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Abstract

By using methods of subordinacy theory, we study packing continuity properties of spectral measures of
discrete one-dimensional Schrödinger operators acting on the whole line. Then we apply these methods
to Sturmian operators with rotation numbers of quasibounded density to show that they have purely
α-packing continuous spectrum. A dimensional stability result is also mentioned.
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1. Introduction
We are interested in packing dimensional properties of spectral measures for discrete
Schrödinger operators H, in l2(Z), of the form

(Hψ)(n) = ψ(n + 1) + ψ(n − 1) + V(n)ψ(n), (1.1)

with (real) potentials V = {V(n)}. First, we extend some results from (the partial)
packing subordinacy theory for one-dimensional operators on the half-line [3] to the
whole-line case. This was initially proposed to provide information about packing
dimensional properties of spectral measures and it was an adaptation of the (Hausdorff)
power-law subordinacy introduced by Jitomirskaya and Last in [14, 15]. We refer to
the latter as Hausdorff subordinacy theory.

The fractal (that is, Hausdorff and packing) subordinacy theories are generalizations
of the subordinacy theory, introduced by Gilbert and Pearson in [10, 11] (see [17]
for an adaptation to discrete operators). All of them exploit the relation between the
asymptotic behavior of the solutions to the eigenvalue equation

(Hψ)(n) = Eψ(n) (1.2)
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and the spectral nature of the operator H. The idea is to use the existence of subordinate
or power-law subordinate solutions to (1.2) to investigate the standard decomposition
of a spectral measure into its point part, absolutely singular continuous and absolutely
continuous.

The general idea of this work is based on the fact that one can obtain results
on packing dimension similarly to results on Hausdorff dimension using power-law
subordinacy and interchanging liminfs and limsups. Some arguments are simple
adaptations of existing ones, but others need additional care. Furthermore, by adapting
them to the packing setting, we are able to say something about Sturmian operators
with frequencies not covered in the Hausdorff case (see Theorem 1.5).

Fix E ∈ R, ϕ ∈ (−π/2, π/2], and denote by u1,ϕ,E and u2,ϕ,E the solutions to (1.2)
which satisfy the initial conditions{

u1,ϕ,E(0) = −sinϕ, u2,ϕ,E(0) = cosϕ,
u1,ϕ,E(1) = cosϕ, u2,ϕ,E(1) = sinϕ. (1.3)

A solution ψ to (1.2) is called subordinate at +∞ if

lim
L→∞

‖ψ‖L
‖Φ‖L

= 0

holds for any linearly independent solution Φ to (1.2); here, ‖ · ‖L denotes the norm
truncated at L ∈ R ([L] is the integral part of L), that is,

‖ψ‖L =

[ [L]∑
n=1

|ψ(n)|2 + (L − [L])|ψ([L] + 1)|2
]1/2

;

the subordinacy of a solution ψ at −∞ is defined analogously.
Given α ∈ (0, 1], a solution ψ to (1.2) is called α-Hausdorff (packing) subordinate

at +∞ if
lim inf(lim sup)L→∞

‖ψ‖L

‖Φ‖
α/(2−α)
L

= 0

holds for any other linearly independent solution.
In particular, the α-Hausdorff (packing) continuous part of the spectral measure

is supported on the set of energies E for which (1.2) does not have α-Hausdorff
(respectively, packing) subordinate solutions at −∞ or at +∞, and its α-Hausdorff
singular part is supported on the set of energies E for which u1,ϕ,E is an α-Hausdorff
subordinate solution at both ±∞ (note the absence of a characterization of the
corresponding α-packing singular part; see below).

The possible existence of power-law bounds of the form [5, 6, 15]

C1Lγ1 ≤ ‖u‖L ≤ C2Lγ2 , (1.4)

for positive constants C1(E),C2(E), γ1, γ2 and every solution u (with normalized
initial conditions (NIC), that is, |u(0)|2 + |u(1)|2 = 1) to the generalized eigenvalue
equation (1.2) implied the nonexistence of α-Hausdorff subordinate solutions at +∞

(similarly at −∞), with α = 2γ1/(γ1 + γ2).
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In the following theorem we present a natural version of such a tool to prove the
lack of α-packing subordinate solutions for some fixed energy E; its proof appears at
the end of Section 2.

Theorem 1.1. Let σ(H) be the spectrum of H and let µφ be the spectral measure of the
pair (H, φ), with φ ∈ l2(Z). Suppose that there are constants τ1, τ2 and a subsequence
L j → ∞ such that, for each E ∈ σ(H), every solution to (1.2) with NIC obeys the
estimates

C1Lτ1
j ≤ ‖u‖L j ≤ C2Lτ2

j , (1.5)

where C1 = C1(E),C2 = C2(E) are suitable positive constants. Then H has purely
α-packing continuous spectrum, with α = 2τ1/(τ1 + τ2), that is, for any φ ∈ l2, µφ is
purely α-packing continuous.

Remark 1.2. Similarly to [6, Remark 2], there is an analogous left half-line version
of the previous result. If one is able to establish power-law bounds (1.5) on the
restriction of the operator to the right half-line, then the resulting α-packing continuity
is independent of the potential on the left half-line. In this sense, the most packing
continuous half-line dominates and bounds the dimensionality of the whole-line
problem from below.

We apply Theorem 1.1 to the family {Hλ,θ,ρ} of operators (1.1) with almost periodic
Sturmian potentials

V(n) = Vλ,θ,ρ(n) = λχ[1−θ,1)(nθ + ρmod 1), n ∈ Z,

with coupling constant 0 , λ ∈ R, irrational rotation number θ ∈ [0, 1) and (initial)
phase ρ ∈ [0, 1).

Recall that any irrational θ ∈ [0, 1) has an infinite continued fraction expansion

θ =
1

a1 + 1
a2+ 1

a3+···

= [0; a1, a2, . . .], (1.6)

with uniquely determined an ∈ N. The associated rational approximants pn/qn are
obtained from

p0 = 0, p1 = 1, pn = an pn−1 + pn−2,

q0 = 1, q1 = a1, qn = anqn−1 + qn−2.

