
CHAPTER ONE

INTRODUCTION

1.1 NONLINEAR SOLID DYNAMICS

The nonlinear analysis of the mechanical behavior of solid continua can be catego-
rized in a number of ways. Solids may exhibit material or geometric nonlinearity.
In the former the constitutive behavior, that is, the stress-strain relationship will
be nonlinear and in the latter geometric changes, such as large rotations, affect the
behavior. In many situations, such as metal forming, both occur simultaneously. A
further category is whether the response of the solid to loading, be it forces or tem-
perature, is dynamic or static, or in other words time dependent or not, and to be
more precise whether inertial forces are relevant or can be ignored. In a previous
text entitled Nonlinear Solid Mechanics for Finite Element Analysis: Statics the
authors covered the fundamental nonlinear continuum mechanics necessary for the
development of the equilibrium equations and their eventual solution using finite
element discretization. The present text extends that development into the nonlin-
ear dynamic realm and, whereas it is reasonably self-contained, it is useful to have
an awareness of the material in the companion Statics text.

The dynamic response of solids may be linear or nonlinear. Linear response is
generally associated with small deformation vibration behavior about an equilib-
rium position where geometrically nonlinear effects are normally insignificant, but
not always, as in the case of a vibrating string in tension. Examples of dynamic
behavior that can be considered in the linear regime are the vibration of build-
ings under moderate earthquakes which do not take the structure anywhere near
its possible failure. Nonlinear dynamic behavior is characterized primarily by the
presence of large rotation in addition to possible large strain. For example, satellites
exhibit large rotation small strain behavior, whereas the collapse of, say, a building
due to an extreme earthquake or a high speed impact situation is the result of both
large rotation and large strain.
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2 INTRODUCTION

As the title implies, the solid continua are modeled in a discrete manner by an
assemblage of three-dimensional finite elements for which formulations are devel-
oped to represent the geometric and material behavior due to the motion of the solid
with respect to time as a result of various types of loading. In general the spatial
representation of the body in terms of finite elements is similar between dynamic
and static applications. The main difference emerges in relation to the introduction
of inertial forces due to the mass and acceleration of the body and the presence of
time as a key independent variable.

Time being the essential difference between static and dynamic behavior means
that procedures need to be devised in order to progress the motion of the solid as
time progresses. These procedures are generally known as time-stepping schemes
whereby the motion, that is, primarily the velocity and thence the position, are
discretized in time. This means that the motion between discrete time steps is
approximated in some way. A number of such time-stepping schemes are pre-
sented in this text, from the simple leap-frog scheme to more complex and general
Newmark schemes.

Fundamental to the description of dynamic behavior, linear or nonlinear, is New-
ton’s Second Law of Motion, giving a dynamic equilibrium equation relating force,
mass, and acceleration. Motion is progressed by determining the acceleration and
then using the time-stepping scheme to find the velocity and advance the position.
In mathematical terms this implies the solution of a second-order equation in time
by an appropriate time-stepping scheme.

An alternative approach presented in this text involves the reformulation of
the dynamic equilibrium of a solid into a system of first-order conservation laws
for the physical and geometric variables describing the solid and its motion.
This process leads to a mixed set of unknowns incorporating both velocities
and strains. Similar sets of conservation laws are used extensively in computa-
tional fluid dynamics and the discretization of such laws via the finite element
method is well understood and routinely applied. In this text both the tradi-
tional displacement-based approach, leading to a second-order system of equations
in time, and the first-order set of conservation laws will be presented to solve
solid dynamics problems. In the final chapters a number of examples will be
solved using both these approaches to demonstrate their validity and general
applicability.

The general aim of this book is to provide the reader with a good under-
standing of the necessary continuum mechanics concepts and theory required
to successfully model by finite elements the time-dependent large deformation
of solids, including possible thermal effects. It will cover important continuum
concepts such as virtual work, potential and kinetic energy, the Lagrangian, and
Hamilton’s principle, as well as thermodynamics and thermoelasticity. It will
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1.2 ONE-DEGREE-OF-FREEDOM NONLINEAR DYNAMIC BEHAVIOR 3

also present time-discretization issues such as energy and momentum conserv-
ing schemes and simplectic integrators or advanced finite element discretization
technologies such as Petrov–Galerkin methods for first-order conservation laws.
Although the authors have made every effort to keep the text self-contained, the
reader would benefit from some degree of familiarity with the contents of the com-
panion statics volume: Nonlinear Solid Mechanics for Finite Element Analysis:
Statics. This text will be referred to in the remainder of this book as the NL-Statics
Volume.

The remainder of this chapter sets out to provide a gentle introduction to non-
linear dynamic behavior via simple one- or two-degrees-of-freedom examples.
These examples are used to introduce simple time integration schemes such as
the leap-frog method or the mid-point rule and discuss important issues associ-
ated with these schemes such as stability, or to compare implicit versus explicit
methodologies.

