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1. Introduction

Let S be a compact semigroup (with jointly continuous multiplication) and
let P(S) denote the probability measures on S, i.e. the positive regular Borel
measures on S with total mass one. Then P(S) is a compact semigroup with
convolution multiplication and the weak* topology. Let IT(P(S)) denote the
set of primitive (or minimal) idempotents in P(S). Collins (2) and Pym (5)
respectively have given complete descriptions of II(P(S)) when S is a group
and when K(S), the kernel of S, is not a group. Choy (1) has given some charac-
terizations of TI(P(S)) for the general case. In this paper we present some de-
tailed and intrinsic characterizations of II(P(S)) for various classes of compact
semigroups that are not covered by the results of Collins and Pym.

In Section 2 we give a detailed survey of the known results on II(P(S))
together with some preliminary results. We include here some facts about
maximal simple subsemigroups of compact semigroups. In Section 3 we con-
sider the commutative case. We show that the elements of II(P(S)) are then
the Haar measures on certain of the maximal subgroups of S together with
the Haar measures on the maximal closed subgroups of K(S). (Throughout this
paper, Haar measure means normalized Haar measure.) If m is the Haar
measure on K(S), then II(P(S))u{m} is a compact idempotent semigroup in
which all distinct products are m and the topology is the one point compacti-
fication of II(P(S)) with the discrete topology. As an amusing application we
obtain an identification of II(P(S)) with II(P(P(S))). Similar results obtain
for compact semigroups S such that each idempotent of S is central and K(S)
is commutative. In Section 4 we describe the central primitive idempotents on
an arbitrary compact semigroup S. Under some weak commutativity assump-
tions we describe the elements of II(P(S)) in terms of the maximal simple
subsemigroups of S. Some of the results in Section 3 could be deduced as special
cases of the results in Section 4, but it seems simpler for the exposition to con-
sider the commutative case first.

Given p € P(S), we write supp u for the support of y, i.e. the unique minimal
closed subset of S with p-mass one. Then for u, v € P(S), we have

Supp uv = supp p supp v
and when g is idempotent, supp u is a simple subsemigroup of S (see Pym (5)).
When S is a group we have u? = p if and only if supp u is a group and u is the
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Haar measure on supp u. We shall always identify y with its restriction to any
closed subset of S that contains supp #. Moreover, given u € P(E), where E is
a closed subset of S we also write u for the natural extension of u to a probability
measure on S. Given x € S we write &, for the point mass at x.

2. Preliminary results

Let T be any semigroup and let I(T) denote the set of idempotents of T.
The natural partial order on I(7) is defined by

e fifef=fe=e.

If T has a zero element 6, then 8 < e for each idempotent e. An idempotent e
of T is primitive if it is a minimal non-zero element of (/(T), £). The set of all
primitive idempotents of T is denoted by II(T). The elementary description
of II(T") varies according as T has a zero element or not. The following lemma
is elementary.

Lemma 1. Let T be a semigroup and let e € I(T).

(i) If T has no zero element, then e € II(T) if and only if I(eTe) = {e}.

(i) If T has zero element 0, then e € II(T) if and only if I(eTe) = {e, 6}.

In studying the primitive idempotent measures on a compact semigroup
Pym (5) modified the definition somewhat. Given a semigroup T, let T, be
the semigroup obtained by adjoining a zero element 8 to T (whether or not T
itself has a zero element). Given e € I(T), we say that e e IT*(T) if e e TI(T}).
(This is Pym’s definition of primitive idempotent when T = P(S).) Since
eTye = eTeu{l}, it follows from Lemma 1 that e € IT*(T) if and only if

I(eTe) = {e}.
Thus if T has no zero element then IT*(T) = II(7T). On the other hand if 7
has a zero element, say m, then II*(T) = {m}. Now let T = P(S), where S
is a compact semigroup. Then 7 has a zero element if and only if K(S) is a

group, in which case the zero element is the Haar measure on K(S). When
K(S) is not a group, Pym (5) gives a complete description of

T(P(S)) = IT*(P(S)).