Definition 1.3. Let θ ∈ [0, 1) be an irrational number and (1.6) its continued fraction
expansion. Then θ is said to be a number of bounded (quasibounded) density if

lim sup(lim inf)n→∞
1
n

n∑
i=1

ai <∞.

Remark 1.4. The set of quasibounded density numbers is uncountable, but has
Lebesgue measure zero (see [18, page 93]). We have found that the (rather natural)
proposal of the concept of ‘quasibounded density’ is the convenient one in the packing
setting.
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Theorem 1.5. Let θ be an irrational number of quasibounded density. Then, for every
λ , 0, there exists α = α(λ, θ) > 0 so that, for every φ ∈ l2(Z), the spectral measure of
the pair (Hλ,θ,ρ, φ) is purely α-packing continuous.

In [16, Theorem 8], the authors proved that if

β(θ) := lim sup
n→∞

log(qn+1)
qn

> 0

and ρ is θ-Diophantine (that is, there exist γ > 0, τ > 1 such that, for each m ∈ Z,
‖ρ + mθ‖R/Z ≥ γ/(|m| + 1)τ), then for every φ ∈ l2(Z), the spectral measure of the
pair (Hλ,θ,ρ, φ) is purely 1-packing continuous. We note that the hypotheses used in
the proofs of our Theorem 1.5 and [16, Theorem 8] are different. Namely, if β(θ) > 0,
then θ is not necessarily a number of quasibounded density and vice versa. Moreover,
in Theorem 1.5, there is no restriction on the value of the real number ρ.

It is well known [5, 6, 15] that each operator Hλ,θ,ρ, with coupling constant
0 , λ ∈ R, irrational rotation number of bounded density θ ∈ [0,1), and phase ρ ∈ [0,1),
has purely αH-Hausdorff continuous spectrum (and that σ(Hλ,θ,ρ) has zero Lebesgue
measure) for some αH ∈ (0, 1), with αH = 2γ1/(γ1 + γ2), where γ1 = γ1(θ, λ) ≥ 0, γ2 =

γ2(θ, λ) > 0 satisfy relation (1.4).
Since (1.4) is a particular instance of (1.5), a bounded density rotation number also

implies α-packing continuity of the spectral measure of the operator Hλ,θ,ρ, and here
we will get the additional information α > αH (see Remark 3.7 in Section 3).

We are also interested in the extension, to this packing setting, of the spectral
Hausdorff dimensional stability results presented in [1]. In this direction we have the
following result.

Corollary 1.6. Let θ be an irrational number of bounded density and γ1, γ2 as in (1.4).
Then, for every ρ ∈ [0, 1) and for large λ, the singular continuous component of each
spectral measure of the operator

(HP
λ,θ,ρψ)(n) := (Hλ,θ,ρψ)(n) + P(n)ψ(n), ψ ∈ l2(Z), (1.7)

with the perturbation P satisfying |P(n)| ≤ C(1 + |n|)−p, for all n ∈ Z, some C > 0
and p > 3γ2 − γ1, when it exists, is also purely α-packing continuous.

Remark 1.7. We note that a proof of Corollary 1.6 follows directly by [1,
Theorem 1.1], since the packing dimension is larger than the Hausdorff dimension.
However, we provide a specific proof below since the α obtained is now larger than
that from [1, Theorem 1.1]. See details in Remark 3.7.

Remark 1.8. We emphasize that under certain perturbations no singular continuous
component may be present, as is the case for rank-one perturbations of operators with
singular continuous spectrum of zero Lebesgue measure (this follows directly from
results due to Simon and Wolff [26]). However, if the perturbed operator (1.7) has
some singular continuous component, then the property of α-packing continuity of the
spectral measure of this operator is preserved.
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Remark 1.9. We also obtain the stability of spectral packing dimensional properties
for some classes of sparse operators, that is, we obtain packing versions of
[1, Theorem 1.2] (see Section 4 for details).

The organization of this paper is as follows. In Section 2, part of the subordinacy
theory is recalled and the proof of Theorem 1.1 is presented. Section 3 is devoted to
the proof of Theorem 1.5, after recalling some of the basics of Sturmian potentials.
Some packing stability results of operators of the form (1.1), under suitable power
decaying perturbations, are discussed in Section 4. For the reader’s convenience, some
definitions and concepts regarding Hausdorff and packing measures are recalled in
Appendix A.

2. Subordinacy theory

Let us recall some important results of subordinacy theory and use them in order to
obtain information about the spectral packing dimensional properties of (1.1). In what
follows, we adopt the same strategy presented in [15].

The study of the spectral measure of an operator given by (1.1) is related to the
study of the Weyl–Titchmarsh m-functions. For each such whole-line operator H,
consider two operators, denoted by H±, which correspond to the restrictions of (1.1) to
l2(Z±), respectively, where Z+ = {1, 2, . . .} and Z− = {0,−1,−2, . . .}. For each z ∈ C\R,
let ψ±(n; z) be the unique solutions to

Hψ± = zψ±, satisfying ψ±(0; z) = 1 and
∞∑

n=0

|ψ±(±n; z)|2 <∞.

With this notation, the m-functions are given, for every z ∈ C\R, by

m+(z) = 〈δ1|(H+ − z)−1δ1〉 = −ψ+(1; z)/ψ+(0; z),
m−(z) = 〈δ0|(H− − z)−1δ0〉 = ψ−(1; z)/ψ−(0; z),

where δ j = (δi j)i≥1. We note that for the whole-line case, the m-function is a matrix-
valued function M(z) so that[

a b
]

M(z)
[
a
b

]
= 〈(aδ0 + bδ1)|(H − z)−1(aδ0 + bδ1)〉,

or, more explicitly (omitting the z dependence),

M =
1

−m+ − m−

[
1 m+

m+ −m+m−

]
.

