πn(y, k)

]
ei((nz/l)+kx) dk,

(3.8)

in terms of the solution πn(y, k) to the unit boundary value problem

U 2
B(y)

d

dy

[
1

U 2
B(y)

dπn

dy

]
−

[(n

l

)2

+ k2

]
πn = 0, n = 0, ±1, ±2, . . . (3.9)

πn (0, k) = 1, πn (y, k) → 0 as y → ∞, (3.10)
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and the spanwise harmonic Fourier coefficients P̃ (0)
n (k) of the wall pressure

P (x, z) =

n=∞∑
n=−∞

∫ ∞

−∞
P̃ n(k) ei((nz/l)+kx) dk. (3.11)

Since y = 0 is a regular singular point of (3.9), it follows from (3.2) and from the
method of Frobenius that the two linearly independent solutions of (3.9) have Taylor
series expansions about this point and, therefore, that

π
n
(y, k) ∼ 1 − 1

2

[(n

l

)2

+ k2

]
y2 + O(y3), as y → 0, (3.12)

which shows that

u0(x, y, z) = O(y−1) (3.13)

and

w0(x, y, z) → − 1

λy

n=∞∑
n=−∞

∫ ∞

−∞

nP̃ n(k)

lk
[1 + O(y2)] ei((nz/l)+kx) dk, as y → 0. (3.14)

3.2. Wall-layer region

The singularity in u0 as y → 0 causes the expansion (3.1) to break down when

�

Y ≡ y/ε = O(1), (3.15)

and it is then necessary to obtain a new solution in this region, which we refer to here
as the wall layer. Equations (3.13) and (3.14) show that the solution in this region
must expand as (see Choudhari & Duck 1996)

{u, v, w, p} = ε{U, ε
�

V , W, εP (x, z)} + · · · , (3.16)

where we have introduced the Prandtl transformation

Y ≡ y/ε − hF̃ (x, z) =
�

Y − hF̃ (x, z), (3.17)

V ≡
�

V − h(F̃ xU + F̃ zW ), (3.18)

so that all velocity perturbations are functions of {x, Y, z}, and it is anticipated
that the pressure does not vary across this thinner region to the required degree
of approximation. The leading-order solution {U, V, W, P } is determined from the
three-dimensional boundary-layer equations

Ux + VY + Wz = 0, (3.19)

UWx + V WY + WWz = −Pz + WYY , (3.20)

UUx + V UY + WUz = −Px + UYY , (3.21)

subject to the boundary conditions

U = V = W = 0 at Y = 0, (3.22)

U → λY ; V, W → 0, as x → ±∞, (3.23)

and the matching condition

Wx → −Pz/λY, U → λ(Y + hF̃ ) + O(y−1), as Y → ∞. (3.24)
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This system may be regarded as the three-dimensional analogue of the zero-
displacement two-dimensional problem considered by Smith (1976a, b) even though
there is a significant difference in its algebraic decay as Y → ∞.

4. Downstream behaviour of solution
The wall pressure P (x, z) is expected to decay algebraically/transcendentally fast

as x → ∞. However, the GSDC results show that the spanwise mean component
P̄ (x) of P (x, z) behaves differently from the spanwise variable component and must,
therefore, be considered separately. We subtract out the mean component (which is
of little interest in the present context because it does not contribute to the three-
dimensional far-wake flow that is being considered here) and require that
P (x, z) − P̄ (x) behave as x−α(ln x)β for some real constants α > 0 and β � 0, as
x → ∞. It then follows from (3.6) that

p0(x, y, z) − p̄0(x, y) ∼ p̂(y, z)(ln x1/3)β/xα, as x → ∞, (4.1)

where p̄0(x, y) denotes the spanwise average component of p0(x, y, z) (and similarly
for the remaining dependent variables u0(x, y, z), v0(x, y, z) and w0(x, y, z)).

The analysis given in Carrier, Krook & Pearson (1966, pp. 255 and 256) can easily
be extended to show that the corresponding Fourier coefficients in (3.11) P̃ n(k), n �= 0
must behave as

P̃ n(k) ∼ (ik)α−1
(
ln k1/3

)β
ãn, as k → 0, n �= 0, (4.2)

where the ãn are constants. The Carrier et al. (1966) results also imply that the
coefficient p̂(y, z) in (4.1) is related to the unit solutions πn (n= ± 1, ±2, . . .) of the
Rayleigh equation, via

p̂(y, z) ≡ −2[sin π(α − 1)]Γ (α)

n=∞∑
n=−∞
n�=0

πn(y, 0)ãn einz/l . (4.3)

And then the main-deck solutions (3.7) and (3.8) imply that

w0(x, y, z) ∼
(
ln x1/3

)β

(α − 1)xα−1

1

UB(y)

∂p̂(y, z)

∂z
, (4.4)

u0(x, y, z) − ū0(x, y) ∼
(
ln x1/3

)β

(α − 1) (α − 2) xα−2

U ′
B(y)

U 2
B(y)

∂

∂y
p̂(y, z), (4.5)

as x → ∞. Substituting the expansion (3.12) for the near-wall behaviour of the unit
solutions πn into (4.3) yields

p̂(y, z) ∼ −2[sin π(α − 1)]Γ (α)

n=∞∑
n=−∞
n�=0

[
1 − 1

2

(n

l

)2

y2 + O(y3)

]
ã(0)

n einz/l, as y → 0,

(4.6)
and it then follows that

w0(x, y, z) ∼
(
ln x1/3

)β

(α − 1)xα−1λy

∂p̂(0, z)

∂z
, as y → 0, (4.7)

u0(x, y, z) − ū0(x, y) ∼
(
ln x1/3

)β

(α − 1) (α − 2) xα−2λy

∂2p̂(0, z)

∂z2
, as y → 0, (4.8)
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which provide the boundary conditions for the asymptotic wall-layer solution far
downstream in the flow.

This solution is expected to decay relative to the Blasius velocity, and therefore
exhibits linear behaviour when x � 1, even when it is nonlinear in the vicinity of the
roughness, which suggests that {U − λY, V, W, P } should be a small perturbation of
the original Blasius flow U = λY , and therefore satisfy the linear equations

∂(U − λY )

∂x
+

dV

dY
+

∂W

∂z
= 0, (4.9)

λY
∂(U − λY )

∂x
+ λV +

∂P

∂x
=

∂2U

∂Y 2
, (4.10)

λY
∂W

∂x
+

∂P

∂z
=

∂2W

∂Y 2
, (4.11)

far downstream in the flow.
The spanwise mean and zero-spanwise mean components can, therefore, be

considered separately in the large x downstream region, which is important because
the main boundary-layer solution shows that they behave differently at large x. The
results for the spanwise mean component are derived in Appendix A of GSDC, and
only the spanwise varying component (which is the one of principal interest) is dealt
with here.