Theorem 2. (Pym) Let S be a compact semigroup whose kernel K(S) is not
a group. Then

() I(A(S)) = K(P(S)),

(ii) each p e II(P(S)) is supported in K(S); and if Ex G x F is a canonical
decomposition of K(S), then

H=p Xmxpu,
where yu, € P(E), u, € P(F) and m is the Haar measure on G.

Suppose now that S is a compact semigroup such that K(S) is a group.
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Then IT*(P(S)) = {m}, where m is the Haar measure on K(S), and Pym’s
result gives no information about II(P(S)). When Sis a compact group (and
so K(S) = S), Collins (2) gives a complete description of II(P(S)).

Theorem 3. (Collins). Let S be a compact group. Then II(P(S)) consists
of the Haar measures on maximal closed proper subgroups of S.

For the general case, Choy (1) has shown that the members of II(P(S))
can be characterized in terms of the behaviour of the simple subsemigroups of
S. In particular the measures in II(P(S)) can be characterized in terms of their
supports. The following theorem together with Theorem 3 gives a complete
description of those g in II(P(S)) that are supported in K(S).

Theorem 4. Let S be a compact semigroup whose kernel K is a group. Then

(@) TI(P(K)) <TI(P(S)),

(i) if n € II(P(S)) with supp unK # ¢, then supp pc K and y € II(P(K)).

Proof. (i) Let u € II(P(K)), v € P(S). Then

Supp pvp = supp u supp v supp p= XK
and so uP(S)uc P(K). 1t follows that uP(S)u = uP(K)u and therefore
€ IP(S))
by Lemma 1.

(it) Let pu eII(P(S)), T = supp i, and suppose H = TnK # @f. Then
THcTnK = H, and similarly HT < H, so that H is an ideal of T. Since T
is simple, we have H = T, T<K. Since uP(K)ucuP(S)u, it follows from
Lemma 1 that u € II(P(K)).

Let e be the identity of the group K and let §, be the point mass at e. Choy

(1) shows that ¢, is central in P(S), i.e. d,u = ud, for each u e P(S), and the
mapping ®: P(S)— P(K) defined by

D(p) = S
is a continuous homomorphism that maps II(P(S)) onto II(P(K))u{m}. We

have of course ®(u) = p for each ue P(K). The result below shows that
®(u) = m for each u € II(P(S)) that is supported outside K.

Proposition 5. Let pue II(P(S)) with supp unK = . Then 6,0 = m and
esuppu = K.

Proof. Let T = supp u, so that T'is simple and hence is a union of subgroups
of S. Since e is central in S, it follows that eT is a closed subgroup of K. Letv
be the Haar measure on e7. Since J.u is an idempotent measure supported on
eT we have 6,4 = v. Hence vu = §,u®> = §,u = v and similarly uyv = v. We
have v # u since TnK = &, and since u e II(P(S)) it follows that v = m,
el = K.

The primitive idempotent measures on a compact group are described in
terms of the maximal closed proper subgroups. Given any compact semigroup

E.M.S.—G
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S, we recall that each subgroup of S is contained in a maximal subgroup of S,
and the maximal subgroups of S are closed and pairwise disjoint (see e.g. (4),
Theorem 1.1.3). Let ¢4 denote the family of maximal subgroups of S, and for
each e € I(S) let G(e) denote the unique maximal subgroup of S’ that contains e.
In the final section we shall require some results about the maximal simple
subsemigroups of S. We recall that each simple subsemigroup of S is contained
in a maximal simple subsemigroup of S, and the maximal simple subsemigroups
are closed, but need not be pairwise disjoint (see (4), p. 42). Let 4 denote
the family of maximal simple subsemigroups of S. The next result shows that
each M e .# is the (pairwise disjoint) union of members of .