1.2 ONE-DEGREE-OF-FREEDOM NONLINEAR
DYNAMIC BEHAVIOR

In this section the torsion spring supported single rigid column discussed in
Section 1.2.2 of NL-Statics is re-examined to demonstrate a simple example of
nonlinear dynamic behavior. In order to introduce inertial forces, the column sup-
ports a mass which is restrained by a linear elastic torsion spring and viscous
torsion damping at the bottom hinge, see Figure 1.1. The governing equations do
not admit an analytical solution and consequently a simple numerical “leap-frog”
integration in time will be introduced in order to obtain the behavior of the column
with respect to time.
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FIGURE 1.1 Simple column.
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4 INTRODUCTION

1.2.1 Equation of Motion

The column shown in Figure 1.1, where the angular motion of the mass m, from
an initial angle of θ0, is constrained by a torsion spring having stiffness k and, in
parallel, torsional viscous damping having a coefficient c. The effect of introducing
viscosity into the system will be demonstrated below. The torsion spring produces a
moment k(θ−θ0) which in turn is equivalent to a tangential force on the mass equal
to k(θ − θ0)/L. The viscous damping produces a similar force but now equal to
c θ̇/L, where θ̇ is the angular velocity. Elementary kinematics gives the tangential
and radial acceleration of the mass m in terms of θ̇ and the tangential acceleration
θ̈ as Lθ̈ and Lθ̇2, respectively.

Employing Newton’s Second Law of Motion the dynamic equilibrium equations
in the tangential and radial directions are

mL
d2θ

dt2
= mg sin θ − c

L

dθ

dt
− k

L
(θ − θ0), (1.1a)

mL

(
dθ

dt

)2

= T + mg cos θ. (1.1b)

Observe that the first of these equations is sufficient to determine the motion of
the column via the evaluation of θ(t), whereas the second equation enables the
calculation of the tension, T , in the column once the angle θ(t) and angular velocity
θ̇(t) have been obtained. The geometric nonlinearity in, for example, the first of the
above equations is enshrined in the tangential gravitational force term mg sin θ.

As mentioned above, unlike the static column example considered in NL-Statics
Section 1.2.2, the above equations do not readily admit an analytical solution and
have to be solved using a numerical time integration scheme which enables the
angular velocity θ̇(t) and hence the angular position θ(t) to be calculated after the
acceleration θ̈(t) has been found from Equation (1.1a). Numerous time integration
schemes exist and a number of these will be introduced in this book, but for now a
simple robust scheme known as leap-frog time integration will be employed.

1.2.2 Leap-Frog Time Integration

The column dynamic tangential equilibrium Equation (1.1a) can be rewritten to
give the tangential acceleration as

a =
g

L
sin(x)− c

mL2
v− k

mL2
(x−X); a =

d2θ

dt2
; v =

dθ

dt
; x = θ, (1.2)

where the notation for acceleration a, velocity v, and coordinate position x pro-
vide for a general description of the time-stepping scheme∗ that will be valid for
multiple-degree-of-freedom problems.

∗ For the column problem x = θ, v = θ̇, and X = θ0.
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FIGURE 1.2 Leap-frog time integration.

The time during which the motion takes place is now divided into a number of
equal time steps Δt, where a typical time is labeled n, see Figure 1.2. Using the
above acceleration a, assuming v and x to be known, an approximate integration
over a time step Δt can be employed to calculate the velocity at the half-time-step
tn+1/2 in terms of the previous half time step velocity and the time step Δt =
tn+1/2 − tn−1/2 as

vn+1/2 = vn−1/2 +
∫ tn+1/2

tn−1/2

a dt ≈ vn−1/2 + anΔt. (1.3)

Similarly the updated coordinates xn+1 are found using the velocity at the previous
half time step above to yield

xn+1 = xn +
∫ tn+1

tn

v dt ≈ xn + vn+1/2Δt. (1.4)

This process, illustrated in Figure 1.2, is an example of a staggered time-stepping
scheme.

Notice in Figure 1.2 that at the first time step n = 0 the velocity at v1/2 is
required to start the process. Given an initial velocity v0 and an initial acceleration
a0 calculated from Equation (1.2), v1/2 can be found using the approximation

v1/2 = v0 + a0
Δt

2
. (1.5)

Observe that, given the staggered nature of the scheme, unless the viscosity van-
ishes, that is c = 0, the velocity in Equation (1.2) is not generally known at time n

and needs to be taken at tn−1/2 in order to allow a direct or explicit evaluation of
the acceleration, an, at time n as

an =
g

L
sin(xn) − c

mL2
vn−1/2 −

k

mL2
(xn − X). (1.6)

The exception to this rule occurs at n = 0, when v0 is actually known from the
initial conditions, and hence a0 can be evaluated as†

a0 =
g

L
sin(x0) − c

mL2
v0 − k

mL2
(x0 − X). (1.7)

† x0 need not be equal to ; see Exercise 5 of Chapter 2.
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6 INTRODUCTION

It is clear that the replacement of vn by vn−1/2 in Equation (1.6) introduces an error
in the calculation of an. This can be avoided by using the correct vn expressed as
vn = vn−1/2 + (Δt/2)an to give an expression for an as

an =
g

L
sin(xn) − c

mL2

(
vn−1/2 +

Δt

2
an

)
− k

mL2
(xn − X). (1.8)

Consequently, an is now implicit in its own evaluation. For a one-degree-of-
freedom problem this is not a problem as it would suffice to move all terms
containing an to the left of the equation and divide the remaining right side by
the accumulated coefficient of an, to yield

an =
( g

L
sin(xn) − c

mL2
vn−1/2 −

k

mL2
(xn − X)

)
/
(
1 +

c

mL2

Δt

2
)
. (1.9)

Whereas Equation (1.6) is an explicit equation, Equation (1.8) is an implicit
equation requiring a solution for an. In the single-degree-of-freedom case, solving
Equation (1.9) is trivial, but for realistic simulations containing large numbers of
degrees of freedom k, c, and m are matrices, which leads to a system of equations
requiring solution. Generally, time-stepping schemes in which the variables can
be updated without solving systems of equations are known as explicit, whereas
schemes that require the solution of a system of equations are known as implicit,
and if this is required at every time step such schemes are computationally costly.