As noted in GSDC, these equations possess an exact similarity solution of the form

W = x2/3−αW̃ (η, z), U − Ū = x5/3−αŨ (η, z), V − V̄ = x1−αλ−1/3Ṽ (η, z), (4.12)

where

η ≡ λ1/3Y/x1/3, (4.13)

and Ũ , Ṽ , W̃ satisfy

−
[
η

3

∂Ũ

∂η
+

(
α − 5

3

)
Ũ

]
+

∂Ṽ

∂η
+

∂W̃

∂z
= 0, (4.14)

∂2Ũ

∂η2
+ η

[
η

3

∂Ũ

∂η
+

(
α − 5

3

)
Ũ

]
= Ṽ , (4.15)

∂2W̃

∂η2
+ η

[
η

3

∂W̃

∂η
+

(
α − 2

3

)
W̃

]
= λ−2/3 ∂

∂z
p̂(0, z), (4.16)

subject to the boundary conditions

Ũ (0, z) = V (0, z) = W (0, z) = 0. (4.17)

However, it is easy to verify that they also possess an asymptotic solution of the
slightly more general form

W = x2/3−α(ln x1/3)βW̃ (η, z), (4.18)

U − Ū = x5/3−α(ln x1/3)βŨ (η, z), (4.19)

and

V − V̄ = x1−α
(
ln x1/3

)β
λ−1/3Ṽ (η, z), (4.20)

to within a relative error of O(ln x)−1 as x → ∞, where Ũ , Ṽ , W̃ again satisfy the
similarity equations (4.14)–(4.16), and β is an arbitrary positive constant which like α

is determined by the upstream boundary conditions, i.e. by the asymptotic behaviour
of the local solution in the vicinity of the roughness. GSDC show that it is equal to
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zero in the strictly linear case (i.e. (4.18)–(4.20) reduce to (4.12)) and § 5 shows that it
is equal to the one in the weakly nonlinear case (see comments below (5.25)), while
the numerical results show that it is also equal to the one in the fully nonlinear case
(see discussion of figure 6 below).

Equations (3.1), (3.16) to (3.18), (4.7), (4.8) and (4.18) to (4.20) show that these
solutions will match onto the main boundary-layer solution if we require that

W̃ (η, z) → 1

(α − 1)λ2/3η

∂p̂(0, z)

∂ z
, (4.21)

Ũ (η, z) → 1

(α − 1) (α − 2) λ2/3 η

∂2p̂(0, z)

∂ z2
. (4.22)

GSDC show that the streamwise velocity component of the solution to (4.14)–(4.16)
that satisfies (4.17), (4.21) and (4.22) is given by

Ũ =
1

λ2/3(α − 1)C

∂2p̂(0, z)

∂z2
[Û (η) + ĈH ÛH (η)] + ŨH , (4.23)

where ĈH , B̃H and C are constants,

ŨH = B̃H

∫ η

0
1F1

(
3α − 4

3
,
2

3
; −η3

9

)
dη

− 1

λ2/3(α − 1)

∂2p̂(0, z)

∂z2

∫ η

0

η1F1

(
3α − 3

3
,
4

3
; −η3

9

)
dη (4.24)

ÛH = η1F1

(
3α − 4

3
,
4

3
; −η3

9

)
, (4.25)

and Û (η) is determined by

∂2Û

∂η2
+ η

[
η

3

∂Û

∂η
+

(
α − 5

3

)
Û

]
= C, (4.26)

subject to the boundary conditions

Û (0) = 0 and Û (η) → C/ [(α − 2) η] , as η → ∞, (4.27)

provided the integrals in (4.24) converge as η → ∞. Each of them will converge when
α > 5/3 (as it is in the strictly linear case considered in GSDC) and ĈH can then be
chosen so that the boundary condition (4.22) is satisfied.

However, the combined integral in (4.24) will converge even when α � 5/3 if B̃H is
set equal to

B̃H =
Γ (2 − α) Γ (1/3)

Γ (2 − α + 1/3) Γ (2/3)31/3

1

λ2/3(α − 1)

∂2p̂(0, z)

∂z2
, (4.28)

because (see 13.1.9 on p. 504 of Abramowitz & Stegun 1965) the integrand will
then be proportional to e−η3/9U ((6 − 3α)/3, 2/3, η3/9) (where U (a, b, z) denotes
the hypergeometric equation solution defined in Abramowitz & Stegun (1965,
equation 13.1.3)) and, therefore, vanishes exponentially fast as η → ∞. It follows
that the constant ĈH can be chosen so that

Ũ → 1

λ2/3(α − 1)C

∂2p̂(0, z)

∂z2
Û (η), as η → ∞, (4.29)
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when α = 5/3 and the boundary condition (4.22) can, therefore, also be satisfied in
this case. The homogeneous solution (4.25) is given by

ÛH =

∫ η

0

exp

(
−η3

9

)
dη, (4.30)

for this value of α (i.e. α = 5/3) and (4.24) can be expressed in terms of the
hypergeometric equation solution U (a, b, z) to obtain

ŨH =

(
3

λ

)2/3
[Γ (1/3)]2

√
3

4π

∂2p̂(0, z)

∂z2

∫ η

0

e−η3/9U (1/3, 2/3, η3/9) dη. (4.31)

Equation (4.19) shows that U − Ū will then increase as (ln x)β when x → ∞ at fixed
η and z, but the linearization (4.9)–(4.11) will still be valid because the scaled Blasius
velocity UB/ε ≈ λY = λ2/3x1/3η increases as x1/3 when x → ∞ at fixed η. However,
this is the smallest value of α for which the linearization will be valid, because matching
the wall layer and main-deck solutions requires that α = n/3 f or n= 1, 2, . . . (since the
inner expansion of the latter can only involve integral powers of y) and U − Ū will be
proportional to (ln x1/3)βx1/3 as x → ∞ at fixed η when α is equal to 4/3.

5. Asymptotic solution for h � 1

This section constructs an asymptotic solution (valid in the limit h → 0) in order
to fix the decay rate exponents α and β and explicitly relate the wall pressure to the
roughness geometry.

5.1. Solution for x =O(1)

When h � 1, the wall-layer solution possesses the expansions

{U, V, W, P (x, z)} = {λY, 0.0, 0} + h {U1, V1, W1, P1(x, z)}

+ h2 {U2, V2, W2, P2(x, z)} + · · · , (5.1)

where {Uj, Vj , Wj , Pj } satisfy the boundary conditions (3.22) and (3.23), the matching
condition (3.24) and the linear equations

∂Uj

∂x
+

dVj

dY
+

∂Wj

∂z
= 0, (5.2)

λY
∂Uj

∂x
+ λVj +

∂Pj

∂x
−

∂2Uj

∂Y 2
= Fj , (5.3)

λY
∂Wj

∂x
+

∂Pj

∂z
−

∂2W
j

∂Y 2
= Gj, (5.4)

where

F1 = 0, F2 = −U1

∂U1

∂x
− V1

∂U1

∂Y
− W1

∂U1

∂z
, . . . , (5.5)

G1 = 0, G2 = −U1

∂W1

∂x
− V1

∂W1

∂Y
− W1

∂W1

∂z
, . . . . (5.6)

Equations (3.22)–(3.24) then imply that

�

U
(j )

n =
�

W
(j )

n =
�

V
(j )

n = 0, at Y = 0, (5.7)
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for j = 1, 2, . . . , while (3.24) implies that

�

U
(1)

n = λ
�

F n(k) + O(Y −1),
�

W
(1)

n = O(Y −1), as Y → ∞, (5.8)

and
�

U
(2)

n (k) = O(Y −1),
�

W
(2)

n = −nP̃ (2)
n

k lλY
, as Y → ∞, (5.9)

where {
�

U
(j )

n (Y, k),
�

V
(j )

n (Y, k),
�

W
(j )

n (Y, k), P̃ (j )
n (k),

�

F n(k)} is defined by

{
Uj, Vj , Wj , Pj (x, z), F̃ (x, z)