Let m(z) = tr(M(z)), that is, the trace of M. These definitions relate the m-functions
to resolvents, and hence to spectral measures. Explicitly, one has

m±(z) =

∫
1

t − z
dµ±(t),

m(z) =

∫
1

t − z
dµ(t),
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with µ+ and µ− respectively representing spectral measures of the pairs (H+, δ1),
(H−, δ0), and with µ = µ+ + µ−, that is, the sum of the spectral measures of the pairs
(H+, δ1) and (H−, δ0). Note that the pair of vectors {δ0, δ1} is cyclic for H.

It was shown in [14] that

(D
α
µ)(E) =∞ ⇔ lim sup

ε→0
ε1−α|m(E + iε)| =∞,

whereas for the inferior derivative one may only conclude that

(Dαµ)(E) =∞ ⇒ lim inf
ε→0

ε1−α|m(E + iε)| =∞. (2.1)

There is a mistake in the discussion in [3] (in Theorem 14 there) and currently
one guarantees that only the implication in (2.1) holds true (there is no proof or
counterexample to the converse statement). However, we emphasize that (2.1) is
exactly what we need in this work.

These results, together with Remark A.7, show that the study of the dimensional
spectral properties of Schrödinger operators (1.1) can sometimes be reduced to the
study of the behavior of m(E + iε) as ε→ 0, which in turn reduces to the study of the
behavior of m±(E + iε) as ε→ 0.

Given an operator H of the form (1.1) and E ∈ R, let u±1,ϕ,E and u±2,ϕ,E be the
solutions to (1.2), defined in Z±, satisfying (1.3). Now, given ε > 0, define the lengths
L(ε)± ∈ (0,∞) by

‖u±1,ϕ,E‖L(ε)±‖u±2,ϕ,E‖L(ε)± =
1
2ε
. (2.2)

By the constancy of the Wronskian (namely, W[u±1,ϕ,E , u±2,ϕ,E] = 1), at most one
of the solutions u±1,ϕ,E , u±2,ϕ,E belongs to l2(Z±), the functions L(ε) are well defined
by (2.2), and L(ε)→∞ as ε→ 0 (see [15]).

As a consequence of the Jitomirskaya–Last inequality [14, Theorem 1.1], we have
the following results that connect Hausdorff and packing continuity of the spectral
measure of H to the scaling behavior of the (generalized) eigenfunctions of H.

Theorem 2.1 [14, Theorem 1.2] and part of [3, Theorem 14]. Let H be defined by the
action (1.1) in l2(Z+), and let µ denote the spectral measure of H associated with the
cyclic vector δ1. Let E ∈ R and α ∈ (0,1). Then, for any ϕ ∈ (−π/2, π/2], (D

α
µ)(E) =∞

holds if and only if

lim inf
L→∞

‖u1,ϕ,E‖L

‖u2,ϕ,E‖
α/(2−α)
L

= 0,

and (Dαµ)(E) <∞ holds if

lim sup
L→∞

‖u1,ϕ,E‖L

‖u2,ϕ,E‖
α/(2−α)
L

> 0.

Theorem 2.1 provides a tool for the analysis of the dimensional properties of some
spectral measures of Schrödinger operators.
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Lemma 2.2. Pick E ∈ σ(H), and suppose that there exists a sequence L j→∞ such that
every solution to (H − E)u = 0 with NIC obeys the estimate

C1Lτ1
j ≤ ‖u‖L j ≤ C2Lτ2

j ,

where C1,C2, τ1, τ2 are positive constants. Then, there exist a positive constant C3 and
a sequence ε j → 0 such that, for α = 2τ1/(τ1 + τ2),

|m(E + iε j)| =
∣∣∣∣∣m+(E + iε j)m−(E + iε j) − 1

m+(E + iε j) + m−(E + iε j)

∣∣∣∣∣ ≤ C3ε
α−1
j .

Consequently, µ is α-packing continuous.

Proof. The proof of Lemma 2.2 traces the same steps of the proof of [6, Theorem 4
and Corollary 2.1], with simple adaptations. We conclude from Theorem 2.1 and (2.1)
that µ is α-packing continuous. �

Proof of Theorem 1.1. It follows from hypothesis (1.5) and Lemma 2.2 that µ is α-
packing continuous. The result is a consequence of the fact that µφ � µ. �

3. Spectral packing continuity for Sturmian operators

In this section we present the proof of Theorem 1.5, but first we recall some basic
properties of the Sturmian potentials. Let us fix a rotation number θ and let (an) be the
sequence of coefficients in its continued fraction expansion (1.6). Define the words S n
over the alphabetA = {0, λ} (with 0 , λ ∈ R fixed) by

S −1 = λ, S 0 = 0, S 1 = S a1−1
0 S −1, S n = S an

n−1S n−2, n ≥ 2. (3.1)

In particular, the word S n has length qn for each n ≥ 0. For each potential of the form
Vλ,θ,ρ(n) = λχ[1−θ,1)(nθ + ρ mod 1), with 0 , λ ∈ R, θ ∈ [0, 1) an irrational number and
ρ ∈ [0, 1), it is possible to select a sequence (an) so that the potential is recovered
through (3.1) (see [2, 6, 7] for more details).

Fix E ∈ R; then, for each w = w1 . . .wn ∈ A
n, the transfer matrix M(E,w) is defined

as

M(E,w) =

(
E − wn −1

1 0

)
· · ·

(
E − w1 −1

1 0

)
.

If u is a solution to (1.2), one has, for every n ∈ N,

U(n + 1) = M(E,Vλ,θ,ρ(1) . . .Vλ,θ,ρ(n))U(1), (3.2)

where

U(n) =

(
u(n)

u(n − 1)

)
.

Observe that the behavior of ‖u‖L, for L large, can be investigated through

‖U‖L =

( [L]∑
n=1

‖U(n)‖2 + (L − [L])‖U([L] + 1)‖2
)1/2

,
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with ‖U(n)‖2 = |u(n)|2 + |u(n − 1)|2. A simple calculation leads to

1
2‖U‖

2
L ≤ ‖u‖

2
L ≤ ‖U‖

2
L.

Since the spectrum of Hλ,θ,ρ is independent of ρ [2], we just denote it by σ(Hλ,θ).
Put xn = tr(M(E, S n−1)), yn = tr(M(E, S n)) and zn = tr(M(E, S nS n−1)), with the explicit
dependence on λ and E suppressed. According to results in [2, 6], for every 0 , λ ∈ R
there exists a Cλ > 1 such that

max
n
{|xn|, |yn|, |zn|} ≤ Cλ,

uniformly in E ∈ σ(Hλ,θ) and every irrational θ. We emphasize that this property is
important for obtaining lower bounds for the solutions u to (1.2).