In comparison to an implicit scheme, the greater efficiency of an explicit scheme
would seem preferable; however, it will be seen later that they suffer from severe
limitations with respect to time-step size before producing grossly inaccurate solu-
tions. These time-step limitations are known as stability restrictions and will be
discussed in Section 1.3.3 below. Implicit time-stepping schemes are usually con-
structed in such a manner that avoids stability restrictions and consequently allow
much larger time steps to be used, albeit at greater cost per step. The leap-frog
algorithm is shown in Box 1.1. This explicit algorithm is of general applicability
and as a consequence does not include the correction implied by Equation (1.9).

BOX 1.1: Leap-frog algorithm

• INPUT geometry, material properties, and solution parameters
• INITIALIZE x0, v0

• SET a0 (1.7) using initial values
• SET v1/2 (1.5)
• DO WHILE t < tmax (time steps)
• SET x = x + vΔt (1.4)
• FIND a (1.6)

(continued)
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1.3 TWO-DEGREES-OF-FREEDOM EXAMPLE 7

Box 1.1: (cont.)

• SET v = v + aΔt (1.3)

• ENDDO

1.2.3 Column Examples

The following examples employ the leap-frog time integration discussed in Sec-
tion 1.2.2. In Figure 1.3 the viscous coefficient is c = 0 and in Figure 1.4 the
viscous coefficient is c = 650.‡ Both examples have an initial angle of θ0 = 45◦,
L = 10, m = 100, g = 9.81, k = 1000, Δt = 0.0001, and the initial tangential
velocity is v0 = 0. Allowing the time to extend to t = 200 reveals that the damped
solution converges to the static solution of θ ≈ 167.42◦.

1.3 TWO-DEGREES-OF-FREEDOM EXAMPLE

The spring-mass system shown in Figure 1.5 will be used to introduce the effects
of geometric nonlinearity in a dynamic situation. The internal force in the spring
is T and the spring has a stiffness k. At time t = 0 the orientation of the spring is
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FIGURE 1.3 Column leap-frog with θ0 = 45◦, c = 0: (a) Angle from θ0–time;

(b) Energy–time (pe = potential energy, se = elastic (strain) energy, ke = kinetic

energy, total energy).

‡ For this case the correction for an given by the last term in Equation (1.9) involving the viscosity c is negligible
and is not employed in the solution.
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FIGURE 1.4 Column leap-frog with θ0 = 45◦, c = 650: (a) Angle from θ0–time;

(b) Energy–time.
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FIGURE 1.5 Two-degrees-of-freedom example.

given by the unit normal N and the length is L, while at time t the orientation is
given by n(t) and the length is l(t). The unit vectors N and n(t) at time t = 0 and
t respectively are determined by the corresponding mass coordinates X and x(t)
as

X =
[

X1

X2

]
; N =

1
L

[
X1

X2

]
, (1.10a,b)

x(t) =
[

x1

x2

]
; n(t) =

1
l

[
x1

x2

]
; l =

√
(x · x). (1.10c,d,e)

Time derivatives of the coordinate x(t) give the velocity and acceleration as

v(t) =
[

v1

v2

]
; v(t) =

dx

dt
; a(t) =

[
a1

a2

]
; a(t) =

d2x

dt2
. (1.11a,b,c,d)
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1.3 TWO-DEGREES-OF-FREEDOM EXAMPLE 9

For simplicity the explicit dependency of quantities upon time will be removed,
for example, x(t) becomes x, etc. The internal spring force T and the vertical
gravitational force F are

T(x) = Tn; T = k(l − L); F =
[

0
−mg

]
. (1.12a,b)

Obviously, on Earth at least, g = 9.81 m/s2.

1.3.1 Equations of Motion

Employing Newton’s Second Law of Motion applied to the mass m at time t, the
equations of motion are written in terms of the acceleration a, internal force T, and
external force F as[

m 0
0 m

][
a1

a2

]
=

[
0

−mg

]
− T

l

[
x1

x2

]
or simply Ma = F − T(x).

(1.13a,b)

Equation (1.12a,b) reveals that the internal force T at time t is a function of
the length l and unit normal n, both being functions of the current position x
of the mass. Consequently, the equations of motion (1.13a,b) are geometrically
nonlinear. Such equations do not admit an analytical solution and have to be solved
numerically in the following section using the leap-frog scheme.

EXAMPLE 1.1: Energy conservation

The two-degrees-of-freedom spring-mass system described in this section is
a convenient example with which to illustrate the conservation of physical
quantities such as energy. The equilibrium Equation (1.13a,b) for the mass at
time t and position x can be rewritten as

ma + k(l − L)n = mg,

where

a =
dv

dt
; n =

x

l
; l = ‖x‖; g = −g

[
0
1

]
.

(continued)
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10 INTRODUCTION

Example 1.1: (cont.)

Multiplying the equilibrium equation by v and rearranging gives

ma · v + k(l − L)n · v + mg v2 = 0,

noting that

a · v =
1
2

d

dt
(v · v) =

1
2

dv2

dt
; v = ‖v‖; v2 =

dx2

dt
,

and

n · v =
x
l

· dx
dt

=
1
2

1
l

d

dt
(x · x) =

1
2

1
l

dl2

dt
=

dl

dt

gives, after some simple algebra,

d

dt

[
1
2
mv2 +

1
2
k(l − L)2 + mgx2

]
= 0.

The term in the square bracket is the total energy of the mass m comprising the
kinetic, elastic, and potential components, thus demonstrating the conservation of
total energy.