Proposition 6. Let S be a compact semigroup, let M € A and let e € I(S)n M.
Then G(e)= M.

Proof. Write G = G(e). Since eMe is a group with identity e, we have
eMecG. Let T be the subsemigroup of S generated by M and G. Since
GMG = GeMeG = G, it follows that

T=MuGUMGUGMUMGM.
It is easily checked that, for each x € T, TxT> G and so
ITxTo>T(TxT)ToMeM = M

since M is simple. Therefore 7xT = T for each x € T and so T is simple.
By maximality T'= M, and therefore G(e) = M.

Proposition 7. Let S be a compact semigroup and suppose the idempotents
Jrom distinct members of M commute with each other. Then the members of M
are pairwise disjoint.

Proof. Let M, N e # with MnN # ¢, and suppose that M # N. Let
e e I(MnN)and let f e I(eM). Since e € N, f e M we have

f=¢ef = fe = efe.
Then efe is an idempotent in eMe and so e = efe = f. Thus I(eM) = {e} and
similarly I(Me) = {e}. Since M is simple, it follows that M = G(e), and
similarly N = G(e). This contradiction completes the proof.
Another sufficient condition for the members of .# to be pairwise disjoint
is that each M € .# should be left simple, i.e. Me = M for each e € I(M) (see
(4), Theorem 1.3.13); or that each M e .# should be right simple.

3. The commutative case

Throughout this section S denotes a compact commutative semigroup. Thus
each simple subsemigroup of S is a group, and in particular the kernel K of §
is a group. Let e denote the identity of K and m the Haar measure on XK.
Then I(S) is a compact semigroup with zero e, and P(S) is a compact semigroup
with zero m. The idempotent measures on S are precisely the Haar measures
on compact subgroups of S.
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Theorem 8. Let puel(P(S)), let T = supp u with TnK = &, and let f be
the identity of T. Then the following statements are equivalent.

(i) p e II(P(S));
(i) Te¥, Te = K, fe TI(I(S)).

Proof. (i)=>(ii). Let peII(P(S)). Then Te = K by Proposition 5. Let
T<G €% and let v be the Haar measure on G. Since v is the zero of P(G),
we have uv = v, v # m. Since u € II(P(S)), it follows that y = vand T = G.
Let j € I(fI(S)f) with j # e. Then jf = j and jG is a subgroup of S so that
JG=G(j). Let p be the Haar measure on jG. Since J;u is idempotent with
support jG, we have §;u = p and so pu = p. Since u € II(P(S)), it follows
that 4 = p and so j = f. Therefore f e II(I(S)).

(ii)=>(i). Let condition (ii) hold. Let ve I(P(S)) with uv =v and let
H = suppv. Supposefirst that HnK#¢¥. Thenee HnKand H=TH>Te =K.
Since Ke %, we have H = K, v = m. Suppose now that HnK = ¢, and that
j is the identity of H. Since fj is an idempotent and TH = H, we have j = fj
and so j e I(fI(S)f). Since f e II(I(S)), it follows that j = f, H=T. But then
uv = pand so v = u. Therefore u € II(P(S)).

Corollary 9. If S has a zero, then K = {e} and there is a one-one correspon-
dence between TI(1(S)) and TI(P(S)) in which j eTI(I(S)) corresponds to the Haar
measure on G(j).

We remark that it is easy to show by examples that the three conditions (i)
T e @ (ii) Te = K (iii) f € [I(I(S)) are independent of each other.

Theorem 8 together with Theorems 5 and 3 gives a complete intrinsic
characterization of the elements of II(P(S)). The next result describes the
structure of II(P(S)). The simple proof below was suggested by the referee.

Theorem 10. II(P(S))u{m} is a compact idernpotent semigroup with pv = m
(1 # v) and with discrete topology on TI(P(S)).