3.1. Lower bound for the solutions. In order to prove Theorem 1.5, we need to
obtain lower bounds for all solutions to (Hλ,θ,ρ − E)u = 0 with NIC and corresponding
to energies E ∈ σ(Hλ,θ). Thus, we will prove the following proposition.

Proposition 3.1. Suppose that θ is an irrational number of quasibounded density.
Then, for every λ > 0, there exist positive constants τ1,C1 and a sequence (n j) j∈N such
that, for every solution u to (1.2) with NIC and corresponding to energies E ∈ σ(Hλ,θ),
one has

‖u‖qn j
≥ C1qτ1

n j
.

In the proof of Proposition 3.1, we will use the ideas of [5, 6] with obvious
adaptations for a sequence.

Lemma 3.2 [6, Lemma 4.1]. Let λ, θ, ρ be arbitrary, E ∈ σ(Hλ,θ) and u a solution
to (1.2) with NIC. Then, for every n ≥ 8, the inequality

‖U‖qn ≥ Dλ‖U‖qn−8

holds true, where Dλ = (1 + 1/4C2
λ)

1/2.

Lemma 3.3. Suppose that θ is an irrational number of quasibounded density. Then
there exist a constant Cθ and a sequence (n j) j∈N such that qn j ≤ Cn j

θ .

Proof. The proof of Lemma 3.3 traces the same steps of the proof of [5, Lemma 2.3],
with the obvious adaptations for a subsequence. More precisely, we consider the
sequence (rn)n∈N defined recursively by

rn+1 = 2an+1rn, n ∈ N,

with initial condition r1 = 2a1.
Note that qn ≤ rn and rn =

∏n
i=1 2ai, for all n ∈ N. Now, since θ is an irrational

number of quasibounded density, there exist a constant Bθ and a sequence (n j) j∈N such
that

1
n j

n j∑
i=1

2ai ≤ Bθ. (3.3)
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Thus,

ln(qn j )
1/n j ≤ ln(rn j )

1/n j =
1
n j

n j∑
i=1

ln(2ai) ≤ Bθ,

and consequently, qn j ≤ Cn j

θ , with Cθ = eBθ . �

Proof of Proposition 3.1. We have by Lemma 3.2 that, for all n j ≥ 8,

‖U‖qn j
≥ Dλ‖U‖qn j−8 ≥ · · · ≥ D[n j/8]

λ ‖U‖qn j−8[n j/8]

≥ D[n j/8]
λ ‖U‖q0 ≥ D(n j/8)−1

λ ,

where Dλ > 1 and [n j/8] is the integral part of n j/8.
Thus, the existence of a sequence (n j) j∈N such that qn j ≤ Cn j

θ follows from
Lemma 3.3. Then choose τ1 > 0, satisfying C8τ1

θ ≤ Dλ,

‖U‖qn j

qτ1
n j

≥
D(n j/8)−1
λ

Cn jτ1

θ

=
1

Dλ

(D1/8
λ

Cτ1
θ

)n j

≥
1

Dλ
,

which implies that ‖U‖qn j
≥ D−1

λ qτ1
n j . Therefore,

‖u‖qn j
≥ C1qτ1

n j
,

with C1 = 1/Dλ

√
2. �

3.2. Upper bound for the solutions. We now obtain power-law upper bounds for
the solutions to (1.2). We prove the following proposition.

Proposition 3.4. Suppose that θ is an irrational number of quasibounded density.
Then, for every λ > 0, there exist positive constants τ2,C2 and a sequence (n j) j∈N

(which is the same as in Proposition 3.1) such that, for every solution u to (1.2), with
NIC and corresponding to energies E ∈ σ(Hλ,θ), one has

‖u‖qn j
≤ C2qτ2

n j
.

In the proof of Proposition 3.4, we will use ideas employed in [12, 13]
which produce estimates for the norm of the transfer matrices associated with the
operator Hλ,θ,ρ. In order to avoid cumbersome notation, we set

M(m) := M(E,Vλ,θ,0(1) . . .Vλ,θ,0(m)).

Lemma 3.5 [12, Theorem 9]. For any integer m, written as m =
∑n

i=0 εiqi, with all εi

integers, one has

‖M(m)‖ ≤ J
∑n+1

i=1 ai

1 J
∑n

i=0 εi

2 ,

where J1 and J2 are positive constants such that J1 ≥ J2.
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Lemma 3.6. Let (qn j ) j∈N be the sequence obtained in Lemma 3.3, and let m be a positive
integer with m < qn j , for some n j. Then one has the expansion

m =

n j−1∑
i=0

εiqi, (3.4)

with 0 ≤ εi ≤ ai+1, i = 0, 1, . . . , n j − 1.

Proof. For the sequence (qn j ) j∈N, we can suppose, without loss of generality, that
qn0 = q0 = 1 and qn1 = q1 = a1. We prove the result by induction on j ∈ N. If qn0 =

1 ≤ m < qn1 = a1, then m = ε0q0 = ε0, with 1 ≤ ε0 ≤ a1. Suppose that the result is valid
for m < qn j−1 .

Now suppose that qn j−1 ≤ m < qn j . We will analyze all possible values that m may
assume in the interval [qn j−1 , qn j ).