1.3.2 Leap-Frog Examples

Using the two-degrees-of-freedom formulation, the column problem given in Sec-
tion 1.2.3 can be rerun with a high linear spring constant of k = 105 to approximate
a rigid column. This is equivalent to the column case shown in Figure 1.1 with a
torsion spring constant of value zero. Figure 1.6 shows the results for the two-
degrees-of-freedom simulation. When comparing with Figure 1.3, note that due to
the presence of the torsion spring in Figure 1.3 the maximum angle is, as expected,
less than that given in Figure 1.6 where the torsion spring stiffness is necessarily
zero.

The next example is essentially a simple linear spring-mass problem with one
degree of freedom. In order to achieve this, the mass is constrained to move along
a fixed axis, as shown in Figure 1.7 (see also Exercise 2). This example will show
that for a stable implementation of the leap-frog solution the value of the time step
must be such that Δt < 2/ω where ω = (k/m)

1
2 . For a mass of unity and a

spring stiffness k = 1000, Figure 1.8 shows the leap-frog solutions for time step
Δt = 0.01/ω (solid plot) and Δt = 2.01/ω (dashed plot). For Δt < 2/ω the
solution is identical to that given analytically in Exercise 2, having a maximum
amplitude of (1 − cos(ωt)) = 2, whereas for Δt > 2/ω the numerical solution is
clearly unstable. More interesting examples will be reserved for Section 1.3.6.
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FIGURE 1.6 Column with torsion spring constant k = 0 as a 2 dof problem, linear

spring constant k = 105, θ0 = 45◦. (a) Motion; (b) Angle from θ0–time.
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FIGURE 1.7 Constrained spring-mass system.

1.3.3 Time Integration – Stability

The preceding example demonstrated the problem of the numerical stability of
the time integration scheme. This is generally complex to analyze for nonlinear
systems with multiple degrees of freedom but can readily be predicted in the case
of the single-degree-of-freedom system discussed above. In this case, when θ = 0
(see Figure 1.7), gravity is not effective, and thus, in the absence of the forcing
term, the dynamic equilibrium equation is simply

m
d2x

dt2
+ k x = 0; x = x1 − X1, (1.14a,b)

which has the analytical solution

x =
v0

ω
sin(ωt) + x0 cos(ωt); ω2 =

k

m
, (1.15a,b)
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FIGURE 1.8 Constrained spring mass, θ0 = 45◦ numerical stability.

where x0 and v0 are the initial displacement and velocity respectively. Integration
of Equation (1.14a,b) using the leap-frog method gives

vn+1/2 = vn−1/2 − Δt
k

m
xn, (1.16)

and

xn+1 = xn + Δtvn+1/2

= xn + Δt

(
vn−1/2 − Δt

k

m
xn

)
. (1.17)

The intermediate velocity vn−1/2 in the above equation can be eliminated by noting
that vn−1/2 = (xn − xn−1)/Δt to give, after some simple algebra, a difference
equation relating xn−1, xn, and xn+1 as

xn+1 − (2 − ω2Δt2)xn + xn−1 = 0; ω2 =
k

m
. (1.18)

This is the discrete version of the continuous differential Equation (1.14a,b) that
results from the use of the leap-frog integration scheme. The values of xn for n =
1, . . . , N can be predicted analytically by assuming a pattern of the type

xn+1 = Axn, xn = Axn−1, . . . , (1.19a,b)

where A is the amplification factor between contiguous steps. Substituting this
Equation (1.19a,b)a for xn+1 into Equation (1.18) and using Equation (1.19a,b)b
to express xn−1 in terms of xn gives, after dividing by xn, an equation for A as

A2 − (2 − ω2Δt2)A + 1 = 0, (1.20)
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which has solutions

A =
(

1 − ω2Δt2

2

)
±
√(

1 − ω2Δt2

2

)2

− 1. (1.21)

Note that for values of A such that |A| > 1 the solution xn will grow exponentially,
very much unlike the analytical solution which has an oscillating nature. This is
known as an unstable time integration process and must be avoided by adequate
choice of Δt. A simple inspection of Equation (1.21) shows that for small enough
values of Δt the discriminant is negative and the solution is therefore complex,
that is,

A =
(

1 − ω2Δt2

2

)
± i

√
1 −
(

1 − ω2Δt2

2

)2

. (1.22)

In such cases it is easy to show that |A| = 1 and the solution for xn exhibits a
similar oscillating behavior as the exact solution. The boundary between |A| = 1
and |A| > 1 is defined by the expression

1 −
(

1 − ω2Δt2

2

)2

≥ 0, (1.23)

which leads to the constraints

−1 ≤
(

1 − ω2Δt2

2

)
≤ 1. (1.24)

Simple algebra now gives the stability limit for Δt as

0 ≤ Δt ≤ 2
ω

. (1.25)

Values of Δt between these boundaries ensure that the numerical solution to Equa-
tion (1.14a,b)a is stable and “well behaved” in that it exhibits the oscillatory nature
of the analytical solution. However, it is worth emphasizing that the critical value
Δtcrit = 2/ω represents a rather large proportion of the natural period of vibration
T = 2π/ω of the system. In particular,

Δtcrit =
2
ω

=
2

2π/T
=

T

π
. (1.26)