}
=

n=∞∑
n=−∞

∫ ∞

−∞

{
�

U
(j )

n (Y, k),
�

V
(j )

n (Y, k),
�

W
(j )

n (Y, k), P̃ (j )
n (k),

�

F n(k)
}

ei((nz/l)+kx) dk, (5.10)

and it follows from the linearized boundary-layer equations (5.2)–(5.4) that

ik
�

U
(j )

n + (ikλ)1/3 d
�

V
(j )

n

dη̄
+ i

(n

l

)
�

W
(j )

n = 0, (5.11)

η̄
�

U
(j )

n +
(ikλ)1/3

ik

�

V
(j )

n +
ik

(ikλ)2/3
P̃ (j )

n − d2
�

U
(j )

n

dη̄2
=

�

F
(j )

n (η̄), (5.12)

η̄
�

W
(j )

n +
i(n/l)

(ikλ)2/3
P̃ (j )

n − d2
�

W
(j )

n

dη̄2
=

�

G
(j )

n (η̄), (5.13)

for j = 1, 2, where

η̄ ≡ (ikλ)1/3Y, (5.14)
�

F
(1)

n = 0, (5.15)

(ikλ)2/3
�

F
(2)

n (η̄) = −
p=∞∑

p=−∞

[
�

U
(1)

p (Y, k) ∗ ik
�

U
(1)

n−p(Y, k) +
�

V
(1)

p (Y, k) ∗ ∂

∂Y

�

U
(1)

n−p(Y, k)

+ i
(n − p

l

)
�

W
(1)

p (Y, k) ∗
�

U
(1)

n−p(Y, k)

]
, (5.16)

(not to be confused with the Fourier coefficient
�

F n(k) of the roughness shape function
F̃ (x, z) defined in (5.10), see (2.1))

�

G
(1)

n = 0, (5.17)

and

(ikλ)2/3
�

G
(2)

n (η̄) =

p=∞∑
p=−∞

[
�

U
(1)

p (Y, k) ∗ ik
�

W
(1)

n−p(Y, k) +
�

V
(1)

p (Y, k) ∗ ∂

∂Y

�

W
(1)

n−p(Y, k)

+ i
(n − p

l

)
�

W
(1)

p (Y, k) ∗
�

W
(1)

n−p(Y, k)

]
, (5.18)

where

f (Y, k) ∗ g(Y, k) ≡
∫ ∞

−∞
f (Y, k1)g(Y, k − k1) dk1 (5.19)
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denotes the convolution of the functions f and g. The final results depend on the

numerical coefficient of 1/Y in the
�

W
(2)

n boundary condition (5.9) but not in the one

in the
�

W
(1)

n boundary condition (5.8). It is important to note that

�

F
(j )

n (0) =
�

G
(j )

n (0) = 0. (5.20)

The formula for the nth spanwise harmonic of the Fourier transformed first-order
wall pressure P̃ (1)

n is given in GSDC, while Appendix A shows that the nth spanwise
harmonic of the Fourier transformed second-order wall pressure P̃ (2)

n is given by

P̃ (2)
n = − 3π(ikλ)5/3

[k2 + (n/l)2]λ31/3Γ (1/3)

∫ ∞

0

{[IB(t) + 1/
√

3]Ai(t)

− [IA(t) − 1/3]Bi(t)}
d
[

�

F
(2)

n (t) + (n/kl)
�

G
(2)

n (t)
]

dt
dt

= − 3π(ikλ)5/3

[k2 + (n/l)2]λ31/3Γ (1/3)

∫ ∞

0

[Gi(t) + Ai(t)/31/2]
d
[

�

F
(2)

n (t) + (n/kl)
�

G
(2)

n (t)
]

dt
dt

=
3π(ikλ)5/3

[k2 + (n/l)2]λ31/3Γ (1/3)

∫ ∞

0

[Gi′(t) + Ai′(t)/31/2]
[

�

F
(2)

n (t) + (n/kl)
�

G
(2)

n (t)
]
dt .

(5.21)

Our interest is in the asymptotic behaviour of the second-order wall pressure as
x → ∞. Equations (4.1) and (4.2) show that this quantity is determined by the
asymptotic behaviour of P̃ (2)

n as k → 0, and Appendix B shows that this latter
quantity is given by

P̃ (2)
n → − 3π[

k2 + (n/l)2
]
λ31/3Γ (1/3)

p=∞∑
p=−∞

∫ ∞

−∞
dk1

∫ ∞

0

[
Gi′(η̄) + Ai′(η̄)/31/2

]

×
[

�

U
(1)

n−p((1 − κ)1/3η̄, k − k1)ik1 +
�

V
(1)

n−p((1 − κ)1/3η̄, k − k1)(ikλ)
1/3 ∂

∂η̄

+
�

W
(1)

n−p

(
(1 − κ)1/3η̄, k − k1

)
i (p/l)

]
�

E
n

p

(
κ1/3η̄, k1

)
dη̄

→ 9nk2/3λ2 ln k1/3[
k2 + (n/l)2

]
[Γ (1/3)]3

p=∞∑
p=−∞

∫ ∞

−∞

p
�

F p(k1)
�

F n−p(−k1)k
2/3
1 (−k1)

2/3

p2 + (lk1)2

×
[

n (n − p)

(n − p)2 + k2
1 l

2
− 1

]
dk1, as k → 0. (5.22)

5.2. Behavior for x � 1

It now follows from (3.6), (4.1)–(4.3) and (5.22) that (see (5.1) and (5.10))

P (x, z) − P̄ (x) = hp̂1(0, z)x−8/3 + h2
[
p̂2(0, z)x−5/3 ln x1/3 + O(x−5/3)

]
, (5.23)

where

p̂2(0, z) ≡ − 2

31/2
Γ (2/3)

n=∞∑
n=−∞
n�=0

ã(2)
n einz/l . (5.24)
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with

ã(2)
n =

−9 (lλ)2 e−i π/3

n[Γ (1/3)]3

p=∞∑
p=−∞

∫ ∞

−∞

p
�

F p(k1)
�

F n−p(−k1)k
2/3
1 (−k1)

2/3[
p2 + (lk1)2

]
×

[
n (n − p)

(n − p)2 + (lk1)2
− 1

]
dk1. (5.25)

Equation (5.23) fixes the arbitrary constants α and β in (4.18)–(4.20) and shows that
the first- and second-order contributions to spanwise variable wall pressure behave like
x−8/3 and (ln x1/3)x−5/3, respectively. Equation (4.5) shows that the spanwise variable
streamwise velocity grows like

u0(x, y, z) − ū0(x, y) ∼ 33/2h2Γ (2/3)x1/3 ln x1/3 U ′
B(y)

U 2
B(y)

×
n=∞∑

n=−∞
n�=0

π′
n(y, 0)ã(2)

n einz/l, as x → ∞ (5.26)

in the main boundary layer, while (4.19), (4.23), (4.30) and (4.31) show that the
streamwise component of the wall-layer velocity perturbation behaves like

U − Ū ∼ h2[ln x1/3Ũ 2(η, z) + O(1)], as x → ∞, (5.27)

where

Ũ 2 =
3

2λ2/3

∂2p̂2(0, z)

∂z2

[
Û (η) + ĈH

∫ η

0

exp

(
−η3

9

)
dη

+
[Γ (1/3)]231/2

2π31/3

∫ η

0

e−η3/9U (1/3, 2/3, η3/9) dη

]
, (5.28)

Û (η) =

∫ η

0

exp(−η̄3/9)

∫ η̄

0

exp(η̃3/9) dη̃ dη̄ (5.29)

with ĈH chosen so that (4.29) is satisfied.
Since the spanwise average of the second-order wall pressure, P̃

(2)
0 , is equal to

zero, the linear and nonlinear components of the spanwise mean surface pressure
exhibit the same x−2/3 decay rate and the linear and nonlinear components of the
spanwise average of the streamwise wall velocity exhibit the same x−1 decay rate (see
Appendix A of GSDC).