For qn j−1 ≤ m < qn j−1+1, write εn j−1 = [m/qn j−1 ]. Then m − εn j−1 qn j−1 < qn j−1 and

m − εn j−1 qn j−1 =

n j−1−1∑
i=0

εiqi,

for εi ≤ ai+1, i = 0, . . . , n j−1 − 1. We also have

εn j−1 <
[qn j−1+1

qn j−1

]
=

[an j−1+1qn j−1 + qn j−1−1

qn j−1

]
= an j−1+1,

and εi = 0 for i = n j−1 + 1, . . . , n j − 1.
The next step is to consider the case qn j−1+1 ≤ m < qn j−1+2, which follows from

the same considerations as the previous case. Thus, proceeding inductively with this
analysis on the values of m, we obtain (3.4) for qn j−1 ≤ m < qn j , that is,

m − εn j−1qn j−1 =

n j−2∑
i=0

εiqi,

where εi ≤ ai+1 for i = 0, . . . , n j − 2 and εn j−1 = [m/qn j−1] < an j . �

Proof of Proposition 3.4. We will check here in detail the proposition for ρ = 0,
which represents one of the main differences between our article and [6, 8]. However,
as noted in [6], this proposition is valid for every ρ ∈ [0, 1). We discuss the
generalization of this result for ρ ∈ [0, 1) in Appendix B, which proof follows the same
steps presented in [8].

If u is a solution to (1.2) with NIC, one has, by (3.2), that |u(m)| ≤ ‖M(m)‖. Then

‖u‖2qn j
=

qn j∑
m=1

|u(m)|2 ≤
qn j∑

m=1

‖M(m)‖2

≤ qn j (J1)4
∑n j

i=1 ai ≤ qn j (J1)2Bθn j

≤ q2τ2
n j
,
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with τ2 ≥ 1/2 + ln(J1), where we have used Lemmas 3.5 and 3.6 in the second
inequality, (3.3) in the third, and Lemma 3.3 in the last. �

Proof of Theorem 1.5. Let θ be an irrational number of quasibounded density. Thus,
by Propositions 3.1 and 3.4, there exists a sequence (qn j ) j∈N such that for every λ > 0,
there exist τ1, τ2 and constants C1,C2 such that, for any solution to (1.2) with NIC, one
has

C1qτ1
n j
≤ ‖u‖qn j

≤ C2qτ2
n j
.

Therefore, by Theorem 1.1, the spectrum of Hλ,θ,ρ is purely α-packing continuous,
with α = 2τ1/τ1 + τ2. �

Remark 3.7. We have, as a particular case of Theorem 1.5, that if θ is an irrational
number of bounded density, then the spectral measure of the operator Hλ,θ,ρ is
purely αP-packing continuous with αP = 2τ1/(τ1 + τ2), where τ1, τ2 > 0 are of the
form

C1qτ1
n ≤ ‖u‖qn ≤ C2qτ2

n ,

for any solution to (1.2) with NIC. However, it is well known [5, 6, 12, 15] that if θ is an
irrational number of bounded density, then Hλ,θ,ρ has purely αH-Hausdorff continuous
spectrum for αH = 2γ1/(γ1 + γ2), where γ1, γ2 > 0 satisfy relation (1.4).

Due to the way that τ1 and τ2 were obtained in Propositions 3.1 and 3.4, we note
that these estimates have important relations with γ1, γ2. More specifically, we observe
that τ1 > γ1 and τ2 < γ2; consequently, it follows that αP > αH from such estimates.

This observation is verified by rewriting the proof of [5, Proposition 2.1], which
has γ1 ≡ τ1 − ε, with ε ∈ (((ln Cθ,1 − ln Cθ,2)/ ln Cθ,1)τ1, τ1) and Cn

θ,2 ≤ qn ≤ Cn
θ,1.

The estimate for γ2 was obtained by [12, Corollary 10], where one has γ2 ≥

1/2 + (4/ ln 2) ln J1, with J1 as in Lemma 3.5 above. Therefore,

γ2 ≥
1
2

+
4

ln 2
ln J1 >

1
2

+ ln J1 = τ2.

Remark 3.8. We present an example of an irrational number θ = [0; a1, a2, . . .] of
quasibounded density that is not of bounded density. Let

An =
1
n

n∑
i=1

ai;

it is enough to build (an) and a subsequence of indices (n j) j∈N such that An j ≤ 2 and
An j+1 ≥ j, for all j.

For this purpose write n1 = 2 and take a1 = a2 = 1, a3 = 3; choose n2 = 5 with a4 =

a5 = 1, a6 = 2 ∗ 6; now consider n3 = 6A6 = 19 and take a7 = . . . = a19=1, a20 = 3 ∗ 20.
Proceeding this way, we obtain the subsequence (n j) j∈N defined recursively by

n j+1 = An j+1(n j + 1), ∀ j > 2,

with the terms (an) given by

an =

{
j(n j + 1), n ∈ J,
1, n < J,

where J = {n j + 1 : j ∈ N}.
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4. Stability of spectral packing dimension

We present in this section stability results of spectral packing dimensional
properties for some discrete Schrödinger operators of the form (1.1) under suitable
(real) polynomially decaying perturbations P = {P(n)}, that is, when V is replaced by
V + P. The results obtained here are analogous to the results presented in [1] for the
Hausdorff dimensional setting. As in [1], we are interested in energies in the set

S (H) := {E | ∃ϕ s.t. u1,ϕ,E

is a subordinate solution to (1.2) and u1,ϕ,E < l2(Z+)}.

It is known [19] that, for any ϕ ∈ [−π/2, π/2), the singular continuous part of the
spectral measure of Hϕ is supported in S (H). In the case of whole-line operators, S (H)
should be defined as [10]

{E | ∃ a solution to (1.2) which is subordinate at both ends ±∞
and which is not in l2(Z)},

and the singular continuous parts of the spectral measures are supported in this
set; note that if no solution to (1.2) satisfies such condition at one end, then the
corresponding energy E does not belong to the singular continuous component.

We have the following theorem.

Theorem 4.1. Let E ∈ S (H) and u1,ϕ,E , u2,ϕ,E be solutions to (1.2) satisfying (1.3).
Suppose that there exist positive constants C1,C2, γ1, γ2 such that every solution
to (1.2) with NIC obeys the estimates (1.4) for L > 0 sufficiently large. Suppose also
that, for every n ∈ N and p > 3γ2 − γ1, there exists a positive constant C3 such that

|P(n)| ≤ C3(1 + n)−p.