Proof. TI(P(S))u{m} is a closed subset of P(S) by (1), Lemma 2.2. Let
u, ve II(P(S)) with p 5 v. Then pv is idempotent, and uv = p(uv)u € {u, m}
as u is primitive. Similarly, yv € {v, m}. Hence uv = m. That II(P(S)) now
has the discrete topology is shown in (1), Lemma 2.3.

Given any (commutative) compact semigroup S, I(S) is a compact idem-
potent semigroup and its kernel is a single point, i.e. I(S) always has a zero
element, whereas S need not have a zero element.

Proposition 11. If S has a zero element, then TI(S) = II(I(S)).

Proof. Note that S and I(S) have the same zero element. Let jeI(S).
It is clearly sufficient to show that I(jS) = I(GI(S)). Let felI(jS). Then
S =i €I(GI(S)). The other inclusion is trivial and so the proof is complete.
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Corollary 12. If S has a zero element, there is a one-one correspondence
between II(S) and T1(P(S)), II(S)-TI(P(S)). In particular,

T(P(S))~TI(P(P(S)))-

Proof. Apply Corollary 9 and Proposition 1i. For the final statement,
recall that P(S) has zero element m.

We can add a little to Corollary 12 by describing the maximal subgroups
of P(S) that support a primitive idempotent measure. Glicksberg(3) has shown
that an arbitrary closed subgroup I' of P(S) consists of the G-translates of
Haar measure on H, where G is a closed subgroup of S and H a closed subgroup
of G. Ttisclear that I" is maximal if and only if G is maximal. Given u €II(P(S)
with supp unK =, it is then clear that G(u) = {u}. Given pu el(P(S))
with supp pc K, we see that G(u) consists of the K-translates of u and also
G(u) may be identified with K/supp p.

Remarks. (1) Theorem 8 remains true (with identical proof) under the
weaker hypothesis that S is a compact semigroup in which each idempotent
is central, and so, in particular, Theorem 8 holds for compact inverse semi-
groups. Theorem 10 also remains true if the idempotents of S are central and
K{(S) is commutative. Note from (1), Example 2.8 (iii) that if .S is the symmetric
group of order 3 then II(P(S))u{m} is not a subsemigroup of P(S). Hence
for an extension of Theorem 10 we need some restriction on K(S).

(2) Suppose now that S is a compact semigroup in which all the idempotents
of § commute with each other. Then again every simple subsemigroup of S
is a group and the idempotents of P(S) are Haar measures on compact sub-
groups of S. In Theorem 8 we have (ii)=(i), but (i)=-(ii) is false as the following
example shows. Let S be the 2x2 matrix semigroup consisting of the four
matrix units, the zero matrix, the identity matrix and the matrix

(i o
1 0/.
It is readily verified that S is a semigroup with zero in which I(S) is commutative

and
nasn={(5 o). (9}

However it is not difficult to check that the Haar measure u on the subgroup

o={o ) (o)

is a primitive idempotent measure. In fact II(P(S)) consists of p and the point
masses on TI(I(S)). Note that TI(P(S))u{m} fails to be a subsemigroup of
P(S).
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4. Some non-commutative cases

Let S be an arbitrary compact semigroup and let CTI(P(S)) denote the set
of central primitive idempotent measures on S. If the kernel K of S is not a
group, we easily deduce from Theorem 2 that CII(P(S)) = . For the rest
of this section we suppose that S is a compact semigroup whose kernel K is a
group. Recall that a subset E of S is normal if xE = Ex for each x € S. Choy
(1), Theorem 3.2 shows that the central idempotent measures on S are precisely
the Haar measures on compact normal subgroups of S. The theorem below
shows that the description of CII(P(S)) is closely related to the commutative
case. We need first a simple lemma.

Lemma 13. Let G be a normal subgroup of S and let jeI(S). Then jG isa
subgroup of S.