6. Results and discussion
Section 4 contains a theoretical description of the wakes at large downstream

distances (in comparison to the scale of the roughness) behind a periodic array of
roughness elements with a fundamental spanwise spacing of the order of the boundary-
layer thickness. GSDC showed that this flow is eventually governed by linear equations
and noted that these equations have an exact similarity solution when the spanwise
variable component of the wall pressure decays as x−α , where x denotes the scaled
streamwise distance behind the roughness elements. However, they also noted that this
same set of equations has an asymptotic solution corresponding to the more general
algebraic/transcendental decay in wall pressure, of the form x−α ln x. Their exact
analytical solution for the strictly linear problem (where the scaled roughness height
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h � 1) exhibited purely algebraic decay with the decay rate exponent, α, being equal to
8/3, while their numerical solutions for the full nonlinear case seemed to be consistent
with a slower, x−5/3 algebraic decay. GSDC’s small h analytical solution was extended
to second order (i.e. to O(h2)) in § 5 of the present paper, where it was shown that
the spanwise variable wall pressure actually behaves algebraically/transcendentally
and decays at the slower x−5/3 ln x rate (see (5.23)) and, even more importantly,
that the corresponding wall velocity undergoes a transcendental growth (see (5.27)
and (6.5) below), accompanied by a progressively outward movement in the wall-
normal location of the peak perturbation. The present section compares the weakly
nonlinear, analytical solution with the h = O(1) numerical solutions and confirms
that the numerical solutions exhibit the same large x asymptotic behaviour as the
analytical solution and, therefore, that the weakly nonlinear asymptotic results of
§ 5.2 have a broader relevance than their expected domain of applicability.

All of the computations are based on an array of roughness elements with the
smooth shape function

F̃ (x, z) = exp{−[x2 + (z − πl)2]/d2}, (6.1)

for which the Fourier coefficient
�

F n(k) is given by
�

F n(k) =
�

F n(0) exp[−(kd/2)2] (6.2)

where

�

F n(0) =
lD2

π
e−(nD)2−inπRe erf(π/2D + inD), (6.3)

D ≡ d/2l. (6.4)

Here Re denotes the real part of a complex quantity and erf denotes the error
function. The numerical procedure for solving the nonlinear wall-layer problem
(3.19)–(3.24) (which can also be used for the analogous two-dimensional problem
of Smith (1976a, b)) is described in GSDC.

6.1. Solutions in the vicinity of the roughness array

Figure 2, which is a plot of the wall-shear stress distribution along the symmetry
plane z = πl of the roughness element, gives some indication of the local flow field for
O(1) values of h. It indicates that there is a weak retardation of the near-wall flow
ahead of the roughness elements, followed by a strong acceleration that leads to a
prominent peak in centreline wall shear just ahead of x = 0 (i.e. streamwise location
of maximum roughness height). The flow rapidly decelerates over the rear half of the
roughness element until the wall shear reaches a minimum between x ≈ 5 and x ≈ 10
(i.e. x/d ≈ 0.725 to x/d ≈ 1.45) and begins a recovery to its unperturbed state to
the leading order in the high-Reynolds-number expansion (3.16). The minimum wall
shear decreases with increasing h, but remains positive for all values of roughness
height as shown in figure 2. The flow behind the roughness element appears to be
on the verge of separation at λ1/3h = 5, but there is little likelihood of a spontaneous
onset of unsteady vortex shedding within the wake region (as observed for sufficiently
large values of the roughness height by Acarlar & Smith (1987) and Klebanof,
Cleveland & Tidstrom (1992)), since the flow remains fully attached throughout the
range λ1/3h � 5. The stationary solutions shown in figure 2 are, therefore, realizable,
in principle.

GSDC found that the numerically computed spanwise variable component of the
wall pressure was in good agreement with the linear analytical result up to x = 103
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Figure 2. Scaled wall shear distribution along the symmetry plane z = πl
of the roughness element.
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Figure 3. Normalized spanwise variable component of surface pressure distribution over the
roughness elements for l = 5, d = 6.9 computed from the nonlinear solution.

when the roughness height h was relatively small – of the order of 0.1 or so – and that
the agreement between the nonlinear and linear results even extended up to h = 1 or
so if the comparison was restricted to the immediate vicinity of the roughness array.
Figure 3 displays the numerically computed spanwise variable component of the
surface pressure normalized by hλ5/3. It is similar to figure 10 of GSDC, but carries
the computations to much higher h values (the symbol h should be replaced by λ1/3h

in the caption of that figure). The results show the increasing effects of nonlinearity
as h becomes large, especially along the peaks and valleys of the streamwise pressure
distribution.
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Figure 4. Similarity coordinate of peak velocity defect calculated from numerical solution
for λ1/3h = 2 at the spanwise location of maximum velocity defect.

6.2. Downstream behaviour for x � 1

We have verified that the numerical solutions can be treated as a small perturbation
about the linear profile λY as x becomes large and, therefore, that they satisfy
the linear equations (4.9)–(4.11). The linearity of the wake perturbations was also
demonstrated by the direct numerical simulation solutions of Fischer & Choudhari
(2004). The asymptotic solution (4.18)–(4.20) to (4.9)–(4.11) with α = 5/3 implies that
the peak wake velocity will occur at a constant value of η, say η = ηp ≡ λ2/3Yp/x1/3, and
will remain constant when scaled with ln x1/3, i.e. that the ratio (U − Ū )(ηp, z)/ ln x1/3

will remain constant as x → ∞. These asymptotic predictions are consistent with
the appropriately scaled numerical solution for λ1/3h = 2, as seen from the nearly
flat large x asymptote in figure 4 (which is a plot of ηp at the spanwise location
of the maximum velocity defect) and, somewhat less convincingly, in figure 5. The
latter result could be improved by extending the grid further downstream, but the
additional computational effort does not seem to be warranted. The discontinuity in
figure 4 is due to the occurrence of a double peak.

Figure 6 is a plot of the scaled spanwise variable surface pressure at large
downstream distances. The black curve is computed from the lowest-order
contribution to the O(h2) term in the asymptotic solution (5.23). The coloured curves,
which are calculated from the numerical solution, show that the overall level and
asymptotic decay rate of the analytical result are in remarkably good agreement with
the numerical computations – with the decay rates and overall level being virtually
identical when λ1/3h � 3, which is consistent with the slightly faster than h2 increase
in the overall level of the numerical results when λ1/3h < 3. This suggests that the
numerically computed pressures have not fully achieved the slower x−5/3 ln x decay
for λ1/3h less than about 3. This can either be attributed to O(x−5/3) contribution to
the O(h2) term in the weakly nonlinear solution (5.23) or to the neglect of the faster
decaying O(h) linear term. However, we do not pursue this because of the significant
memory requirements needed for the nonlinear computations at large values of x.
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Figure 5. Scaled peak velocity defect calculated from numerical solution for λ1/3h = 2.
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Figure 6. Normalized spanwise variable surface pressure decay rates for l =5, d = 6.9.