Then E ∈ S (H + P) and, for all κ ∈ [0, 1],

lim sup
L→∞

‖u1,ϕ,E‖L

‖u2,ϕ,E‖
κ
L

= lim sup
L→∞

‖v1,ϕ̃,E‖L

‖v2,ϕ̃,E‖
κ
L
,

where v1,ϕ̃,E is the solution to (1.2) for H + P, which satisfies the initial condition (1.3)
with some phase ϕ̃, and v2,ϕ̃,E satisfying the corresponding orthogonal condition
(always for the operator H + P).

Proof. The proof of this theorem is analogous to the proof of [1, Theorem 1.3], with
simple modification to the upper limit. �

We emphasize that condition (1.4) is essential in Theorem 4.1 (that is, bounds as
in (1.5) are not enough for the result). Therefore, we have considered, in Corollary 1.6,
Schrödinger operators with Sturmian potentials whose rotation number is of bounded
density.
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Proof of Corollary 1.6. The proof of Corollary 1.6 is analogous to the proof
of [1, Theorem 1.1]; however the constant αP-packing continuous obtained in
Remark 3.7 is preserved. More specifically, we have, by [5, 6, 12], that for Schrödinger
operators with Sturmian potentials whose rotation numbers are of bounded density,
there exist power-law bounds of the form (1.4) for every solution u to (1.2) (with
NIC). We have, by Theorem 1.5, that if θ is of bounded density (Remark 3.7) then, for
every λ , 0, there exists αP = α(λ, θ) > 0 such that, for every ρ ∈ [0, 1), the spectral
measure Hλ,θ,ρ is purely α-packing continuous, with αP = 2τ1/(τ1 + τ2).

We note again [5, 6] that if one is able to establish uniform power-law bounds on
the restriction of the operator to the right half-line, then the resulting α-continuity is
independent of the potential on the left half-line.

Suppose that the spectrum σ(HP
λ,θ,ρ) has some singular continuous component (that

is, σsc(HP
λ,θ,ρ) , ∅); now, since the perturbation decays as |P(n)| ≤ C(1 + |n|)−p, with

p > 3γ2 − γ1, it is a compact perturbation and the essential spectrum is preserved; thus
σsc(HP

λ,θ,ρ) is contained in the spectrum σ(Hλ,θ,ρ).
Note that S (Hλ,θ,ρ) cannot be a proper subset of σ(Hλ,θ,ρ), because by relation (1.4)

the operator Hλ,θ,ρ has no solution u to (1.2) (with NIC) in l2(Z). And it has been
shown in [21, 22, 24] that, for large λ, the spectrum of Hλ,θ,ρ (as a set) has Hausdorff
dimension strictly less than 1; this implies that for such λs the spectrum is also β-
Hausdorff singular for some β < 1, so Hλ,θ,ρ has a β-Hausdorff subordinate solution; in
particular, this solution is subordinate.

Therefore, this singular continuous component is supported in S (Hλ,θ,ρ) and, by
Theorem 4.1, we obtain that the asymptotic behavior of generalized eigenfunctions
of the operators HP

λ,θ,ρ (that is, the solutions to (1.2) in (1.7)) is the same as the
eigenfunctions of the unperturbed operators Hλ,θ,ρ; and again, by the α-subordinacy
theory (Theorem 2.1), such component is still αP-packing continuous for these
perturbed operators, with αP = 2τ1/(τ1 + τ2). �

According to results in [1], we can also apply Theorem 4.1 to operators with sparse
potentials. We reconsider here the class of operators Hα

ϕ [3, 14, 27] defined by the
action (1.1) in l2(Z+), along with a phase boundary condition

ψ(0) cosϕ + ψ(1) sinϕ = 0, ϕ ∈ (−π/2, π/2],

and, for each α ∈ (0, 1), sparse potentials

V(n) =

{
x(1−α)/2α

j , n = x j ∈ B,

0, n < B,

where B = (x j) j = (2 j j
) j. It is known that the restriction of its spectral measure to the

interval (−2, 2) is 1-packing dimensional [3, 4] for every boundary phase ϕ.

Theorem 4.2. Fix α ∈ (0, 1). Let Hα
ϕ be as above and

(HP,α
ϕ ψ)(n) := (Hα

ϕψ)(n) + P(n)ψ(n), ψ ∈ l2(Z+),
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with |P(n)| ≤ C(1 + n)−p for all n and some C > 0, p > min{3/(2α), (2 − α)/α}. Then,
the restriction of the spectral measure of the operator HP,α

ϕ to (−2, 2) is also 1-packing
dimensional, for all boundary phase ϕ ∈ (−π/2, π/2].

Proof. The proof of Theorem 4.2 follows the same steps as the proof of [1,
Theorem 1.2], following the same lines as in Corollary 1.6. �

A. Hausdorff and packing dimensions

In this appendix we recall some definitions and concepts regarding Hausdorff and
packing measures, and fix notation. Most of the material presented here is based on
[3, 9, 14, 20, 23, 25].

Definition A.1. Given a set S ⊂ R and α ∈ [0, 1], consider the number

Qα,δ(S ) = inf
{ ∞∑

k=1

|Ik|
α | |Ik| < δ,∀k; S ⊂

∞⋃
k=1

Ik

}
,

with the infimum taken over all covers of S by intervals Ik of size at most δ. The limit

hα(S ) = lim
δ→0

Qα,δ(S )

is called the α-dimensional Hausdorff measure of S .

The α-dimensional Hausdorff measure, hα, is an outer measure on subsets of R [25].
It is known that, for every set S , there is a unique αS such that hα(S ) = 0 if α > αS and
hα(S ) = ∞ if αS < α. The number αS is called the Hausdorff dimension of the set S ,
usually denoted by dimH(S ). Particular examples of hα are the counting measure for
α = 0 and the Lebesgue measure for α = 1.

Now the definition of packing measure. A δ-packing of an arbitrary set S ⊂ R is a
countable disjoint collection (B(xk, rk))k∈N of closed intervals centered at xk ∈ S with
radius rk ≤ δ/2. The (α, δ)-premeasure Pα

δ (S ) is defined by

Pα
δ (S ) = sup

{ ∞∑
k=1

(2rk)α : (B(xk, rk))k∈N is a δ-packing of S
}
,

the supremum taken over all δ-packings of S .