Usually, in order for the numerical integration to follow accurately a sinusoidal
function in time, Δt should be in the region T/10 to T/20. Hence the critical time-
step limit for stability is well beyond the value that would be necessary to use to
achieve reasonable accuracy. This would seem to indicate that stability is not gen-
erally a problem. Recall, however, that the analysis carried out above only refers to
one-degree-of-freedom problems. Real situations have multiple degrees of freedom
and consequently assessing an adequate time step is much more complicated.
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For example, in the two-degree-of freedom-problem described in Section 1.3,
for high values of the spring stiffness k the motion will resemble the oscillation of
a mass pendulum with a much larger period of vibration than that given a spring-
mass system where the stiffness k is such that the spring can extend. In fact, even in
this simple example that ratio between the period of the (high k) pendulum oscilla-
tion and the spring-mass system can be several orders of magnitude. Unfortunately
the stability restriction will be constrained by the smaller of the two periods as

Δtcrit ≤ min

{
Tspring

π
;

Tpendulum

π

}
=

Tspring

π
. (1.27)

For a stiff spring with constant k this value can be many orders of magnitude
smaller than the time step required to follow accurately the pendulum motion,
which would be of the order of Tpendulum/20. Consequently, stability imposes very
small time steps in relation to the actual motion being integrated. Problems of this
nature, where the maximum and minimum natural vibration periods (or frequen-
cies) are many orders of magnitude apart, are known as “stiff” systems (in the sense
that the spring is very stiff in relation to the pendulum). However, this is not always
the case; for instance, in the two-degree-of-freedom problem above, if the spring
constant k is very low so that the ratio between the natural period of the spring and
pendulum is small then the system would not be stiff. Using time-stepping schemes
with stability restrictions of the type described in Equation (1.25) can result in the
need to carry out a very large number of time steps in order to advance the solution
over the time span required. It is therefore essential that each time step can be eval-
uated as quickly and efficiently as possible, ideally without the solution of a linear
or nonlinear system of equations.

Given that the time-step constraints for stiff problems can be computation-
ally onerous, the following section will present an example of an “implicit”
time-stepping scheme that avoids such restrictions but requires the solution of a
nonlinear system of equations at each time step.

1.3.4 Mid-Point Rule

In anticipation of the use of a Newton–Raphson solution technique, the equilibrium
Equation (1.13a,b)b is recast in terms of a residual force R(x, a) as

R(x, a) = M(a) + T(x) − F = 0. (1.28)

The mid-point rule scheme is an alternative time integration technique which,
despite appearing similar to the leap-frog scheme, emerges as an implicit scheme.
It is defined by the approximate integration of velocities and positions at time step
n + 1 as

vn+1 = vn + Δt an+1/2; xn+1 = xn + Δt vn+1/2, (1.29a,b)

https://doi.org/10.1017/9781316336083.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781316336083.002


1.3 TWO-DEGREES-OF-FREEDOM EXAMPLE 15

where an+1/2 is given from the equilibrium Equation (1.13a,b)b or (1.28) by

Man+1/2 = F − T(xn+1/2), (1.30a,b)

and, by definition, xn+1/2 and vn+1/2 are

xn+1/2 =
1
2
(xn + xn+1); vn+1/2 =

1
2
(vn + vn+1). (1.31a,b)

Inspection of Equation (1.30a,b) reveals that an+1/2 cannot be resolved explic-
itly since xn+1/2, which is a function of xn+1, is unknown. The terms an+1/2 and
xn+1/2 are linked by the time-stepping Equations (1.29a,b) and (1.31a,b), leading
to a system of equations that have to be solved implicitly. There are a number of
ways to approach this solution, but the most popular process splits the time step into
a predictor phase followed by a corrector phase. The predictor phase is based on
making a reasonable prediction of one of the two unknown variables, for instance
a

(0)
n+1/2 = an−1/2. This gives predictions for x and v as

v
(0)
n+1 = vn + Δt a

(0)
n+1/2; v

(0)
n+1/2 =

1
2
(vn + v

(0)
n+1), (1.32a,b)

x
(0)
n+1 = xn + Δt v

(0)
n+1/2; x

(0)
n+1/2 =

1
2
(xn + x

(0)
n+1). (1.32c,d)

A preliminary residual force R
(0)
n+1/2 as a function of the predicted values a

(0)
n+1/2

and x
(0)
n+1/2 can be calculated from Equation (1.28) as

R(x(0)
n+1/2, a

(0)
n+1/2) = Ma

(0)
n+1/2 + T(x(0)

n+1/2) − F. (1.33)

The corrector phase establishes a Newton–Raphson process to drive the above
residual to zero by incrementing the position and acceleration at iteration
step (k − 1) by Δxn+1/2 and Δan+1/2 to give

x
(k)
n+1/2 = x

(k−1)
n+1/2 + Δxn+1/2; a

(k)
n+1/2 = a

(k−1)
n+1/2 + Δan+1/2. (1.34a,b)

The corrector phase employs the iterative Newton–Raphson method which requires
the linearization of Equation (1.28) at iteration step (k−1) and time interval n+1/2
to give

R(x(k)
n+1/2, a

(k)
n+1/2) ≈ R (x(k−1)

n+1/2, a
(k−1)
n+1/2) + D(Ma

(k−1)
n+1/2)[Δan+1/2]

+ DT(x(k−1)
n+1/2)[Δxn+1/2] = 0. (1.35)

Since the mass matrix is constant the first directional derivative is simply
MΔan+1/2. However, the second directional derivative involving the internal force
T(x) is a function of the length l and the orientation given by the unit vector n,
both being a function of the position x at any iteration (k) time step n. This is
the source of the geometrically nonlinear nature of the problem. Consideration of
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this second directional derivative requires the increments in an+1/2 and xn+1/2 to
be linked through the mid-point rule given by Equations (1.29a,b) and (1.31a,b)
to give

xn+1/2 = xn +
Δt

2
vn +

Δt2

4
an+1/2; (1.36)

consequently, the increment Δxn+1/2 is given by the directional derivative

Δxn+1/2 = D(xn+1/2)[Δan+1/2] =
Δt2

4
Δan+1/2. (1.37)