Since the curves show that the numerically computed wall pressure is proportional
to h2 for λ1/3h � 3, (5.26) and (5.27) imply that the streamwise wake velocity is also
roughly proportional to h2 and, therefore, to Rek , where Rek denotes the Reynolds
number based on roughness height and the boundary-layer velocity at this height.
This, in turn, implies that the streamwise wake energy should scale with (Rek)

2 as
found experimentally by White & Ergin (2003) and in numerical computations by
Choudhari & Fischer (2005). The present weakly nonlinear theory, therefore, provides
a plausible explanation for those findings.
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GSDC found that the peak value of the streamwise component of the spanwise
variable wall velocity decays as 1/x in the downstream wall layer in the strictly linear
case. But the present result shows that it actually increases like ln x as x → ∞ in the
fully nonlinear case. This does not, however, destroy the linearity of the downstream
flow because the peak velocity moves upward into the main boundary layer like x1/3

as x → ∞, which means the local Blasius velocity (about which the equations are
linearized) also increases like x1/3 and, therefore, always remains larger than the wake
velocity perturbation.

This increase in the spanwise variable component of the streamwise velocity
perturbation, which is generated by the interaction between the various spanwise
Fourier modes in the nonlinear case, produces an effect that is very similar to
the well-known (Landahl 1980) ‘lift-up’ effect that is generated by a purely linear
mechanism and is probably responsible for the transient growth that occurs in the
purely linear case considered in GSDC. The former (modal interaction) mechanism
cannot occur in the strictly linear case because of the absence of these interactions
in that case. However, both the O(h) and O(h2) streamwise velocity components of
the corresponding two-dimensional problem decay at the same rate, which reinforces
the notion that the streamwise velocity amplification is associated with the spanwise
modal interactions – since these interactions cannot occur in the two-dimensional
case.

It might, at first glance, appear that the asymptotic small h expansion should break
down when the O(h2) term becomes larger than the O(h) result. But there is no
reason why an asymptotic solution cannot remain valid when one or two of its terms
are smaller than the remaining higher-order terms in some region of space. A simple
example of this behaviour is given by a classical linear acoustics problem of calculating
the acoustic radiation from a compact source with a net mass flux (at any instant
of time) of the order of the compactness parameter (i.e. the source size relative to
acoustic wavelength scale). When the acoustic field is expanded in powers of this small
parameter, the monopole contribution is excluded from the lowest-order term in this
multipole expansion (which would correspond to linear solution in the present case)
but not from the higher-order terms (which would correspond to nonlinear solution).
Since the weak monopole decays more slowly than the lowest-order solution (which
is of higher multipole order), the acoustic far-field will be dominated by the higher
order terms, but the expansion will remain valid (with some rearrangement of the
terms with varying x). It may be helpful to think about this as subtracting out the
linear solution and constructing an asymptotic expansion of the remainder.

The good agreement with the O(1) numerical solution suggests that all of the higher
order terms have the same decay rate and, therefore, that the expansion beyond the
O(h) term proceeds in the expected manner. The close agreement at a relatively large
value of the ‘small parameter’ h is also not that unusual. There are many examples
of this in chapters 3 and 4 of the classical text by Bender & Orszag (1978).

Figure 7 compares the spanwise variation in the asymptotic wall pressure
determined from the λ1/3h = 3, d = 6.9, l = 5 numerical computation with the O(h2)
analytical result. Both solutions are roughly sinusoidal, but the numerical result is
slightly concave on the centreline z = πl of the roughness elements, which is important
because (5.27) and (5.28) show that the streamwise wall velocity is proportional to
the second derivative of the wall pressure.

The good agreement with the numerical results suggests that the relatively simple
analytical result (5.26)–(5.29) can be used to study the effects of various roughness
shapes and parameters even when the nonlinearity is fairly strong. The wall pressure

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

47
26

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010004726


254 M. E. Goldstein, A. Sescu, P. W. Duck and M. Choudhari

4
(×10–6)

Analytical
Numerical3

2

1

0

–1

–2

–3

–4

–5
0 5 10 15

z
20 25 30

[P
(1

03 ,
 z

) 
– 

P– (1
03 )

]/
(λ

h)
2

Figure 7. Comparison of spanwise variation in scaled wall pressure computed from the
λ1/3h = 3 numerical solution (for d = 6.9, l = 5) with the O(h2) analytical result.

is of particular importance because (5.23), (5.27) and (5.28) show that the spanwise
variable streamwise velocity in the wall layer is directly proportional to the second
spanwise derivative of this quantity and similar results apply to the other wall layer
velocity components.

Figure 8 is a plot of the spanwise variation in the O(h2) asymptotic wall pressure
calculated from the O(h2) term in (5.23) for various values of d and l. Notice that
the pressure peak lies directly behind the roughness element and that it increases in
magnitude when the distance l∗ between the roughness elements increases relative to
the local boundary-layer thickness, δ∗. It reaches a maximum when D/π = d/2πl is
somewhere between 0.3 and 0.4, i.e. when the roughness diameter is close to a third
of the roughness spacing. Since the roughness elements are non-compact, their tails
tend to overlap when D/π � 0.6, which is partially responsible for the D/π = 0.8
curve being so flat. The dominant contribution to these results comes from the n= 1
mode interacting with p = 1 term and the n= −1 mode interacting with p = −1 term
in the sum (5.25), which involves the n − p =0 spanwise uniform mode. So it follows
from (5.27) and (5.28) that most of the nonlinear growth in the streamwise wall-layer
velocity is caused by a ‘linear’ interaction between the fundamental mode and the
two-dimensional distorted flow. This is somewhat analogous to what happens in the
linear case considered in GSDC, where most of the algebraic growth results from
the interaction between the fundamental harmonic and the two-dimensional flow that
results from the slow growth of the boundary layer over the viscous length scale.

Figures 9 and 10 are plots of the uniformly valid (Van Dyke 1975, p. 96)
multiplicative ‘composite’ wall-layer/main boundary-layer solution

u(x, y, z)/εh2 = − ln x1/3 Ũ 2(η, z)
2yλ ũ∗(y, z)

9

[
∂2p̃

(0)
0 (0, z)

∂z2

]−1

(6.5)
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Figure 8. Spanwise variation in scaled asymptotic wall pressure calculated from the O(h2)
asymptotic solution at x = 700. (a) l = 2.5. (b) l = 5. (c) l = 10.
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Figure 9. Effect of plan form diameter d on scaled streamwise velocity perturbation at z = πl:
wall-normal profiles of u/εh2 calculated from uniformly valid O(h2) asymptotic solution at
large values of x. (a) d = 6.9 and (b) d = 13.8 (array spacing l = 5 in both cases).
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Figure 10. Same as figure 9, except z = 0 instead of z = πl.
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formed from (5.26)–(5.29) with ũ∗(y, z) given by

ũ∗(y, z) ≡ 33/2Γ (2/3)
U ′

B(y)

U 2
B(y)

n=∞∑
n=−∞
n�=0

π′
n(y, 0)ã(2)

n einz/l . (6.6)

Perturbation profiles at the roughness centreline z = πl are shown in figure 9, whereas
those in between the adjacent roughness elements (z = 0) are plotted in figure 10.
These figures show that the peak in spanwise variable streamwise velocity eventually
moves up into the main boundary layer or main deck, where the Blasius velocity is
more uniform and the perturbation increases at a much more rapid x1/3 ln x rate. But
since the velocity maximum tends to remain in the wall layer this mainly shows up
as an increase in the wall-normal wake thickness. This causes the total wake energy
to exhibit algebraic/transcendental growth in the nonlinear case, while the GSDC
paper shows that it decays like x−2/3 in the strictly linear case. The positive value of
the velocity in figure 9 suggests that the wake flow reversal shown in figures 6 to 9 of
GSDC now takes place on the shorter inner scale x of the roughness elements rather
than on the longer outer scale X on which the mean flow evolves. This is consistent
with the algebraic growth occurring on the inner scale, x, in the nonlinear case and
on the outer scale, X, in the strictly linear case.