Proof. We note that j is central in G. In fact given xe G, there is y e G
with jx = yj and then jx = jxj and similarly xj = jxj. Let f be the identity of
G. Then jf'is an idempotent. Since jG = Gj we have jG = jGj and so

JGjG = jGGj = jGj = jG.
Thus jG is a semigroup with identity jf. Given x € G, we have x™'j € jG and
xx"j=jfi=Jf.
This completes the proof.

Theorem 14. Let u € I(P(S)), let T = supp p with TnK = (J, and let f be
the identity of T. Then the following statements are equivalent.

(i) 1 e CII(P(S));
(i) Te¥, Tisnormal, Te = K, (f Sf) = {/, e}.

Proof. Argue as in Theorem 8. For the proof of (1)=(ii) we need to use
Lemma 13 above, together with the fact that if j is central in T then é;u = pd;
and so é;u is idempotent.

Theorem 14 describes the elements of CII(P(S)) that are supported outside
the kernel K. The elements of CII(P(S)) that are supported in the kernel are
precisely the Haar measures on the maximal closed subgroups of K that are
normal in S.

Theorem 15. CII(P(S))u{m} is a compact idempotent semigroup with
uv = m (u # v) and with discrete topology on TI(P(S)).

Proof. Argue as in Theorem 10,

Now let S be a compact semigroup (whose kernel K is a group) such that
M,Ne#,M +# N, je [M)=jN = Nj. *
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Note that j is then central in N, and, by Proposition 7, the members of .# are
pairwise disjoint. Thus each simple subsemigroup of S is contained in a unique
maximal simple subsemigroup. In particular, the support of any idempotent
measure on S is contained in a unique maximal simple subsemigroup of S.
When M e # is a group with MnK = ¢ we make a convenient abuse of nota-
tion by writing II(P(M)) for the set consisting of the Haar measure on M.

Theorem 16. Let S satisfy (*), let uelI(P(S)) and let T = supp u with
TcMeH, TnK = . Then the following statements are equivalent.

(i) peII(P(S));
(ii) p e II(P(M)), Te = K, I(jSj) = {j, e} for each j € I(T).

Proof. (i)=>(ii). Let u eII(P(S)). Then u e II(P(M)), and, by Proposition
5, Te =K. Letjel(T), fe€l(jSj) and suppose f # e, f¢ M. Then fis central
in 7 and so pd; = d,u. Let p = ud, and then p® = p, up = pp = p. There-
fore f = jfesuppp. But uell(P(S)) gives p = m or p = u. This contra-
diction shows that I(jSj)c Mu{e}. If fe M, then f = jfjejMj = G(j) and so
S=1

(i))=(1). Let condition (ii) hold, let v € I(P(S)) with yv = vu = v and let
R = suppv. Then R is simple and there is N e # with RcN. If N =K,
then

R =TR>oTe=K

andsov=m. If N = M, thenv = psince u e[I{P(M)). Suppose finally that
NnMnK = . LetjeI(T). Thenjis central in R, and since RT = TR = R,
it follows that there is an idempotent in RnjSj. This contradiction completes
the proof.

As an illustration of Theorem 16, let R be the disjoint union of a family
{S:: A € A} of compact simple semigroups and let the union of the topologies
on the S, be a base for a topology on R. Then R is locally compact. Now let
S = Ru{0} with the topology of the one point compactification of R. Extend
the multiplications on the §; to a multiplication on S by defining all new
products to be 8. It is now easily checked that S is a compact semigroup. A
simple application of Theorem 16 gives

TI(P(S)) = U{TI(P(S,): A e A} = U{K(P(S)): AeA}.

The results of this paper indicate that the size of II(P(S)) reflects the degree
of non-commutativity of S. As the extreme example, let S be a compact space

with multiplication
xy=x (x,ye8)

Then S is a compact simple semigroup and P(S) has multiplication
w =pu (u,vepP(S)).
Therefore II(P(S)) = P(S).
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