Definition A.2. The α-packing measure Pα(S ) of S is constructed by a procedure in
two steps: first, take the decreasing limit

Pα(S ) = lim
δ→0

Pα
δ (S ),

and then

Pα(S ) = inf
{ ∞∑

k=1

Pα(S k) : S ⊂
∞⋃

k=1

S k, S k disjoint Borel sets
}
.
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It follows, by Definition A.2, that Pα(S ) is an outer measure on R. The so-called
packing dimension of the set S , denoted by dimP(S ), is defined as the infimum of all
α such that Pα(S ) = 0, which coincides with the supremum of all α with Pα(S ) = ∞.
It is possible to show (see [9]) that the Hausdorff and packing dimensions are related
by the inequality dimH(S ) ≤ dimP(S ).

Definition A.3. Let µ be a Borel measure in R and α ∈ [0, 1].

(i) µ is called α-Hausdorff (α-packing) continuous if µ(S ) = 0 for every Borel set
S with hα(S ) = 0 (respectively, Pα(S ) = 0).

(ii) µ is called α-Hausdorff (α-packing) singular if µ is supported on some Borel set
S , that is, µ(R\S ) = 0 with hα(S ) = 0 (respectively, Pα(S ) = 0).

Definition A.4. A Borel measure µ in R is said to have exact Hausdorff (packing)
dimension α, for some α ∈ (0, 1), and denoted by dimH(µ) (respectively, dimP(µ)), if
two requirements hold:

(i) for every set S with dimH(S ) < α (respectively, dimP(S ) < α), one has µ(S ) = 0;
(ii) there is a Borel set, S 0, of Hausdorff (respectively, packing) dimension α, which

supports µ.

A Borel measure µ in R is said to be 0-Hausdorff (0-packing) dimensional if it
is supported on a set with dimH(S ) = 0 (respectively, dimP(S ) = 0) and 1-Hausdorff
(1-packing) dimensional if µ(S ) = 0 for any set S with dimH(S ) < 1 (respectively,
dimP(S ) < 1).

Remark A.5. According to Definitions A.3 and A.4, a Borel measure µ in R is of
exact Hausdorff (packing) dimension α if, for every ε > 0, it is simultaneously (α − ε)-
Hausdorff (respectively, packing) continuous and (α + ε)- Hausdorff (respectively,
packing) singular.

Given a finite Borel measure µ and α ∈ [0, 1], write

(D
α
µ)(E) := lim sup

ε→0

µ((E − ε, E + ε))
(2ε)α

and (Dαµ)(E) := lim inf
ε→0

µ((E − ε, E + ε))
(2ε)α

.

Theorem A.6. Let α ∈ [0, 1] and µ a Borel measure on R, and denote

Tα
∞ = {E ∈ R : (D

α
µ)(E) =∞}, Uα

∞ = {E ∈ R : (Dαµ)(E) =∞}.

Then Tα
∞ and Uα

∞ are Borel sets, and

(1) hα(Tα
∞) = 0;

(2) Pα(Uα
∞) = 0;

(3) µ(S ∩ (R\Tα
∞)) = 0, for any S with hα(S ) = 0;

(4) µ(S ∩ (R\Uα
∞)) = 0, for any S with Pα(S ) = 0.

Proof. Items (1) and (3) are well known and proved in [25, Ch. 3], and the proofs of
items (2) and (4) are in [3]. �
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Remark A.7. The restriction µαHs := µ(Tα
∞ ∩ ·) is α-Hausdorff singular, µαPs :=

µ(Uα
∞ ∩ ·) is α-packing singular; and µαHc := µ((R\Tα

∞) ∩ ·) is α-Hausdorff continuous,
µαPc := µ((R\Tα

∞) ∩ ·) is α-packing continuous. Thus, each measure decomposes
uniquely into an α-Hausdorff (packing) continuous part and an α-Hausdorff (packing)
singular part: µ = µαHs + µαHc (respectively, µ = µαPs + µαPc).

Moreover, an α-Hausdorff (packing) singular measure is such that (D
α
µ)(E) = ∞

(respectively, (Dαµ)(E) = ∞) almost everywhere (with respect to it), while an α-
Hausdorff (packing) continuous measure is such that (D

α
µ)(E) < ∞ (respectively,

(Dαµ)(E) <∞) almost everywhere (see [25, Ch. 3] and [3]).

B. Upper bounds of solutions: ρ ∈ [0, 1)

In this appendix we present a proof of Proposition 3.4 for every ρ ∈ [0, 1). We
consider a potential of the form

Vλ,θ,ρ(n) = λχ[1−θ,1)(nθ + ρmod 1), (B.1)

with 0 , λ ∈ R, θ ∈ [0, 1) an irrational number and ρ ∈ [0, 1); then we set

W(θ) ≡
⋃
ρ∈[0,1)

Sub(Vλ,θ,ρ),

where Vλ,θ,ρ are words over {0, λ} and Sub(w) denotes the set of all finite nonempty
subwords of w. It is well known that Sub(Vλ,θ,ρ) does not depend on ρ (see
Proposition B.2).

The set W(θ) is, by its very definition, particularly appropriate to the study of
uniform local properties of this family of operators. We also note that in order to prove
Proposition 3.4 for each ρ ∈ [0, 1), we need upper bounds for the solutions to (1.2)
associated with the operator Hλ,θ,ρ; this is equivalent to obtaining upper bounds for the
norms of the transfer matrices

M(E,w) =

(
E − wn −1

1 0

)
· · ·

(
E − w1 −1

1 0

)
,

for w = w1 . . .wn ∈W(θ). If we denote, for n ∈ N, the words

Vn
λ,θ,ρ ≡ Vλ,θ,ρ(1) . . .Vλ,θ,ρ(n),

then the matrices M(E, Vn
λ,θ,ρ) are the usual transfer matrices associated with the

solution to (1.2), as in (3.2).
In order to avoid cumbersome notation, we set w = Vλ,θ,ρ; recall that (n j) j∈N is the

same as in Proposition 3.1. Therefore, our main aim in this appendix is to prove the
following result.