6.3. Transient growth on body length scale

Equations (3.1) and (4.5) show that the nonlinear solution (both numerical and
analytical) will become invalid when ε2x1/3 ln x1/3 = O(1). But GSDC showed that the
mean boundary-layer growth causes the expansion (3.1) to break down on the much
shorter X ≡ x∗/x∗

0 = 1+ δx = O(1) length scale, and that the flow in the corresponding
outer region is governed by the linearized boundary region (LBR) equations (Kemp
1951). The relevant boundary value problem is described in § 5 of GSDC. The only
difference is that the last curly bracket in the outer expansion (5.2) of GSDC is
multiplied by the scale factor ln δ−1/3 = − ln ε in the present case. In other words,
the only required modification is a slight change in the gauge functions in the outer
expansion (5.2) of GSDC which now becomes

{u, v, w, p} = {UB(ηB), δVB(X, ηB), 0, 0} + ε3{¯̃u(X, y), δ¯̃v(X, y), 0, ¯̃p(X, y)} + · · ·
− ε3α−4 ln ε{ũ(X, y, z), δṽ(X, y, z), δw̃(X, y, z), δ2p̃(X, y, z)}
+ O(ε3α−4) . . . , (6.7)

where

VB(ηB) = 1
2
(ν∗U∞/x∗)1/2[ηBF ′(ηB) − F (ηB)], (6.8)

and ηB ≡ (y∗/x∗)
√

x∗U∞/ν∗ denotes the Blasius variable. So the scaled energy plotted
in figure 13 of GSDC remains unchanged (the lower case x should be a capital X

in the horizontal scale of that figure), which means that the primary consequence of
the non-parallel flow effects is still a reduction in growth and eventual decay of the
streamwise velocity. This differs significantly from the purely linear case considered
in GSDC, where the algebraic growth in the wake velocity is produced by the
non-parallel flow effects in the outer region.

We used the numerically computed wall pressure shown in figure 7 to calculate
the upstream boundary conditions for the LBR equations that govern the flow on
the long streamwise length scale X for λ1/3h = 3. Figure 11 is a plot of the spanwise
variable component of the scaled streamwise velocity half-way between the roughness
elements for that value of h. It shows that the wakes (which were initially concentrated
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Figure 11. Scaled streamwise velocity perturbation ũ as a function of y at the spanwise
location z = 0 between the roughness elements for λ1/3h = 3, l = 5, d = 6.9.

in the wall layer in the intermediate region, x � 1, X − 1 � 1) continue to move out
into the main boundary layer as they progress downstream but do not undergo the
sign reversals exhibited by the wakes for the strictly linear cases shown in figures 6
and 7 of GSDC – presumably because this has already occurred in the inner region
in this case. (The lower case xs should be capital Xs in the legends of figures 6 to 9
of GSDC.)

Figure 11 also shows that the initial increases in the streamwise wake energy in
figure 13 of GSDC are primarily due to wake spreading and not due to a decrease in
the streamwise velocity minimum (see discussion for figures 9 and 10 above).

7. Summary and concluding remarks
This paper is based on a high-Reynolds-number asymptotic solution for the flow

over a spanwise periodic array of relatively small roughness elements that was
developed by GSDC. The roughness elements are assumed to be more or less circular
in plan form with the plan form size and array spacing being of the order of the local
boundary-layer thickness. The roughness height is assumed to be small enough to
produce only local separation. The present work extends the small h asymptotic results
of GSDC to show that nonlinearity can have a profound effect on the evolution of the
wake disturbances behind the roughness elements. It shows that the downstream wakes
consist of streak-like perturbations that exhibit algebraic/transcendental growth and
that the location of growth onset moves closer to the roughness elements with
increasing h, even when the scaled roughness height h is relatively modest – a trend
that has previously been observed in direct numerical simulations for a non-smooth
roughness shape.

Transient growth behaviour over long streamwise length scales of the order of
the downstream distance from the leading edge was identified by Andersson et al.
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(1999), Luchini (2000) and Tumin & Reshotko (2001) in the context of the linearized
boundary region equations. However, the primary focus of these studies was on
optimal growth characteristics which may not be achieved for realistic roughness
configurations. The present paper examines realizable transient growth behaviour in
the context of inverse, nonlinear boundary-layer equations with zero displacement and
shows that the streak-like velocity perturbations can exhibit a weaker, i.e. suboptimal
growth of the transcendental form ln x as x → ∞ on the roughness scale. And most
importantly, the theory is able to predict the quadratic dependence of the wake
perturbation amplitudes on roughness height noted in previous experiments (White
& Ergin 2003) and numerical computations (Choudhari & Fischer 2005). In addition
to reproducing the dominant nonlinear receptivity characteristics, the theory provides
a rational basis for the previously observed linear behaviour of the velocity distortions
across the region of transient growth and subsequent decay.

The O(h2) asymptotic solution was found to be in good agreement with the
numerical solution in the intermediate wake region where x � 1 and 0 < X − 1 � 1
even for moderately large values of the roughness height parameter h – which means
that the relatively simple analytical result (5.26)–(5.29) can be used to estimate the
effects of various roughness shapes and parameters even when the nonlinearity is

fairly strong. It is only necessary to evaluate the inverse Fourier transform
�

F n(k) of
the roughness-shape function F̃ (x, z), as was done in § 6 of the present paper for
the smooth Gaussian function (6.1) and in § 8 of GSDC for the circular disk defined

in (8.4). (|z − πl| should be replaced by
√

x2 + (z − πl)2 in that equation.) Since the
theoretical formulation is valid for arbitrary roughness configurations, the present
computations can easily be extended to other roughness shapes and, in particular, to
compact shapes such as circular disks, which are likely to result in flow separation at
smaller values of roughness height than for the smoother Gaussian shape.
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Appendix A
This appendix gives the details of the derivation of the formula (5.21) for the

nth spanwise harmonic of the second-order wall pressure P̃ (2)
n . Eliminating

�

V
(j )

p

between (5.11) and (5.12) yields

d3
�

U
(j )

n

dη̄3
− η̄

d
�

U
(j )

n

dη̄
= −

( n

kl

)
�

W
(j )

n − d
�

F
(j )

n

dη̄
, (A 1)

where
�

U
(j )

n must satisfy the boundary condition

d2
�

U
(j )

n

dη̄2
=

(ikλ)1/3P̃ (j )
n

λ
−

�

F
(j )

n (0), for η̄ = 0, j = 1, 2. (A 2)
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Equations (5.13) and (A 1) can be solved to obtain

�

W
(j )

n = − inπP̃ (j )
n

(ikλ)2/3l
Gi(η̄) +

�

α
(j )

n Ai(η̄)