Equation (1.35) is now rewritten in terms of the mass matrix M and a tangent
stiffness matrix K as

R(x(k)
n+1/2, a

(k)
n+1/2) ≈ R(x(k−1)

n+1/2, a
(k−1)
n+1/2) + MΔan+1/2

+K(x(k−1)
n+1/2) Δxn+1/2 = 0, (1.38a)

where the tangent stiffness matrix K, which is considered in Section 1.3.5 below,
is derived as

K(x(k−1)
n+1/2) Δxn+1/2 = DT(x(k−1)

n+1/2)[Δxn+1/2]. (1.38b)

Substituting for Δxn+1/2 from Equation (1.37) into Equation (1.38b) enables the
corrector phase of the mid-point algorithm to be established solely in terms of
Δan+1/2 to give[

M +
Δt2

4
K(x(k−1)

n+1/2)
]

Δan+1/2 = −R(x(k−1)
n+1/2, a

(k−1)
n+1/2). (1.39)

Solving the system of nonlinear Equations (1.39) enables the mid-point corrector
phase to be completed to yield the position xn+1 and velocity vn+1 as

a
(k)
n+1/2 = a

(k−1)
n+1/2 + Δan+1/2, (1.40a)

x
(k)
n+1/2 = x

(k−1)
n+1/2 +

Δt2

4
Δan+1/2, (1.40b)

x
(k)
n+1 = x

(k−1)
n+1 +

Δt2

2
Δan+1/2, (1.40c)

v
(k)
n+1 = v

(k−1)
n+1 + ΔtΔan+1/2. (1.40d)

The Newton–Raphson procedure involves repeated application of Equa-
tions (1.39) and (1.40) until the residual R(x, a) is less than a given tolerance. Note
that had the problem been geometrically linear then it would only be necessary
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1.3 TWO-DEGREES-OF-FREEDOM EXAMPLE 17

to apply these equations once. Once convergence is achieved the predictor phase,
given by Equation (1.32a,b), can be initiated for the next time step.

EXAMPLE 1.2: Discrete conservation of energy

Example 1.1 demonstrated the principle of conservation of energy for the
spring-mass system. It is possible to maintain the energy conservation prin-
ciple despite the use of time discretization when using certain types of time
integration such as the mid-point rule. However, this requires subtle mod-
ifications to the algorithm which are described below. To begin, using the
mid-point rule the equilibrium Equation (1.13a,b) at time tn+1/2 can be
expressed as

man+1/2 +
k(ln+1/2 − L)

ln+1/2
xn+1/2 = mg,

where

an+1/2 =
vn+1 − vn

Δt
; xn+1/2 =

1
2
(xn+1 + xn); ln+1/2 = ‖xn+1/2‖.

Multiplying the discrete “mid-point” equilibrium equation by vn+1/2 =
1
2(vn+1 + vn) = (xn+1 − xn)/Δt gives

1
2Δt

m(vn+1 · vn+1 − vn · vn) + k
(ln+1/2 − L)

ln+1/2

1
2Δt

(xn+1 · xn+1

−xn · xn) +
1

Δt
mg(x2,n+1 − x2,n) = 0.

Multiplying the above equation by Δt, and after some simple algebra, gives(
1
2
mv2

n+1 −
1
2
mv2

n

)
+

1
2
k
(ln+1/2 − L)

ln+1/2
(ln+1 + ln)(ln+1 − ln)

+ mg(x2,n+1 − x2,n) = 0.

The first and last terms in the preceding equation give the change in the
kinetic and potential energies. In order to transform the center term into a
change of elastic energy, it is necessary to evaluate ln+1/2 as (ln+1 + ln)/2
rather than ‖xn+1/2‖. In this case the elastic term becomes

1
2
k
(ln+1/2 − L)

ln+1/2
(ln+1 + ln)(ln+1 − ln)

=
1
2
k
((ln+1 + ln)/2 − L)

(ln+1 + ln)/2
(ln+1 + ln)(ln+1 − ln)

(continued)
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Example 1.2: (cont.)

=
1
2
k
[
(ln+1 − L) + (ln − L)

][
(ln+1 − L) − (ln − L)

]
=

1
2
k(ln+1 − L)2 − 1

2
k(ln − L)2.

Hence the discrete equilibrium equation implies the conservation of total energy as

1
2
mv2

n+1 +
1
2
k(ln+1 − L)2 + mgx2,n+1

=
1
2
mv2

n +
1
2
k(ln − L)2 + mgx2,n.