Theorem B.1. Suppose that θ is an irrational number of quasibounded density. Then
there exist positive constants τ,C and a sequence (n j) j∈N such that, for each E ∈
σ(Hλ,θ), one has

‖M(E,w)‖ ≤ Cqτn j

for each word w ∈W(θ) such that |w| ≤ qn j .
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We recall that for each potential of the form (B.1), the words S n over the
alphabet A = {0, λ}, with 0 , λ ∈ R fixed (as defined by (3.1)), have length qn (that
is, |S n| = qn).

By definition, for n ≥ 2, S n−1 is a prefix of S n. Therefore, the following limit exists:

cθ ≡ lim
n→∞

S n.

The following proposition is an adapted version of [8, Propositions 2.1–2.3]; its
proof follows the same lines as the proofs of these results.

Proposition B.2. The following assertions hold.

(i) There exist palindromes πn, n ≥ 2, such that, for each k ∈ N,

S 2k = π2kλ0 and S 2k+1 = π2k0λ.

(ii) Vλ,θ,0 restricted to {1, 2, 3, . . .} coincides with cθ.
(iii) W(θ) = Sub(Vλ,θ,ρ) = Sub(Vλ,θ,0), for all θ ∈ [0, 1).

We also need additional results from [8].

Lemma B.3 [8, Lemma 3.2]. Let w ∈W(θ) be given. Then there exist t ∈ N, a suffix x
of S t or S t−1, and a prefix y of S t+1, such that w = xy.

Lemma B.4 [8, Lemma 5.1]. For w = w1 . . .wn, wi ∈ A, define wR = wn . . .w1. Then,
for each E ∈ C,

‖M(E,w)‖ = ‖M(E,wR)‖.

Lemma B.5. Suppose that θ is an irrational number of quasibounded density. Then
there exist constants τ > 0,C ≥ 1, and a sequence (n j) j∈N such that, for each E ∈
σ(Hλ,θ), one has that

‖M(E,w)‖ ≤ Cqτn j

holds for each prefix w of cθ, with |w| ≤ qn j .

Proof. We have, by Proposition B.2, that for every prefix w of cθ, with |w| ≤ qn j ,

M(E,w) = M(E,Vλ,θ,0(1) . . .Vλ,θ,0(m)) =: M(m),

with 1 ≤ m ≤ qn j , where (n j) j∈N is the sequence obtained in Lemma 3.3, satisfying
relation (3.3).

We have, by Lemmas 3.5 and 3.6, that there exists a positive constant J1 such that

‖M(m)‖ ≤ J
2
∑n j

i=1 ai

1 .

Therefore, by Lemma 3.3, there are positive constants τ ≥ ln J1 and C ≥ 1 satisfying

‖M(m)‖ ≤ Cqτn j
. �
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Proof of Theorem B.1. Fix w ∈W(θ) with |w| ≤ qn j . By Lemma B.3, there exist t ∈ N,
a suffix x of S t or S t−1, and a prefix y of S t+1 such that w = xy.

We will consider the case |y|, |x| ≥ 1; the submultiplicativity of the norm ‖ · ‖ implies

‖M(E,w)‖ ≤ ‖M(E, x)‖‖M(E, y)‖.

Next, we present estimates of ‖M(E, x)‖ and ‖M(E, y)‖. As y is a prefix of st+1 and so,
a fortiori, a prefix of cθ, we can use Lemma B.5 to obtain

‖M(E, y)‖ ≤ Ĉqτ̂n j
, (B.2)

since |y| ≤ qn j .
Now let x be such that |x| ∈ {1, 2}; then

‖M(E, x)‖ ≤ F2 ≤ F2qτ̂n j
, (B.3)

where, for a, b ∈ {0, λ},

F ≡ max{1, sup{M(E, a), E ∈ σ(Hλ,θ)}, sup{M(E, b), E ∈ σ(Hλ,θ)}}.

Otherwise, since x is a suffix of S t, it follows by Proposition B.2 that

xR = bav, (B.4)

where v is a prefix of cθ. We have, by Lemma B.4, the definition of F, and (B.4),

‖M(E, x)‖ = ‖M(E, xR)‖ ≤ F2Ĉ|v|τ̂ ≤ F2Ĉqτ̂n j
(B.5)

for some Ĉ ≥ 1. So, by combining (B.2), (B.3), and (B.5),

‖M(E,w)‖ ≤ F2Ĉ2q2τ̂
n j
.

The result now follows by setting C = F2Ĉ2 and τ = 2τ̂ in the previous estimate. �
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UFSCar, São Carlos, SP, 13560-970, Brazil
e-mail: oliveira@dm.ufscar.br

https://doi.org/10.1017/S1446788719000193 Published online by Cambridge University Press

http://www.arxiv.org/abs/1510.07086
http://www.arxiv.org/abs/1510.07086
http://www.arxiv.org/abs/1510.07086
http://www.arxiv.org/abs/1510.07086
http://www.arxiv.org/abs/1510.07086
http://www.arxiv.org/abs/1510.07086
http://www.arxiv.org/abs/1510.07086
http://www.arxiv.org/abs/1510.07086
http://www.arxiv.org/abs/1510.07086
http://www.arxiv.org/abs/1510.07086
http://www.arxiv.org/abs/1510.07086
http://www.arxiv.org/abs/1510.07086
http://www.arxiv.org/abs/1510.07086
http://www.arxiv.org/abs/1510.07086
http://www.arxiv.org/abs/1510.07086
http://www.arxiv.org/abs/1510.07086
mailto:oliveira@dm.ufscar.br
https://doi.org/10.1017/S1446788719000193

	Introduction
	Subordinacy theory
	Spectral packing continuity for Sturmian operators
	Lower bound for the solutions
	Upper bound for the solutions

	Stability of spectral packing dimension
	Hausdorff and packing dimensions
	Upper bounds of solutions: [0,1)
	References