+ π

∫ ∞

η̄

Ai(t)Bi(η̄)
�

G
(j )

n (t) dt + π

∫ η̄

0

Ai(η̄)Bi(t)
�

G
(j )

n (t) dt, (A 3)

and

�

U
(j )

n + (n/kl)
�

W
(j )

n =β (j )
n IA(η̄) + π

∫ ∞

η̄

IB(η̄)Ai(t)
d
[

�

F
(j )

n (t) + (n/kl)
�

G
(j )

n (t)
]

dt
dt

+ π

∫ η̄

0

{[IA(η̄) − IA(t)] Bi(t) + IB(t)Ai(t)}
d
[

�

F
(j )

n (t) + (n/kl)
�

G
(j )

n (t)
]

dt
dt, (A 4)

for j = 1, 2 where

IA(η) ≡
∫ η

0

Ai(t) dt, IB(η) ≡
∫ η

0

Bi(t) dt, (A 5)

the β (j )
n ,

�

α
(j )

n are constants to be determined by the boundary conditions and the
Ai and Gi denote the Airy functions defined in Abramowitz & Stegun (1965, p. 446
and 448). It now follows from (5.7), (A 3) and equations (10.4.4) and (10.4.42) of
Abramowitz & Stegun that

�

α
(j )

n =
inπP̃ (j )

n

(ikλ)2/3l
√

3
− π

√
3

∫ ∞

0

Ai(t)
�

G
(j )

n (t) dt (A 6)

for j = 1, 2, 3, . . . , while differentiating (A 4) with respect to η and using the boundary
condition (A 2) shows that

�

U
(j )

n = −(n/kl)
�

W
(j )

n + IA(η̄)[k2 + (n/l)2]
λ31/3Γ (1/3)P̃ (j )

n

(ikλ)5/3

+ π

∫ ∞

η̄

[
IB(η̄) + 31/2IA(η̄)

]
Ai(t)

d
[

�

F
(j )

n (t) + (n/kl)
�

G
(j )

n (t)
]

dt
dt

+ π

∫ η̄

0

{
IA(η̄)

[
Bi(t) + 31/2 Ai(t)

]

+[IB(t)Ai(t) − IA(t)Bi(t)]}
d
[

�

F
(j )

n (t) + (n/kl)
�

G
(j )

n (t)
]

dt
dt (A 7)

for j = 1, 2, 3, . . . So

�

W
(1)

n = − inπ

(ikλ)2/3l
P̃ (1)

n (k)

[
Gi(η̄) − 1√

3
Ai(η̄)

]
, (A 8)

�

U
(1)

n = − n

lk

�

W
(1)

n + 3λ
�

F n(k)

∫ η̄

0

Ai(η̃) dη̃, (A 9)

and

�

V
(1)

n (k) =
P̃ (1)

n

ikλ
[k2 + (n/l)2] + 3ikλ

�

F n(k)

[
Ai′(η̄)

(ikλ)1/3
− Y

∫ η̄

0

Ai(η̃) dη̃

]
, (A 10)
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and since

Gi(η̄) ∼ 1

πη̄
+ O

(
1

η̄4

)
=

1

π(ikλ)1/3Y
+ O

(
1

(ikλ)4/3Y 4

)
, as Y → ∞, (A 11)

it follows from (5.8), (5.9) and (A 9) that

P̃ (1)
n (k) =

(ikλ)5/391/3

[(n/l)2 + k2]Γ (1/3)

�

F n(k). (A 12)

It now follows from (5.9), (A 7) and equation (10.4.42) of Abramowitz & Stegun
(1965) that the nth spanwise harmonic of the second-order wall pressure P̃ (2)

n is given
by (5.21).

Appendix B
Our interest is in the asymptotic behaviour of the second-order wall pressure

as x → ∞. Equations (4.1) and (4.2) show that this quantity is determined by the
asymptotic behaviour of P̃ (2)

n as k → 0. The appropriate formula for the latter quantity
is derived in this appendix. Equations (5.16) and (5.18) show that

(ikλ)5/3
[

�

F
(2)

n (η̄) + (n/kl)
�

G
(2)

n (η̄)
]

= −
p=∞∑

p=−∞

∫ ∞

−∞

�

U
(1)

n−p

(
(1 − κ)1/3η̄, k − k1

)
ik1

�

E
n

p

(
κ1/3η̄, k1

)
dk1

−
p=∞∑

p=−∞

∫ ∞

−∞

�

V
(1)

n−p

(
(1 − κ)1/3η̄, k − k1

)
(ikλ)1/3

∂

∂η̄

�

E
n

p

(
κ1/3η̄, k1

)
dk1

−
p=∞∑

p=−∞

∫ ∞

−∞

�

W
(1)

n−p

(
(1 − κ)1/3η̄, k − k1

)
i (p/l)

�

E
n

p

(
κ1/3η̄, k1

)
dk1, (B 1)

where

�

E
n

p

(
κ1/3η̄, k1

)
≡

{
kIA

(
η̄κ1/3

) [
k2

1 + (p/l)2
] 31/3Γ (1/3)

k1

+
(
n − p

κ

) pπ

l2

[
Gi

(
κ1/3η̄

)
− 1√

3
Ai(κ1/3η̄)

]}
λ2ik19

1/3
�

F p(k1)[
(p/l)2 + k2

1

]
Γ (1/3)

(B 2)

and

κ ≡ k1/k. (B 3)

Then since (A 9) and (A 10) imply that[
�

U
(1)

n−p

(
(1 − κ)1/3η̄, k − k1

)
ik1 +

�

V
(1)

n−p

(
(1 − κ)1/3η̄ , k − k1

)
(ikλ)1/3

∂

∂η̄

+
�

W
(1)

n−p

(
(1 − κ)1/3η̄, k − k1

)
i (p/l)

]
�

E
n

p

(
κ1/3η̄, k1

)

=

{
i (pk − k1n)

l (k − k1)

�

W
(1)

n−p +
P̃

(1)
n−p (k − k1)

iλ (k − k1)

[
(k − k1)

2 +
(n − p

l

)2
]

(ikλ)1/3
∂

∂η̄
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+
3i (k − k1) λ

�

F n−p (k − k1) Ai′
(
(1 − κ)1/3η̄

)
(1 − κ)1/3

∂

∂η̄

+ 3ik1λ
�

F n−p (k − k1) IA

(
η̄(1 − κ)1/3

) (
1 + Y

d

dY

)

− 3ikλY
�

F n−p (k − k1) IA

(
η̄(1 − κ)1/3

)
(ikλ)1/3

∂

∂η̄

}

×
{

kIA

(
κ1/3η̄

) [
k2

1 + (p/l)2
] 31/3Γ (1/3)

k1

+
(
n − p

κ

)pπ

l2

[
Gi

(
κ1/3η̄

)
− 1√

3
Ai(κ1/3η̄)

]}
ik1λ

291/3
�

F p(k1)[
(p/l)2 + k2

1

]
Γ (1/3)

, (B 4)

(A 8), (A 11) and (A 12) show that[
�

U
(1)

n−p

(
(1 − κ)1/3η̄, k − k1

)
ik1 +

�

V
(1)

n−p

(
(1 − κ)1/3η̄, k − k1

)
(ikλ)1/3

∂

∂η̄

+
�

W
(1)

n−p

(
(1 − κ)1/3η̄, k − k1

)
i (p/l)