Note that the evaluation of ln+1/2 as the average between ln and ln+1 will coincide
with its evaluation as ‖xn+1/2‖ when there is no rotation between xn and xn+1. In
more general cases, like the one shown in the figure below, this will not be exactly
the case. For very small time steps, the differences, however, are minimal. Neverthe-
less, obtaining ln+1/2 as the average ensures that energy is conserved and can have
a beneficial effect in terms of the stability of the solution when large time steps are
used. Since the average length is obtained under the assumption that the configura-
tions at n and n+1 are aligned, this formulation is sometimes called “co-rotational”
by some authors.

xn
xn+1/2

xn+1

(ln+1+ln)
1
2

1.3.5 Tangent Stiffness Matrix

In order to determine the directional derivative in Equation (1.38b) it is necessary
to find the linearization of a number of geometrical descriptors. For notational con-
venience and in recognition that the increment in mid-time-step acceleration given
by Equation (1.37) represents a displacement, let Δxn+ 1

2
= u. Linearization is

provided by the directional derivative for any position x as
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1.3 TWO-DEGREES-OF-FREEDOM EXAMPLE 19

D(x)[u] =
d

dε

∣∣∣∣
ε=0

(x + εu) = u; u =
[

u1

u2

]
. (1.41)

A further example is the directional derivative of the length l2 at time t, given as

Dl2(x)[u] =
d

dε

∣∣∣∣
ε=0

(x + εu) · (x + εu)

=
d

dε

∣∣∣∣
ε=0

x · x + 2εu · x + ε2 · u

= 2u · x. (1.42)

The above equation can now be used to find the directional derivative of l as
follows:

Dl2(x)[u] = 2lDl(x)[u]. (1.43)

Substituting Equation (1.42) into equation yields

Dl(x)[u] = n · u. (1.44)

The directional derivative D(l−1)[u] can now be found as

Dl−1(x)[u] = −l−2Dl(x)[u] = −l−2n · u. (1.45)

Finally, the development of the tangent stiffness K requires the directional deriva-
tive of the unit normal n given in Equation (1.10c,d,e)d. Observe that n is a
function of l which itself is a function of x. The directional derivative of n is found
as

Dn(x)[u] = D
(x

l

)
[u]

= xDl−1(x)[u] +
1
l
Dx[u]

= − 1
l2

(n · u)x +
u

l

= −1
l
(n · u)n +

u

l
. (1.46)

The tangent stiffness K(x) can now be found using Equations (1.12a,b)a, (1.35),
(1.44), and (1.46) as

DT(x)[u] = D
(
Tn(x)

)
[u]

= kD(l − L)[u]n + TD
(
n(x)
)
[u]

= k(n · u)n − T
1
l
(n · u)n + T

u

l
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=

[(
k − T

l

)
(n ⊗ n)2×2 +

T

l
I2×2

]
u

= K(x)u, (1.47)

where the tangent stiffness is

K(x) =

[(
k − T

l

)
(n ⊗ n)2×2 +

T

l
I2×2

]
. (1.48)

1.3.6 Mid-Point Rule Examples

It is expected that the implicit mid-point time integration should be able to produce
reliable results using a much larger time step than the leap-frog explicit scheme for
the same accuracy. For m = 10, x(0) = [5, 5]T , c = 0, and k = 50 000 Figures 1.9
and 1.10 show that the mid-point scheme, with a time step Δt = 0.1, produces the
same results as the leap-frog scheme, with a time step Δt = 0.02. In both cases the
high spring stiffness results in a predictable circular motion.

Furthermore, a correct formulation of a Newton–Raphson iterative solution
should result in quadratic convergence of the residual norm. For the two-degrees-
of-freedom spring-pendulum system this is clearly demonstrated in Figure 1.11.

In Example 1.2 it was shown that, in order to conserve energy for the spring
pendulum simulation, it was necessary to calculate the length of the spring as
ln+1/2 = (ln+1 + ln)/2 as opposed to the more obvious ‖xn+1/2‖. Figure 1.12
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FIGURE 1.9 Spring-pendulum, mid-point, Δt = 0.1, m = 10, k = 50 000: (a) Motion;

(b) Energy–time.
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FIGURE 1.10 Spring-pendulum, leap-frog, Δt = 0.02, m = 10, k = 50 000: (a) Motion;

(b) Energy–time.
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FIGURE 1.11 Mid-point integration: quadratic convergence for time t = 15.

shows the result of using the two alternatives, where it is clear that the average
approach maintains the energy. It should be noted that, although the Newton–
Raphson procedure converged, the algorithm used the tangent stiffness matrix
given by Equation (1.48). However, this is not exactly correct since Equation (1.48)
employed the directional derivative given by Equation (1.44), that is, D(l)[u] and
not D((ln+1 + ln)/2))[u].

Finally, Figure 1.13 shows a less predictable mid-point simulation with a time
step of Δt = 0.1 and where the lower stiffness k = 50 results in a somewhat
chaotic motion. The length calculation given in Example 1.2 is used, which makes
the total energy remain constant. The mid-point algorithm is shown in Box 1.2.
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FIGURE 1.12 Spring-pendulum, mid-point, alternative length calculations: Δt = 0.1,
m = 10, k = 50 000.
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FIGURE 1.13 Spring-pendulum, mid-point (with energy conserving modified length

formula ln+1/2 = (ln + ln+1)/2), Δt = 0.1, m = 10, k = 50: (a) Motion (tmax = 50); (b)
Energy–time (tmax = 15).

For the two-degrees-of-freedom spring-pendulum the leap-frog and mid-point
rule MATLAB programs are presented at the end of the chapter in Boxes 1.3
and 1.4 respectively. Observe that in the leap-frog program energy calculation the
velocity is adjusted as v − adt/2 to ensure that the displacement and velocity are
synchronized to the same time step.
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BOX 1.2: Mid-point algorithm

• INPUT geometry x, initial velocity v, material properties m and k,
and solution parameters

• INITIALIZE vn+1/2 = v, an+1/2 = 0
• WHILE t < tmax (time steps)

• PREDICT v, vn+1/2, x, and xn+1/2 (1.32a–d)
• DO WHILE (‖R‖/‖F‖ > tolerance)
• FIND T (1.12a,b)
• FIND R (1.39)
• SOLVE (M + K)Δa = −R (1.39)
• CORRECT ak

n+1/2, xk
n+1/2, xk

n+1, vk
n+1 (1.40a–d)

• SET xk
n+1 = xk−1

n+1

• (FIND kinetic, strain, and potential energies)
• ENDDO

• ENDLOOP

Exercises

1. For the column problem given in Section 1.2.3, devise a numerical procedure
to show that the static solution is θ ≈ 167.42◦.