]
�

E
n

p

(
κ1/3η̄, k1

)

→
{

i (pk − k1n)

l (k − k1)

�

W
(1)

n−p +
P̃

(1)
n−p (k − k1)

iλ (k − k1)

[
(k − k1)

2 +
(n − p

l

)2
]

(ikλ)1/3
∂

∂η̄

+ 3ik1λ
�

F n−p (k − k1) IA(η̄(1 − κ)1/3)

(
1 + Y

d

dY

)}

×
(
n − p

κ

)pπ

l2

[
Gi

(
κ1/3η̄

)
− 3−1/2 Ai

(
κ1/3η̄

)] ik1λ
291/3

�

F p(k1)[
(p/l)2 + k2

1

]
Γ (1/3)

+ O(k)

= −
{

[Gi((1 − κ)1/3η̄) − 3−1/2 Ai((1 − κ)1/3η̄)]
(pk − k1n)(n − p)π91/3

l2[(n/l − p/l)2 + (k − k1)2]Γ (1/3)

+
(k − k1)

2/3 k
1/3
1 91/3

Γ (1/3)

∂

∂
(
κ1/3η̄

)
}(

n − p

κ

) pπ

l2

[
Gi

(
κ1/3η̄

)
− 1√

3
Ai(κ1/3η̄)

]

× k1λ
391/3

�

F p(k1)
�

F n−p (k − k1)[
(p/l)2 + k2

1

]
Γ (1/3)

+ O(k), (B 5)

as k → 0. And it follows that∫ ∞

0

[
Gi′(η̄) + 3−1/2 Ai′(η̄)

] [
�

U
(1)

n−p

(
(1 − κ)1/3η̄, k − k1

)
ik1

+
�

V
(1)

n−p

(
(1 − κ)1/3η̄, k − k1

)
(ikλ)1/3

∂

∂η̄

+
�

W
(1)

n−p

(
(1 − κ)1/3η̄, k − k1

)
i (p/l)

]
�

E
n

p

(
κ1/3η̄, k1

)
dη̄

→ −
(
n − p

κ

) pπ

l2
k1λ

392/3
�

F p(k1)
�

F n−p(k − k1)

[(p/l)2 + (k1)2][Γ (1/3)]2

∫ ∞

0

[
Gi′(η̄)
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+ 3−1/2 Ai′(η̄)
]{

(kp − k1n)(n − p)π

l2[(n/l − p/l)2 + (k − k1)2]

×
[
Gi

(
(1 − κ)1/3η̄

)
− 3−1/2 Ai

(
(1 − κ)1/3η̄

)]

+(k − k1)
2/3k

1/3
1

∂

∂
(
κ1/3η̄

)
} [

Gi
(
κ1/3η̄

)
− 3−1/2 Ai

(
κ1/3η̄

)]
dη̄

→ npπ

l2
λ392/3

�

F p(k1)
�

F n−p(−k1)[
(p/l)2 + (k1)2

]
[Γ (1/3)]2

{
n (n − p) πk2

1

l2
[
(n − p)2 /l2 + k2

1

]I1

(
κ1/3

)

− (−k1)
2/3k

4/3
1 I2

(
κ1/3

)}
, (B 6)

as k → 0, where

I1(κ
1/3) ≡

∫ ∞

0

[Gi′(η̄) + Ai′(η̄)/
√

3]
[
Gi

(
(−κ)1/3η̄

)
− 3−1/2 Ai((−κ)1/3η̄)

]
×

[
Gi

(
κ1/3η̄

)
− 3−1/2 Ai(κ1/3η̄)

]
dη̄ (B 7)

I2(κ
1/3) ≡

∫ ∞

0

[
Gi′(η̄) + 3−1/2 Ai′(η̄)

] [
Gi′

(
κ1/3η̄

)
− 3−1/2 Ai′

(
κ1/3η̄

)]
dη̄. (B 8)

But (A 11) and equations (10.4.4) and (10.4.4) in Abramowitz & Stegun (1965,
p. 446) show that

I1(κ
1/3) = κ−1/3

∫ κ1/3M

0

[
Gi′(κ−1/3η̃) +Ai′(κ−1/3η̃)/31/2

]
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][
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]
dη̃

+
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M

[
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(−κ)1/3η̄
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Ai

(
(−κ)1/3η̄

)]

×
[
Gi(κ1/3η̄) − 1

31/2
Ai(κ1/3η̄)

]
dη̄

→ (−κ)−1/3κ−1/3

{
− (−1)1/3

π

∫ κ1/3M

0

η̃
[
Gi((−1)1/3η̃) − 3−1/2 Ai((−1)1/3η̃)

]
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]
dη̃ +

1

π2
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M

[
Gi′(η̄) +3−1/2 Ai′(η̄)

]
η̄2

dη̄

}

= (−κ)−1/3κ−1/3

{
− 1

π

∫ κ1/3M

0

{
η̃ (−1)1/3

[
Gi(η̃) − 3−1/2 Ai(η̃)

]

×
[
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]
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π2(1 + η̃)

}
dη̃ − 1
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)
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1
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→ (−κ)−1/3κ−1/3

{
− 1

π

∫ κ1/3M

0

{
(−1)1/3 η̃

[
Gi((−1)1/3η̃) − 3−1/2 Ai((−1)1/3η̃)

]

×
[
Gi(η̃) − 3−1/2 Ai(η̃)

]
− 1

π2(1 + η̃)

}
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1
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M

{
[Gi′(η̄) + 3−1/2 Ai′(η̄)]
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+

1

πη̃(1 + η̃)

}
dη̄ − 1

π3
ln(1 + M)

}
as k → ∞.

(B 9)

So

I1(κ
1/3) → (−κ)−1/3 κ−1/3

{
− 1

π

∫ ∞

0

{
(−1)1/3 η̃

[
Gi((−1)1/3η̃) − 3−1/2 Ai((−1)1/3η̃)

]
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[
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]
− 1

π2(1 + η̃)
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π3
ln κ1/3

+
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∫ ∞
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Gi′(η̄) +3−1/2 Ai′(η̄)

]
η̄2

+
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πη̃(1 + η̃)

}
dη̄

}
(B 10)

when M → 0 and κ1/3M → ∞, which means that

I1(κ
1/3) → − 1

π3(−κ)1/3κ1/3
ln κ1/3 as k → 0. (B 11)

Similarly

I2(κ
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κ−1/3
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π
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π
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0

{̃
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1

π(1 + η̃)

}
dη̃ − 1

π
ln(1 + κ1/3M)

+

∫ ∞

M

{
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η̄2
+

1

πη̄ (1 + η̄)

}
dη̄ − 1

π
[ln(1 + M) − ln M]

}

→ 1

π2κ2/3
ln κ1/3. (B 12)

And so∫ ∞
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×
�

E
n

p

(
κ1/3η̄, k1

)
dη̄ → npπλ392/3

�

F p(k1)
�

F n−p(−k1)

[p2 + (lk1)2][Γ (1/3)]2

×
{

n (n − p)[
(n − p)2 + k2

1 l
2
] − 1

}
(−k1)

2/3k
2/3
1 k2/3

π2
ln κ1/3 as k → 0. (B 13)

Equations (B 1) and (B 13) now show that the asymptotic behaviour of the nth
spanwise harmonic of the second-order wall pressure P̃ (2)

n as k → 0 is given
by (5.22).
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