2. For the constrained spring-mass system shown in Figure 1.7,
(a) show that the equations of motion are

ma1 + k(x1 − X1) = −mg cos θ sin θ,

ma2 + k(x2 − X2) = −mg sin2 θ;

(b) for the initial conditions x = X and velocity v = 0 show that the solution
to the above equations, in terms of the angular frequency ω, is

x1(t) = X1 + ustatic
1 (1 − cos(ωt)),

x2(t) = X2 + ustatic
2 (1 − cos(ωt)),

where ω = (k/m)
1
2 and the static displacements are

ustatic
1 =

−mg cos θ sin θ

k
,

ustatic
2 =

−mg sin2 θ

k
.
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3. (a) Referring to Example 1.2, show that the tangent stiffness matrix for
the case when the length is calculated at the average ln+1/2 = (ln+1 +
ln)/2 is

K̄(xn+1/2) =
[(

k − T

ln+1/2

)
(n ⊗ m)2×2 +

T

ln+1/2
I2×2

]
,

where T = k(ln+1/2 − L), n = xn+1/2/ln+1/2, and m = xn+1/ln+1.

(b) Change the mid-point program to incorporate ln+1/2 = (ln+1+ln)/2 and
K̄(x), and confirm that the total energy is constant and that convergence
is quadratic.

BOX 1.3: Leap-frog time integration

function SpringpendulumLeapFrog
%Leap Frog time integration
%–––––––––––––––––––––––-
clear;clf;clc;cla;whitebg(’white’);
% mass coords
x=[5;5];L=norm(x);xprev=x;
% initial velocities and accelerations
v=[0;0];vprev=v;ahalf=[0;0];
% rod stiffness, mass,force
springK=50000;mass=10;g=[0;-9.81];
M=[mass,0;0,mass];F=M*g;
% control data
tmax=30;dt=0.02;t=0;count=0;
% start velocity
a=accel(x,L,F,M,springK);
v=v+a*dt/2;
%time loop
while t<tmax

count=count+1;
% leap frog time integration

x=x+v*dt;
a=accel(x,L,F,M,springK);
v=v+a*dt;

% update time, data for output
t=t+dt;
tt(count)=t;xx(count)=x(1);yy(count)=x(2);

% energy calculation
l=norm(x);vel=norm(v-a*dt/2);
ke(count)=0.5*mass*vel^2;
se(count)=0.5*springK*(L-l)^2;
pe(count)=mass*-x’*g;
energy(count)=(ke(count)+se(count)+pe(count));

end
% Graphics

plot(0,0,’+r’); hold on

(continued)
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Box 1.3: Leap-frog time integration (cont.)

plot(xx,yy,’LineWidth’,1,’Color’,’k’);
axis square;xlabel(’x(1)’);ylabel(’x(2)’);
axis([-8, 8, -8, 8]);grid on

end
function a=accel(x,L,F,M,springK)
%geometry
l=norm(x);n=x/l;
Fint=springK*(l-L);
T=Fint*n;
%accelerations
a=M\(F-T);
end

BOX 1.4: Mid-point time integration

% Mid-point time integration
%–––––––––––––––––––––––-
clear;clf;clc;cla;whitebg(’white’);
% mass coords
x=[5;5];L=norm(x);xprev=x;
% initial velocities and accelerations
v=[0;0];vprev=v;ahalf=[0;0];
% rod stiffness, mass,force
springK=50;mass=10;g=[0;-9.81];
M=[mass,0;0,mass];F=M*g;
% control data
tmax=30;dt=0.1;t=0;count=0;
cnorm=1e-6;miter=50;
% time loop
while t<tmax

t=t+dt;rnorm=10^6;
count=count+1;niter=0;

% predictor
v=vprev+dt*ahalf;vhalf=(vprev+v)/2;
x=xprev+dt*vhalf;xhalf=(xprev+x)/2;

% corrector
while ((rnorm>cnorm)&&(niter<miter))
niter=niter+1;

% residual
% find length

l=norm(xhalf);n=xhalf/l;
Fint=springK*(l-L);T=Fint*n;
resid=M*ahalf+T-F;rnorm=norm(resid);

%’stiffness’
Ka=M+0.25*dt*dt*((springK-Fint/l)*(n*n’)...

+ (Fint/l)*eye(2));
da=-Ka\resid;

% update

(continued)
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26 INTRODUCTION

Box 1.4: Mid-point time integration (cont.)

ahalf=ahalf+da;
xhalf=xhalf+0.25*dt*dt*da;
x=x+0.5*dt*dt*da;
v=v+dt*da;

end
xprev=x;vprev=v;
tt(count)=t;xx(count)=x(1);yy(count)=x(2);

% energy calculation
l=norm(x);vel=norm(v);
ke(count)=0.5*mass*vel^2;
se(count)=0.5*springK*(L-l)^2;
pe(count)=mass*-x’*g;
energy(count)=(ke(count)+se(count)+pe(count));

end
% graphics

plot(0,0,’+r’); hold on
plot(xx,yy,’LineWidth’,1,’Color’,’k’);
axis square;xlabel(’x(1)’);ylabel(’x(2)’);
grid on
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